Jenaische Zeitschrift

für

NATURWISSENSCHAFT

herausgegeben

von der

medizinisch-naturwissenschaftlichen Gesellschaft

zu Jena.

Dreissigster Band.

Neue Folge, Dreundzwanzigster Band.

Mit 31 lithographischen Tafeln, 2 Lichtdrucktafeln und 19 Abbildungen im Texte.

Jena,

Verlag von Gustav Fischer

1896.
Inhalt.

Germanos, Dr. N. K., Bothriocephalus schistochilos n. sp. Ein neuer Cestode aus dem Darm von Phoca barbata. Mit Tafel I u. II und 1 Abbildung im Text 1

JaworowskT, A., Die Entwicklung des Spinnapparates bei Trochosa singoriensis Laxm. mit Berücksichtigung der Abdominalanhänge und der Flügel bei den Insekten. Mit Tafel III u. IV 39

Tiesing, Dr. Berthold, Ein Beitrag zur Kenntnis der Augen-, Kiefer- und Kiemenumkulatur der Haie und Rothen. Mit Tafel V—VII 75

Fürbringer, Max, Über die mit dem Visceralskelet verbundenen spinalen Muskeln bei Selachiern 127

Plehn, Marianne, Neue Polycladen gesammelt von Herrn Kapitän Chierchia bei der Erdumschiffung der Korvette Vettor Pisani, von Herrn Prof. Dr. Kükenthal im nördlichen Eismeere und von Herrn Prof. Dr. Semon in Java. Mit Tafel VIII—XIII 137

Hescheleer, Karl, Über Regenerationsvorgänge bei Lumbriciden. Mit Tafel XIV und XV 177

Berez, Waclaw, Zur Kenntnis des Parablastes und der Keimblätterdifferenzierung im Ei der Knochenfische. Mit Tafel XVI—XVIII und 4 Abbildungen im Text 291

Böckh, Isak, Die embryonale Entwicklung der Radula von Paludina vivipara. Mit Tafel XIX—XX a 350

Haeckel, Ernst, Die cambische Stammgruppe der Echinodermen. Aufrbach, Leopold, Untersuchungen über die Spermatogenese von Paludina vivipara. Mit Tafel XXI und XXII 405

Winkelmann, Dr. A. und Straubel, Dr. R., Über einige Eigenschaften der Röntgen'schen X-Strahlen. Mit Tafel XXIII und XXIV 555

Linstow, Dr. v., Über Taenia (Hymenolepis) nana v. Sierbold und murina Duj Mit 8 Abbildungen im Text 571

Kidniewski, Casimir R., Revision der Actiniern, welche von Herrn Prof. Studer auf der Reise der Korvette Gazelle um die Erde gesammelt wurden. Mit Tafel XXV und XXVI 583

Römer, Dr. phil. F., Studien über das Integument der Säugetiere. I. Die Entwicklung der Schuppen und Haare am Schwanz und an den Füßen von Mus decumanus und einigen anderen Muriden. Mit Tafel XXVII und XXVIII 604

Dependorf, Theodor, Zur Entwicklungsgeschichte des Zahn- systems der Säugetiergattung Galeopithecus Pall. Mit Tafel XXIX—XXXII und 6 Abbildungen im Text 624

Regel, Fritz, Jahresbericht der medizinisch-naturwissenschaftlichen Gesellschaft zu Jena für das Jahr 1895 673
Bothriocephalus schistochilos n. sp.
Ein neuer Cestode aus dem Darm von Phoca barbata.

Von
Dr. N. K. Germanos
aus Macedonien.

(Aus dem Zoologischen Laboratorium der Universität Jena.)
Mit Taf. I u. II und 1 Figur im Text.

Einleitung.

Das Material zu vorliegender Untersuchung wurde mir von dem Leiter der wissenschaftlichen Arbeiten im Zoologischen Institut zu Jena, dem Herrn Professor W. Kükenthal, zur Verfügung gestellt, welchem ich an dieser Stelle für seine wertvolle Unterstützung bei meiner Arbeit meinen innigsten Dank ausspreche.

Die betreffenden Bothriocephalen stammen aus dem Darm von Phoca barbata und gehören zur Ausbeute der Bremer Expedition nach Ostspitzbergen (W. Kükenthal und A. Walter 1889). Die Fixierung war mit heißem Sublimat vorgenommen worden, und es waren die Tiere vorzüglich konserviert, so daß die ursprünglich rein systematische Arbeit in anatomischer und histologischer Beziehung erweitert werden konnte. Es stellte sich bald heraus, daß wir es hier mit einer neuen Species zu thun haben, deren Organisation, besonders der Aufbau des Wassergefässsystems, in vielen nicht unwesentlichen Punkten von der anderer Bothriocephalen abweicht, so daß eine eingehendere Darstellung meiner...
N. K. Germanos,

Ergebnisse und eine Vergleichung derselben mit den bei anderen bis jetzt untersuchten Bothriocephalen gewonnenen am Platze scheint.

I. Das Aussere des Tieres.

Was bei der äußeren Betrachtung des Tieres auf den ersten Blick die Aufmerksamkeit auf sich zieht, ist die eigentümliche Form des Körpers im allgemeinen, besonders aber die Gestalt des Kopfes, des Scolex. Letzterer (Taf. I, Fig. 1) ist im Verhältnis zur Größe des übrigen Körpers sehr groß und dick, er hat eine Länge von 1,8 mm, eine Breite von 1,2 mm und eine dorsoventrale Dicke von 1,5 mm und trägt zwei Sauggruben, welche in ihrer Stellung den Flächen des Körpers entsprechen und schon dem bloßen Auge auffallend groß erscheinen, weil ihre Ränder wie Ohrmuscheln sehr beträchtlich hervorragen. Betrachtet man dieselben mit der Lupe, so bemerkt man, daß sie so weit und tief sind, daß der ganze Kopf beiderseits von ihnen eingenommen wird und nur eine dünne, durchscheinende Scheidewand die beiden Gruben voneinander trennt. Die Form derselben ist je nach dem Grade der Zusammenneigung ihrer Seitenränder sehr verschieden; wenn diese Ränder klaffen, haben die Gruben die Form eines Dreieckes, dessen Spitze nach dem Hals gerichtet ist und dessen Basis mit abgestutzten Ecken vorn am Scheitel liegt. Mit dem Zusammenfallen der Ränder nehmen die Gruben die Form eines nach vorn und hinten verlängerten und spitz ausgezogenen Ovals oder eines Viereckes an oder haben eine ganz unregelmäßige Form. Immerhin aber kann man bemerken, daß in allen Fällen die Öffnung der Grube in der vorderen Hälfte viel weiter ist als in der hinteren, und auch da, wo die beträchtlich zusammengefallenen Ränder fast gänzlich die Öffnung schließen und nur eine oberflächliche Furche in der Mittellinie sichtbar lassen, bleibt doch oben nach dem Scheitel zu ein kleiner Porus erhalten. Die Seitenränder der Gruben springen sehr auffallend in der Mitte des Kopfes hervor, sie werden aber nach dem Scheitel zu allmählich schmäler und biegen in die dünne Scheidewand der beiden Gruben um. In der Mitte des Scheitels sind die Ränder stark reduziert und manchmal ganz verschwunden, so daß die Grubenöffnungen mehr nach aufwärts als lateralwärts gerichtet sind und
Bothriocephalus schistochilos n. sp.

man bei einer Ansicht von oben die ganze Höhlung der Grube bis in die Tiefe der inneren Fläche des Unterrandes hinein sehen kann. Von der Mitte aus nach dem Hals zu werden die Ränder allmählich breiter und berühren einander in der Mittellinie, so daß sie außerlich nur eine seichte Furche erkennen lassen. Verfolgt man den Verlauf dieser Furche, so sieht man, daß sie sich bis zum Hals fortsetzt und die Seitenränder bis zur Stelle ihrer Verwachsung auf dem Hals trennt, was sehr charakteristisch für die vorliegende Species ist (Taf. I, Fig. 1 u. 2).

Je nach den Umgestaltungen der Gruben wechselt natürlich auch die Form des ganzen Kopfes in ihrer Flächenansicht; im allgemeinen läßt sie sich mit der Gestalt eines Herzens vergleichen, dessen spitzes Ende nach hinten gewandt ist und bis zum vierten oder fünften Gliede reicht. In seitlicher Ansicht zeigt der Kopf eine viereckige Fläche, deren obere Seite etwas nach oben gewölbt und abgestumpft ist, deren hintere Seite, stark nach derselben Richtung eingebuchtet, den seitlichen Teilen der ersten Glieder freien Platz läßt.

Die Sonderung der Proglottiden beginnt sofort hinter dem Kopfe, indem ein eigentlicher Hals fehlt; vor dem Beginn der eigentlichen Proglottiden aber bildet sich ein ringförmiger Wulst (Taf. I, Fig. 3 Wl), welcher die 2—3fache Länge der ersten Proglottis besitzt und sich stark über die Fläche derselben erhobt. Hinter dem Wulste beginnt sehr deutlich die Gliederung des Leibes. Bis zum ersten Drittel und manchmal bis zur Mitte des Körpers nimmt die Länge und Breite der aufeinander folgenden Glieder fortlaufend zu, von da ab aber haben gewöhnlich sämtliche Glieder bis zum Ende des Körpers annähernd die gleiche Länge und nicht selten auch die gleiche Breite. Nur sehr geringe Verschiedenheiten treten uns entgegen, namentlich in der Breite, die bei manchen Exemplaren abnimmt; dies ist aber nicht die Regel. Eine Ausnahme von der oben erwähnten Gleichheit der Glieder in der hinteren Körperhälfte machen die zwei oder drei letzten Glieder, welche immer an Länge die vorhergehenden übertreffen, während sie an Breite hinter ihnen zurückstehen; besonders das letzte Glied zeigt in der Mehrzahl der Fälle mehr als doppelte Länge der vorhergehenden, keineswegs aber übertrifft oder erreicht auch hier die Länge die Breite. Bei über 60 von mir untersuchten Exemplaren bin ich nur auf eine einzige Ausnahme von dieser Regel gestoßen, wo sich die Breite eines
zum Teil schon abgetrennten Gliedes zur Länge desselben wie 2 zu 3 verhielt, doch konnte man erkennen, daß hier eine nachträgliche Verstümmelung vorlag, indem ein Stück der Seitenfläche abgebrochen war. Wie bei der Ergänzung das Verhältnis der Länge zur Breite sich gestalten würde, ließ sich nicht mit Sicherheit entscheiden. Die hinteren Ränder der Glieder des vordersten Körperteiles nehmen den Verlauf einer nach hinten gekrümnten Linie ein, während die der übrigen in fast gerader Linie verlaufen und die der Endglieder sich wieder etwas krümmen (Taf. I, Fig. 1, 2 u. 4).

Wollen wir jetzt die geschilderten Größenverhältnisse in Zahlen ausdrücken, indem wir auch die gesamte Länge des Körpers und die Zahl der Glieder in Betracht ziehen, so ergiebt sich durchschnittlich bei den größeren Exemplaren folgendes:

<table>
<thead>
<tr>
<th>Länge des Körpers</th>
<th>Zahl der Glieder</th>
</tr>
</thead>
<tbody>
<tr>
<td>24,0 mm</td>
<td>69</td>
</tr>
</tbody>
</table>

Länge der mittleren Glieder: 0,8 mm
- des vorletzten Gliedes: 0,9 mm
- des letzten Gliedes: 1,6 mm

Breite der mittleren Glieder: 1,9 mm
- des vorletzten Gliedes: 4,5 mm
- des letzten Gliedes: 2,5 mm

Die Länge des Körpers ist nicht immer von der Zahl der Glieder abhängig; so fand ich z. B. die größte Zahl (69) bei einem Exemplare von 22 mm Körperlänge, während andere mit 22 und 24 mm Körperlänge nur 65 resp. 66 Glieder zählten; dieselbe Zahl Glieder (65) fand ich auch bei einem viel kürzeren Exemplar, von 19 mm Körperlänge.

Die Verteilung der Glieder auf die beiden Körperhälften unterliegt großen Schwankungen, wie aus folgender Zusammenstellung zu ersehen ist:

<table>
<thead>
<tr>
<th>Exemplar</th>
<th>Länge des Körpers</th>
<th>Zahl der gesamten Glieder</th>
<th>Zahl der Glieder der hinteren Körperhälfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>19 mm</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>b</td>
<td>22 "</td>
<td>65</td>
<td>22</td>
</tr>
<tr>
<td>c</td>
<td>23 "</td>
<td>66</td>
<td>18</td>
</tr>
<tr>
<td>d</td>
<td>20 "</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>e</td>
<td>17 "</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td>f</td>
<td>18 "</td>
<td>55</td>
<td>18</td>
</tr>
<tr>
<td>g</td>
<td>16 "</td>
<td>45</td>
<td>14</td>
</tr>
<tr>
<td>h</td>
<td>16 "</td>
<td>44</td>
<td>13</td>
</tr>
</tbody>
</table>
Form des Körpers und der einzelnen Glieder.

Der Körper hat im allgemeinen eine dorsoventral abgeplattete, flache Gestalt, besonders im vorderen Teile und in den Seiten- teilen der folgenden Glieder, während das Mittelfeld der letzteren in Form eines Längswulstes nach außen vorspringt. Je nach den Schwankungen der Breite der Glieder in der hinteren Körperhälfte nimmt der ganze Körper die Form einer Lanzette oder einer Sohle und manchmal die eines Bandes an, welches nur gegen das eine Ende hin schmäler wird (Taf. I, Fig. 1). Das vordere Viertel oder Fünftel des Körpers, welches die unreifen Glieder enthält, hat eine gleichartige Dicke, 0,6—0,8 mm, und sieht ganz hell aus; mit der Reifung der Glieder nimmt auch die Dicke zu und wächst schließlich zu 1,3—1,7 mm an, und nur die zwei oder drei letzten Glieder werden wieder etwas dünner.

An den platten, in die Breite gezogenen Gliedern (Taf. I, Fig. 4) unterscheidet man außer den zwei Seitenrändern (Sr) einen vorderen (A), dem Scolix zugewandten und einen diesem entgegengesetzten hinteren Rand (B), welcher über den vorderen des folgenden Gliedes dachziegelartig übergreift; ferner eine obere Dorsalfläche und eine untere Ventralfläche. Zudem unterscheidet man an den geschlechtsreifen Gliedern — am deutlichsten wenn man das Tier gegen das Licht hält — ein dunkleres Mittelfeld (E), von zwei helleren Seitenfeldern (DD) begrenzt. Das dunklere Aussehen des Mittelfeldes rührt von den hier gelagerten und mit Eiern gefüllten Windungen des Uterus her. In der Medianlinie der Ventralfläche und nächst dem vorderen Gliedrande liegt eine Öffnung, der Porus genitalis (P) (vergl. auch Taf. II, Fig. 13 P), dessen Form davon abhängt, ob der Cirrus hervorgestülpt ist oder nicht; im ersteren Falle ist sie fast kreisrund und hat einen Durchmesser von 0,10—0,12 mm. Im letzteren Falle gewährt sie das Bild eines Schlitzes, welcher quer zur Längsachse des Gliedes gestellt ist; unter solchen Verhältnissen betrug an den größeren Gliedern der Längendurchmesser 0,18—0,22 mm und der Breitendurchmesser 0,06—0,08 mm. In der Mehrzahl der Fälle ist aus den hinteren Gliedern (Taf. I, Fig. 4) der Penis weit hervorgestülpt und bald direkt nach oben hervorragend, bald nach hinten hängend oder nach vorn gekrümmt und bis zum vorderen Rande des vorhergehenden Gliedes reichend. Auffallende Größe zeigte der Penis einiger Exemplare (Fig. 4) am vorletzten und am letzten Gliede, welches im Begriff war sich abzulösen; der Penis bildete gleich nach dem
Austritt aus dem Genitalporus zwei Windungen, wendete sich dann nach vorn und erreichte das Ende des vorhergehenden Gliedes.

Der Porus genitalis bildet den Eingang in eine Grube, welche als Geschlechtskloake oder Sinus genitalis (Taf. II, Fig. 13 Tg) bezeichnet wird, weil in dieselbe einerseits das Vas deferens und andererseits die Vagina einmünden.

Dicht hinter dem Porus genitalis und nur 0,1—0,12 mm von ihm entfernt befindet sich die weibliche oder Uterusöffnung, mittelst deren der Uterus nach außen mündet (Taf. II, Fig. 13 Uo, und Taf. I, Fig. 2 u. 4). Sie ist kleiner und meist unsichtbar bei den Gliedern mit hervorgestülptem Penis, weil sich infolge dieses Vorgangs der Porus genitalis erweitert und der hintere Rand desselben die Ränder der weiblichen Öffnung zusammendrängt. Der Durchmesser dieser Öffnung beträgt 0,03—0,04 mm. Der Abstand derselben vom hinteren Rande des zugehörigen Gliedes ist zwei- oder dreimal so groß als vom vorderen Rande. Der Bezirk rings um diese Öffnungen herum nimmt gewöhnlich eine weibliche Färbung an, und daher kommt es, daß die Bauchfläche in der Mittellinie einen langen, weiblichen, am ersten geschlechtsreifen Gliede beginnenden und bis zum letzten reichenden Streifen zeigt. Außerdem erhebt sich dieser Bezirk zur Bildung kleiner, papillenartiger Erhöhungen. Eine Längsfurche in der Mitte der Glieder auf der Dorsal- oder Ventralfläche läßt sich niemals erkennen.

Was die Ablösung der reifen Glieder anlangt, so finde ich beim vorliegenden Tiere, daß sie nicht streckenweise, wie beim Bothriocephalus latus und cordatus¹), sondern einzeln abgestoßen werden. Dabei ist noch zu bemerken, daß nach geschehener Ablösung das neue Endglied eine ganz regelmäßige Form zeigt.

II. Über den feineren Bau des Tieres.

Bevor ich auf die einzelnen Teile des Tieres eingehe, will ich hier den allgemeinen Bau desselben im Umriß beschreiben. Wenn wir einen Querschnitt durch den Rumpf des Tieres unter schwacher Vergrößerung betrachten, so sehen wir, daß sich zwei nebeneinander liegende Hauptabschnitte erkennen lassen, wovon die

¹) Leuckart, Die menschlichen Parasiten, S. 445.
Bothriocephalus schistochilos n. sp.

Die ersteren hat ihrer mancherlei Gewebselemente wegen einen komplizierteren Bau und setzt sich aus folgenden Lagen zusammen. Zu äußerst ist die ganze Oberfläche des Körpers mit einer starken, bei schwacher Vergrößerung vollkommen homogen und strukturlos erscheinenden Membran, der Cuticula (Taf. I, Fig. 5, 6 C), umgeben, welche auch die zwei Sauggruben und die Geschlechtsöffnungen auskleidet. Es folgt dann eine Schicht von Bindegewebsfibrillen (Fb) und darunter eine Schicht von stäbchenförmigen Muskelfasern (St), welche in der Längsrichtung der Glieder verlaufen und mit den Bindegewebsfibrillen ein Gitter bilden. Ihnen schließt sich eine Lage von spindelförmigen und senkrecht zur Cuticula stehenden Zellen an (Sc), und nach innen folgt eine breite Parenchymzone, die die Dotterdrüsen (Dd) birgt und nur im Bereiche des Mittelfeldes von derselben befreit ist. Die Grenze der Rindenschicht wird von den Schichten der Längs- und Ringmuskulatur (Fig. 5, iLM, RM) gebildet.

Die Mittelschicht ist von viel einfacherem Bau als die Rindenschicht; sie besteht aus derselben Parenchymsubstanz, welche sowohl hier wie auch in der Rindenschicht mit zahlreichen und ganz unregelmäßig eingestreuten Kalkkörnchen (Fig. 5 u. 12) durchsetzt ist. In ihr sind eingebettet einmal die Geschlechtsorgane und ferner die Hauptstämmen des Nerven- und Wassergefässystems.

Der ganze Körper des Tieres, abgesehen von den Geschlechtsorganen, zeigt sowohl in den jungen wie auch in den reifen Gliedern den gleichen Bau, und es verhält sich auch die Muskulaturanordnung der Sauggruben genau so wie die des Rumpfes.

Cuticula.

Was zunächst die Cuticula anlangt, so ist sie eine starke, homogene, strukturlose und ziemlich stark lichtbrechende Membran, welche die ganze Oberfläche des Körpers und der Sauggruben überzieht, sich eine Strecke weit in die Geschlechtsöffnungen fortsetzt und an verschiedenen Stellen und je nach dem Kontraktionszustande verschieden dick ist. Im Rumpfe schwankt ihre Dicke zwischen 0,012 und 0,017 mm, aber an verschiedenen Rändern der Glieder wird sie viel dünner und erreicht kaum die Hälfte. Bei Anwendung starker Vergrößerung kann man an ihr drei verschiedene Schichten unterscheiden (Taf. I, Fig. 6), welche sowohl auf Quer- wie auch auf Längsschnitten sehr deutlich hervortreten. Die äußerste Schicht (a) von etwa 0,001—0,002 mm ist die dünnste, färbt sich, mit Karmin behandelt, dunkelrot und nimmt das Aussehen eines starren Häutchens an, welches gleichsam wie die Epidermis einer jungen Pflanze die Rinde derselben überzieht. Die zweite und anschliesslichste Schicht (b) wird vom Karmin viel heller gefärbt, bleibt sehr durchsichtig und hat über 0,008 mm Dicke. Unter dieser liegt endlich die dritte Schicht (c), welche vollkommen farblos bleibt, ein glashelles Aussehen zeigt und eine Dicke von 0,003 mm erreicht. Alle diese drei Schichten sind fest miteinander zu einem Ganzen verwachsen und von der darunter liegenden, weiter unten zu besprechenden Schicht der Bindegewebsfibrillen so leicht trennbar, daß ich nicht selten die Cuticula losgelöst und nach außen verschoben fand, während die Schicht der Fibrillen in festem Zusammenhang mit den unterliegenden Schichten stand.

Wie aus den oben angegebenen Messungen zu ersehen ist, zeigt die Cuticula des vorliegenden Tieres eine sehr beträchtliche Dicke, was das Studium ihrer Zusammensetzung erleichtert. Trotz der sorgsamsten Hartungsmethoden aber, trotz der dünnsten und in verschiedener Weise behandelten Schnitte, vermochte ich in dessen keine Spur von jenen vielbesprochenen Porenkanälen aufzufinden. Sommer und Landois 1), welche das Vorhandensein solcher zuerst behaupteten, fügen hinzu, daß diese Öffnungen zum

Bothriocephalus schistochilos n. sp.

Durchtritt der feinen Protoplasmafädchen dienen, und dieser Meinung schlossen sich später andere Autoren, Schiefferdecker 1), Steudener 2) an; v. Roboz 3) bestätigt zwar die Anwesenheit desselben und giebt an, daß diese als außerordentlich feine, helle oder dunkle Punkte erscheinen, er konnte aber den Durchtritt von protoplasmatischen Ausläufern nicht wahrnehmen. Will 4) hat das Vorhandensein von solchen nicht mit Bestimmtheit konstatieren können, er glaubt aber sie vermuten zu dürfen und sagt, daß sie nicht so zahlreich sind, wie die früheren Autoren annehmen, und daß die Strichelung der Cuticula viel mehr durch die Härchen hervorgerufen wird. In Rücksicht auf solche teils unbestimmte, teils widersprechende Ergebnisse und bei der Thatsache, daß ich auch auf den feinsten Flächenschnitten nicht die geringste Andeutung von solchen Poren, und noch weniger von Körnern, Spalten, Lückenräumen, welche nach v. Roboz 5) in der Cuticula von Solenophorus megalcephalus sich erkennen ließen, wahrnehmen konnte, glaube ich, daß Pinter 6) das Richtige getroffen hat, indem er sagt, daß „alle diese porenartigen Gänge und anderweitigen Hohlräume, die man in der Cuticula nicht allzu selten vorfindet, untrügliche Kennzeichen künstlichen Gefüges an sich tragen und auf Verletzungen beim Einbetten und Schneiden zurückzuführen sind“.

Schicht der Fibrillen und Stäbchen.

Wenn ich die Besprechung dieser beiden, aus verschiedenerlei Elementen bestehenden Schichten zusammenfasse, so liegt der Grund darin, daß ich in ihnen ein fest zusammengehaltenes Ganzes sehe, welches einerseits die Grenze zwischen Cuticula und Körperparenchym bildet und andererseits als Ansatzfläche der Dorso-

1) Schiefferdecker, Beiträge zur Kenntniss des feineren Baues der Tännien, in dieser Zeitschrift, Bd. VIII, S. 471—476.
5) v. Roboz, a. a. O., S. 264.
ventralmuskeln und der spindelförmigen Subcuticularzellen dient. Die dicht unter der Cuticula liegende Schicht (Taf. I, Fig. 6 u. 7 Fb) besteht aus feinen, unverzweigten, stark lichtbrechenden, elastischen Fibrillen, welche dem Breitendurchmesser des Gliedes parallel verlaufen und, in einer Kittsubstanz eingebettet, so dicht nebeneinander angeordnet sind, daß sie das Bild einer zarten, hellen und wellenförmig gestrichelten Membran gewähren. Während ihre Dicke je nach dem größeren oder geringeren Kontraktionszustand wechselt und in der Dorsal- und Ventralfläche im Durchschnitt 0,004—0,005 mm beträgt, ist sie in den Seitenrändern stets viel dünner und mitunter kaum bei starker Vergrößerung wahrnehmbar. SOMMER und LANDOIS 1), welche diese Fibrillen als in der Cuticula eingesprengt aufgefaßt haben, geben an, daß sie eine einfache Lage bilden, und dieser Meinung schließt sich auch v. ROBOZ an; die Ergebnisse meiner Untersuchungen zeigen dagegen, daß sie eine zweifache oder mehrfache Lage bilden. Allerdings kann man auf Flächenschnitten nicht ganz deutlich dies Verhalten wahrnehmen, denn die Sache wird sehr kompliziert durch die dazwischen liegenden Stäbchen; faßt man aber auch die Querschnitte ins Auge, auf denen diese Schicht in gut mit Hämatoxylin gefärbten Präparaten in ihrer ganzen Ausdehnung gestrichelt erscheint, und zieht man in Erwägung, daß die Dicke der einzelnen Fibrillen höchstens 0,002 mm beträgt, während die der ganzen Schicht über 0,004 mm ist, so ist mit Sicherheit zu entscheiden, daß in dieser Schicht mehr als eine einfache Lage von Fibrillen eingereiht sind.

Die zweite und tiefer liegende Schicht (Taf. I, Fig. 6 St und 7 St) besteht aus zarten Muskelfasern oder Stäbchen (Will) [SOMMER's und LANDOIS' Muskelzellen], welche in geringen und ganz regelmäßigen Abständen voneinander gestreckt oder leicht wellig gekrümmt verlaufen und nach dem vorderen und hinteren Gliedrande gerichtet sind, so daß sie ein dichtes Gitter mit den Bindegewebsfibrillen bilden. Diese Stäbchen kommunizieren weder miteinander, noch sind ihre Enden in zwei oder mehrere Ausläufer gespalten, wie SOMMER und LANDOIS 2) bei Bothriocephalus latus fanden; auch haben sie in meinem Objekte keine spindeförmige Gestalt, sondern sie zeigen auf ihrer ganzen Länge fast dieselbe Dicke von 0,004—0,006 mm und sind nur

1) SOMMER und LANDOIS, a. a. O., S. 42.
2) SOMMER und LANDOIS, a. a. O., S. 43.
an den beiden Enden etwas zugespitzt. Zudem ist zu bemerken, daß ihr Querschnitt nicht kreisrund ist, sondern die Form eines Vier- oder Dreieckes mit abgestutzten Ecken oder die eines zugespitzten Ovals hat, dessen Längendurchmesser nicht selten den Breitendurchmesser um das Doppelte übertrifft. Außerdem zeigt die vorliegende Species eine Eigentümlichkeit, die zum Teil auch, nach Steudener1), bei Liguliden vorkommt (Steudener hatte diese Gebilde als Längsmuskeln bezeichnet); es gibt nämlich innerhalb der ersten noch eine zweite Lage von Stäbchen, die aber nicht in kontinuierlicher Reihe wie die ersten verlaufen.

\textbf{Schicht der Subcuticularzellen.}

Ich wende mich jetzt zur Schilderung der sogenannten \textit{Subcuticularzellen}, Leuckart's körnerreichen Parenchymschicht, welche im vorliegenden Objekte nach verschiedenen Richtungen hin von den früheren Angaben abzuweichen scheinen. Während sie nach Sommer und Landois\textsuperscript{2)) ein zellige Grundlage von spindelförmigen, einer Hüllennmembran entbehrenden und miteinander verschmolzenen Zellen bilden, fand sie Steudener\textsuperscript{3)) als kegelförmige, palissadenartig nebeneinander stehende Zellen, so daß die Spitze des Kegels nach innen gerichtet ist, die Basis aber der Cuticula anliegt; v. Roboz\textsuperscript{4) beschreibt sie sehr eingehend und giebt an, daß sie äußerst wechselnde Gestalt haben, durch eine homogene Intercellularsubstanz verbunden sind und durch nach verschiedenen Richtungen verlaufende Ausläufer sowohl mit der Cuticula wie auch miteinander und mit den darunter liegenden Bindegewebszellen und Fibrillen in Verbindung treten. In der vorliegenden Species finde ich, daß diese Zellen (Taf. I, Fig. 5 u. 6 Se) stets eine schlange, spindelförmige Gestalt ohne bedeutende Anschwellung der Mitte haben, ganz regelmäßig in parallelen und senkrecht zur Cuticula stehenden Lagen angeordnet sind und sehr dicht aneinander gedrängt stehen besonders im Mittelfelde der Dorsal- und Ventralfläche; in den Seitenfeldern dagegen sind sie sehr locker gelegen, so daß man auf

\begin{itemize}
\item[1)] Steudener, a. a. O., S. 8.
\item[2)] Sommer und Landois, a. a. O., S. 44.
\item[3)] Steudener, a. a. O., S. 7.
\item[4)] v. Roboz, a. a. O., S. 267—268.
\end{itemize}
den ersten Blick und auch bei schwacher Vergrößerung erkannt, es mit gut voneinander abgegrenzten Zellen zu thun zu haben. Jede der übereinander liegenden parallelen Lagen besteht nicht aus einer, sondern aus mehreren Reihen von Zellen, welche mit ihren spitz ausgezogenen Enden, bezw. mit ihren einfachen Ausläufern verbunden sind und nach dem Körperinnern zu allmählich kleiner werden. Meistens sind die innersten so klein und so dicht aneinander gedrängt, daß sie sich zu einer schnurförmigen Reihe vereinigen (Taf. 1, Fig. 5). Bei der Vergleichung von Quer- und Längsschnitten bemerkt man, daß die übereinander liegenden Lagen viel enger aneinander gedrängt sind als die parallelen Reihen einer und derselben Lage. Wendet man stärkere Vergrößerung an, so sieht man, daß die einzelnen Zellen eine Länge von 0,020—0,032 mm und eine Breite von 0,004 mm haben und einen ovalen bis rundlichen, in der Anschwellung der Spindel gelagerten Kern von 0,002 mm mit Kernkörperformen besitzen, welcher von einem dünnen, feinkörnigen Protoplasma umgeben ist. An den beiden Enden, d. h. gegen die Cuticula einerseits und gegen das Innere des Körpers andererseits setzt sich die Zelle in zwei Ausläufer fort; der eine inseriert in der subcuticularen Fibrillen-Stäbchenschicht, und durch den anderen tritt die Zelle in Verbindung mit einer zweiten, mehr nach innen liegenden Zelle; die Ausläufer der innersten Zellen jeder Reihe stehen in Zusammenhang mit dem bindegewebigen Parenchym und berühren fast die darin eingelagerten Dotterkammern. Mitunter verwachsen die Ausläufer zweier benachbarter Zellen. Von einer Spaltung der Ausläufer in sekundäre Äste, von einer Verbindung der Zellen durch gegenseitige seitliche Fortsätze (v. Roboz) oder von einer Verfilzung der nach der Cuticula ziehenden Ausläufer zur Bildung einer fibrillösen Schicht (Will) war hier nichts zu sehen. Ebensowenig kann ich das Vorhandensein einer besonderen Intercellularsubstanz bestätigen. Es machen also die Subcuticularzellen bei der vorliegenden Species den Eindruck von unverästelten, spindelförmigen, kontraktilen Faserzellen.

Grundsubstanz oder Parenchym.

Über den Bau der Grundsubstanz oder des Parenchyme, welches nach der herrschenden Ansicht den ganzen Körper
der Cestoden ausfüllt und den darin eingebetteten Organen als Stütze dient, gehen die Ansichten sehr weit auseinander, obwohl durch die neueren Untersuchungen einzelne Fragen ihre Lösung gefunden haben. Während STIEDA 1) die Grundsubstanz des Bothriocephalus latus als einfache zellige Bindesubstanz, aus einer Menge von dicht aneinander gelagerten Zellen bestehend, bezeichnet, besteht sie nach SOMMER und LANDOIS 2) aus großen, äußerst zahlreichen, rundlichen oder ovalen Zellen und einer wenig reichlichen Intercellularsubstanz, welche als ein Abscheidungsprodukt der Zellen erscheint und wie diese ein blasses, feinkörniges oder trüb molekulares Aussehen hat. Andererseits findet SCHNEIDER 3), daß die runden Zellen SOMMER's und LANDOIS' nichts anderes als die mit Flüssigkeit erfüllten Lückenräume sind, während die Intercellularsubstanz jener Autoren die wirklichen Parenchymzellen darstellt, in welchen die Kerne liegen, und zu diesen Resultaten führten auch SCHMIDT's 4) neueste und sehr eingehende Untersuchungen.

LEUCKART beschreibt in der zweiten Auflage seines allbekannten Werkes „Über die menschlichen Parasiten“ 5) die Grundsubstanz als eine dicht gedrängte Zellenmasse, deren Zellen sich schon früh nach zweierlei Richtungen differenzieren, indem die einen ihre ursprüngliche runde Form behalten, während die anderen sich veränsteln und zu einem Reticulum zusammentreten, das sich zwischen die ersteren einschiebt und sie in seine Maschenräume aufnimmt. Diese Auffassung LEUCKART's wird aber von SCHMIDT bestritten, welcher die Annahme runder Zellen einer Täuschung zuschreibt, sie wären nichts anderes als die von einer homogenen Masse erfüllten Hohlräume.

Ich habe zur Untersuchung dieser Gebilde die Alaun- und Boraxkarminfärbung angewendet und bin zu folgenden Resultaten gekommen: Im allgemeinen besteht die Grundsubstanz aus Bindegewebszellen mit stark gefärbtem Kerne, die nach verschiedenen

2) SOMMER und LANDOIS, a. a. O., S. 44.
5) LEUCKART, Die Parasiten des Menschen und die von ihnen herrührenden Krankheiten, S. 969.

Zum Schlüß will ich noch einige über die Ansicht bemerken, wonach den Cestoden die Anlehnung eines Coloms zugeschrieben wird. Pagenstecher 2) behauptet, bei Arhynchotaenia critica Pag. eine Art engen und unterbrochenen Spaltraumes gefunden zu haben, und sieht darin eine Unterbrechung des parenchymatösen Charakters der Cestoden, eine Colomspalte. Es scheint aber, daß diese Angaben auf einer fehlerhaften Konservierung oder sonstigen Behandlung des Objektes beruhen. Viel wichtiger sind die Mit-

Bothriocephalus sehiochilos n. sp.

teilungen von Fraipont 1) und Griesbach 2), welche die Flimmertrichter des Wassergefässystems als mit lakunären Hohlräumen der Körpersubstanz in Kommunikation stehend beschreiben und dieses Hohlraum- oder Lakunensystem als Cölom auffassen wollen. Diesen Aaschauungen gegenüber stehen jedoch Pintner's 3) Ergebnisse, welcher die Trichter von Plasmazellen vollständig eingeglossen findet und daraus zu folgendem Schluß kommt: „Gerade das Geschlossensein der Flimmertrichter der Plathelminthen, das Geschlossensein jener Organe, die bei den Anneliden ihren Ursprung frei in die Leibeshöhle nehmen, ist der beste und sicherste Beweis, daß diese letztere bei den Plathelminthen absolut mangel, daß man also mit vollkommenen Rechte und scharfer Trennung (soweit eine solche nach modernen Aaschauungen überhaupt statthaft ist) die Anneliden als Cölomaten den Plathelminthen als Acölomaten gegenüberstellen darf."

Muskulatur.

Die Muskulatur besteht aus einzeln verlaufenden oder mehr oder minder zu Gruppen vereinigten Fasern, welche, dem allgemeinen Plan der typischen Cestodenmuskulatur entsprechend, nach drei verschiedenen Richtungen verlaufen und daher als Längs-, Ring- und Dorsoventralmuskeln zu unterscheiden sind. Im einzelnen aber zeigt die vorliegende Species einige Abweichungen, welche sich auf die Längsmuskulatur beziehen. 1) Außer der subcuticularen oder peripheren (Taf. 1, Fig. 5 pLM u. Fig. 6 pLM) und der inneren oder centralen (iLM) Längsmuskelschicht fand ich zwischen den Subcuticularzellen und der Zone der Dotterkammern noch eine dritte Lage von Längsmuskeln (Taf. 1, Fig. 5 u. 6 mLm), die ich als mittlere Längsmuskelschicht bezeichnen werde; 2) die centrale Längsmuskelschicht (iLM) zeigt nicht die gewöhnliche Anordnung in Bündeln.

Was zunächst die periphere Schicht (pLM) anlangt, so besteht sie aus Fasern von 0,003—0,004 mm Dicke, welche teils

1) Fraipont, Recherches sur l'appareil excrèteur des Trematodes etc. Archive de Biologie, T. I, 1880.
einzelnen, teils zu 2 oder 3 dicht nebeneinander in kleine Bündel oder Reihen angeordnet sind; einige von diesen Fasern rücken weiter nach innen zwischen die Subcuticularzellen vor und zeigen im Querschnitt eine so beträchtlich längliche Form, daß sich der Längendurchmesser zum Breitendurchmesser wie 6—8 : 1 verhält. Die mittlere Schicht (mLM) liegt manchmal zwischen den Subcuticularzellen und den Dotterkammern, gewöhnlich aber zwischen den innersten Subcuticularzellen. Im letzten Falle bilden sich in regelmäßigen Abständen netzförmige Zwischenräume, worin die Muskelfasern bündelweise zu je 5—10 eingeschaltet sind; in der Regel sind einige der Fasern jedes Bündels aneinander gekittet. Steudener fand zwar bei den Cestoden mit sehr kurzen und an den Verbindungsstellen stark eingekerbten Gliedern (Taen. tripunctata, Taen. infundibuliformis) eine Schicht von Längsmuskelfasern unter der Subcuticularschicht (der Schicht der spindelförmigen Zellen), das ist aber nichts anderes als die Lage der peripheren Längsmuskeln nach innen verschoben; indem aber in unserer Species die periphere Längsmuskel schicht bestehen bleibt, kommt auch diese neue Schicht (mLM) zum Vorschein. Im ganzen finde ich also folgende Längsmuskelschichten: 1) die fest der Fibrillenschicht anliegenden Muskelschichten (St); 2) die äußere oder periphere (pLM), 3) die mittlere (mLM) und 4) die innere oder centrale (iLM) Längsmuskelschicht.

Was diese letztere anlangt, so ist sie, wie bei den anderen Cestoden, am stärksten entwickelt nicht nur im Verhältnis zu den anderen Längsmuskeln, sondern auch zur Ring- und Dorsoventral muskulatur. Sie bildet eine Lage von glatten, kernlosen Fasern, welche sich verästeln und miteinander anastomosieren und, von vorn nach hinten der Längsachse des Körpers parallel verlaufend, das bindegewebe Körperparenchym durchsetzen. Sie verbreiten sich nicht nur durch die ganze Kette der Glieder, sondern sie setzen sich auch in den Kopf fort, wo sie sich baumartig verzweigen und bis zu den Rändern der Sauggruben gelangen (Taf. I, Fig. 8 iLM). Am stärksten tritt die Schicht im Mittelfeld der Glieder hervor, wo sie die ganze Strecke zwischen den Dotterkammern und den Ringmuskeln von etwa 0,060 bis 0,070 mm Breite einnimmt. Sie zeigt keine Anordnung in streckenweise liegende und durch Parenchym voneinander ge-

1) Steudener, a. a. O., S. 8.
trennten Bündel, wie das bei anderen Bothriocephalen der Fall ist, sondern setzt sich kontinuierlich fort, und nicht selten schieben sich die einzelnen Fasern zwischen die Dotterkammern ein. Die Stärke dieser Muskelfasern wie derjenigen der mittleren Schicht \((mLM)\) beträgt 0,004—0,006 mm.

Innerhalb der inneren Längsmuskelschicht liegen die Ringmuskeln, welche eine viel schwächer ausgebildete und 0,020 mm breite Lage bilden, die die Mittelschicht ringförmig und unmittelbar umhüllen. Die einzelnen Fasern haben eine Dicke von 0,005 mm und verlaufen, ohne miteinander zu anastomosieren, von einem Rande des Gliedes zum anderen, wo die meisten sich in mehrere kleine, in das Parenchym der Seitenränder hineindringende Äste verzweigen. Einen wesentlichen Unterschied von den Längsmuskeln zeigen diese wie auch die weiter unten zu beschreibenden Dorsoventralmuskeln im Vorhandensein eines Kernes. LEUCKART \(^1\) schreibt ihnen in der ersten Auflage seines Werkes keinen Kern zu, und SOMMER und LANDOIS \(^2\) konnten beim Bothriocephalus latus die Gegenwart eines Kernes nicht mit Sicherheit nachweisen. Nach den neueren Untersuchungen aber von PINTNER \(^3\), HAMANN \(^4\), WILL \(^5\) u. a. verhält sich die Sache anders. WILL z. B. giebt an, daß bei Caryophyllaeus mutabilis die Dorsoventralmuskeln und die Muskeln der inneren Lage einen deutlichen Zellleib mit Kern und Kernkörperchen zeigen, während HAMANN so wohl die subcuticulare wie auch die innere Längsmuskelschicht zu denjenigen Muskeln rechnet, welche keinen Rest ihrer Bildungszelle mehr zeigen. Im vorliegenden Objekte fand ich die Ringmuskeln als glatte Muskelfaser mit eingeschlossenen Kernen, während den Dorsoventralmuskeln sehr große Bildungszellen mit deutlichem Kern und Kernkörperchen anliegen (Taf. I, Fig. 9). WILL glaubt auch noch für die Längsmuskeln der äußeren Lage einen Kern annehmen zu müssen; nach einem solchen Kern habe ich in der gesamten Längsmuskulatur vergebens gesucht.

Die Dorsoventralmuskeln zeigen in ihrer Gestalt und ihren Dimensionen Übereinstimmung mit den Ringmuskeln, sie verlaufen

1) LEUCKART, a. a. O., S. 168—170.
2) SOMMER und LANDOIS, a. a. O., S. 48.
3) PINTNER, a. a. O., S. 62.
5) WILL, a. a. O., S. 16—17.
vereinzelt in dorsoventraler Richtung von Cuticula zu Cuticula und inserieren sich durch ihre zugespitzten Enden an die unmittelbar unter der Cuticula liegende Bindegewebsfibrillenschicht.

Wassergefäßsystem.

Die Ergebnisse der früheren Autoren über das Wassergefäßsystem der Bothriocephaliden gehen sehr weit auseinander. Während Böttcher 2) am lebenden Bothriocephalus latus im Kopf und Halsteil jederseits drei seitliche Längsstämme beschreibt, die unter sich und mit den der anderen Seite durch Queranastomosen in Verbindung stehen, fand Stieda 3) bei demselben Tiere nur zwei sehr gering entwickelte Längsstämme, zwischen welchen jegliche Verbindung in den einzelnen Gliedern fehlte. Sommer und Landois 4) fanden an den jungen unreifen Gliedern des Bothriocephalus latus zwei Seitengefäße jederseits und an geschlechtsreifen Glie-

1) Van Beneden, Recherches sur les vers Cestodes du litoral de Belgique, in Mém. de l'Acad. Roy. de Belgique, Bd. XXX.
3) Stieda, a. a. O., S. 184.
4) Sommer und Landois, a. a. O., S. 50.
Bothriocephalus schistochilos n. sp.

dern nur eins als Fortsetzung des äußeren der jungen Glieder, im ganzen also zwei, zwischen denen sich nirgends Queranastomosen fanden. Daß diese Angaben Sommer's und Landois' unrichtig sind, erhellt daraus, daß die betreffenden Autoren die beiden Längsstränge des Nervensystems für das Wassergefäßsystem gehalten haben. Steudener 1) gibt an, daß das Gefäßsystem beim Bothriocephalus proboscideus und punctatus und beim Triaenophorus nodulosus mit zwei feinen Gefäßstämmen im Kopf beginnt, die sich weiter im Hals in eine Anzahl Hauptlängsstämme (8 weitere und 8 engere bei den ersten Arten und 8—10 bei Triaenophorus nodulosus) spalten und an der Grenze zwischen Rinden- und Mittelschicht verlaufen, und daß die beiden äußersten von ihnen, die in den Seitenzweige liegen, am stärksten entwickelt seien. Pintner 2) faßt seine Ergebnisse über die Zahl und den Verlauf der Längsgefäße in folgenden Worten zusammen: „Der Grundtypus für den Verlauf dieser Längsgefäße (der Hauptgefäße) ist eine einfache bis an den Stirnrand des Kopfes vorgeschobene, aus einem dorsalen und einem ventralen Aste gebildete Schlinge in jeder Körperhälfte, deren Neigung zur Insel- und Anastomosenbildung bei den verschiedensten Arten eine Reihe komplizierter Verlaufsformen liefert. Bei sämtlichen Tänien, Tetrabothrien und Tetrarhynchien durchlaufen demnach auf jeder Körperseite zwei, im ganzen also vier Längsstämme die Strobila, während bei den Bothriocephaliden, Caryophylliden und Liguliden diese vier Stämme in eine individuell und örtlich schwankende, bei den einzelnenGattungen ungefähr zwischen 10 bis 24 wechselnde Anzahl von Längsstämmen zerfallen, die durch zahlreiche Queranastomosen mit bestimmtem Verlaufe untereinander in Verbindung stehen. Die vier Längsgefäße sind in Jugendzustande alle ziemlich gleich stark und münden sämtlich in die kontraktilen Endblase; später erweitern sich die beiden ventral gelegenen Kanäle auf Kosten der dorsal gelegenen, die in sehr alten freien Gliedern und in sehr langen Ketten wie in denen der menschlichen Bandwürmer, zu atrophieren scheinen."

V. Roboz 3) beschreibt bei Solenophorus megalcephalus zwei Längsgefäße auf jeder Seite, welche am Rande der Mittelschicht

2) Pintner, a. a. O., S. 40.
in geringen Entfernungen nebeneinander mehr oder weniger wellenförmig verlaufen. Das äußere Längsgefäß ist der Rückbildung unterworfen; sein Durchmesser nimmt in den reifen Gliedern fortwährend ab, und es verschwindet schließlich vor dem Auge des Beobachters, „so daß man in den hinteren Gliedern der Strobila nur mehr zwei Längsgefäße findet“.

Vergleichen wir damit unsere eigenen Befunde. Zunächst zeigt die vorliegende Species im Bau des Wassergefäßsystems eine äußerst auffallende Regelmäßigkeit; von ersten jüngsten bis zu den ganz reifen Gliedern findet sich dieselbe Zahl, die gleiche Lage und derselbe Verlauf der Längsgefäße; es zeigt sich kein Unterschied in der Stärke der Gefäße bei jüngeren und älteren Gliedern, und keine Atrophierung dieses oder jenes Gefäßes auf Kosten der anderen. Auf einem Querschnitt durch irgend eine Stelle des Rumpfes sieht man bei Anwendung starker Vergrößerung zweierlei Längsgefäße, die sich sowohl nach ihrer Lage und Anastomosierungsweise wie auch nach ihrer Stärke auf den ersten Blick unterscheiden lassen. Zuerst finden wir in der Mittelschicht vier Stämme, centrale Längsstämme (Figur d. Text C', C'', C_1, C_2); diese liegen stets innerhalb der beiden Nervenstränge (N, N') und zwar in bestimmtem Abstand von diesen und voneinander. Sie liegen zu je zweiem jederseits der Längsachse des Körpers in einer Ebene (AB), welche durch die Seitenränder des Gliedes geht. Die zwei Stämme der einen Seite (C', C'') stellen, wie ich weiter unten erklären werde, die beiden Äste der Schlinge der einen Körperhälfte dar, und die anderen (C_1, C_2) die der zweiten Schlinge. Man begegnet also auch hier dem von Pintner festgestellten
Grundtypus der zwei Schlingen, es bildet sich aber jede Schlinge nicht aus einem ventralen und einem dorsalen, sondern aus einem äußeren \((C'\text{ resp. } C_1)\) und einem inneren \((C''\text{ resp. } C_2)\) Aste, die sich stets in der Mitte der Mittelschicht finden, und niemals in der Grenze zwischen Mittel- und Rindenschicht oder in der Rindenschicht, wie bei den anderen Bothriocephalen.

Was die gegenseitige Lage der Stämme anlangt, so sagt PINTNER\(^1\) folgendes: „Ich fand die Entfernung der beiden Stämme einer Körperhälfte von der Medianlinie nicht nur unkonstant, sondern meist ohne ausgesprochenen Unterschied; dagegen ist ihre Lage gegen die Flachseiten des Körpers stets genau ausgeprägt.“ Ganz abweichend davon finde ich bei der vorliegenden Species die Stämme in bestimmter Entfernung von der Medianlinie des Gliedes und voneinander, welche Entfernung natürlich mit der Zunahme der Breite der Glieder gleichmäßig größer wird. Nehmen wir den Abstand des inneren Stammes \(C''\) oder \(C_2\) (vgl. auch Taf. XIX, Fig. 10 \(Wg'\text{b}\) oder \(Wg'\text{b}'\)) von der Medianlinie als 1, so zeigt sich dasselbe Verhältnis zwischen den Stämmen \(C'\) und \(C''\) oder \(C_1\) und \(C_2\) (Taf. II, Fig. 10 \(Wg'\text{a}\) und \(Wg'\text{b}\), oder \(Wg'\text{a}'\) und \(Wg'\text{b}'\)). Nur hie und da tritt eine Verschiebung der inneren Stämme \((C''\text{ und } C_2)\) an den Stellen ein, wo die stark ausgehenden Uteruswindungen sie nach außen gedrängt haben.

Der Verlauf dieser centralen Längsstämme durch die ganze Strecke des Körpers ist ein zickzackförmiger mit fast regelmäßigen Knickungen, und aus diesem Grunde erscheinen die Querschnitte der Kanäle bald genau auf der Linie \(A\ B\) (Figur des Textes), bald rücken sie etwas nach oben (nach der Dorsalseite) oder nach unten (nach der Ventralseite), und diese Verstellungen finden immer auf einer Zone \(z'\ z'\ z''\ z''\) statt, deren Breite \(z'\ z\) durch die Breite der genannten Zickzacklinie bedingt ist. Diesen Verlauf der einzelnen Kanäle sieht man sehr deutlich auf Längsschnitten (Taf. II, Fig. 11). Andererseits fand ich durch die Untersuchung verschiedener Serien von Flächenschnitten die Lageverhältnisse der vier erwähnten Längsstämme wie auch die Art und Weise ihrer Verbindung durch Anastomosen, was ich in Fig. 10, Taf. II, schematisch zu deuten versucht habe.

In Bezug auf die Anastomosierungsweise zeigen die beiden Äste jeder Schlinge ganz verschiedene und sehr eigentümliche Verhältnisse. Erstens bilden sich zwischen den inneren Stämmen

1) PINTNER, a. a. O., S. 30.
Wg'b und Wg'b' (Taf. II, Fig. 10) Queranastomosen (Qa), die nicht in unbestimmter Zahl und unabhängig von der Glieder teilung sind, wie Steudener \(^1\) bei Bothriocephalus proboscideus und Bothriocephalus punctatus fand; es kommt vielmehr jedem Gliede eine Queranastomose zu, die in den unreifen Gliedern in fast gerader Linie, in den reifen etwas in der Mitte nach vorn gekrümmt dicht oberhalb des Cirrusbeutels des nächstfolgenden Gliedes verläuft. Die Zahl der Glieder entspricht genau der Zahl der Queranastomosen, und demgemäß tritt hier eine scharf ausgeprägte Segmentierung dieses Teiles des exkretorischen Systems ein. Alle vier Längsstämme zeigen annähernd gleiche Weite, welche 0,016—0,020 mm beträgt; die der Queranastomosen ist 0,004—0,006 mm.

Jeder dieser Äste Wg'b und Wg'b' tritt zweitens mit dem zu derselben Schlinge zugehörigen äußeren (der Wg'b mit dem Wg'a und der Wg'b' mit dem Wg'a') in Verbindung durch zahl reiche Anastomosen (\(\Delta a\)), die bald schnurgerade, bald gekrümmt oder wellenförmig verlaufen, mitunter gabelig gespalten sind und sich dann wieder miteinander vereinigen und auf diese Weise ein sehr kompliziertes Gefäßnetz bilden. Direkte Verbindungen der zwei äußeren Wg'a und Wg'a' Äste oder des inneren der einen Schlinge mit dem äußeren der anderen treten nirgends auf.

Verfolgen wir jetzt diese Längsstämme in ihrem Verlauf bis zum Scolex hinauf, so zeigt sich folgendes: Indem sie die oben geschilderten Lage- und Abstandsverhältnisse beibehalten und nur eine unerhebliche Verkleinerung ihres Durchmessers erfahren, treten sie in die Scheidewand ein, welche die zwei Sauggruben voneinander trennt, und gelangen bis zum Scheitel hinauf, wo sich die beiden Stämme jeder Körperhälfte zu einer Schlinge vereinigen; von diesen entspringen zahlreiche nach verschiedenen Richtungen verlaufende kleinere und größere Zweige, welche sich wieder in feinere Gefäße spalten, die bald zu ihrem Muttergefäß zurück kehren, bald mit anderen Gefäßen desselben oder des anderen Stammes in Verbindung treten. Auf diese Weise entsteht aus jeder Schlinge ein reiches Gefäßnetz, welches die Sauggrubenränder der zugehörigen Seite versorgt. Man vermisst hier die Queranastomosen zwischen den inneren Längsstämmen, an deren Stelle verschiedene ganz unregelmäßige Anastomosen auftreten. — So viel über den in der Mittelschicht eingelagerten Komplex des Wasser-

\(^1\) Steudener, a. a. O., S. 13.
Bothriocephalus schistochilos n. sp.

gefäßsystems, für welchen ich die Benennung „centrales Wasser-
gefäßsystem“ als passendste betrachte.

Außer diesem tritt uns zweitens eine Reihe von Längsstämmen
entgegen, die ebenso durch die ganze Kette hindurch verlaufen,
die sich aber, wie gesagt, durch ihr geringes Lumen wie
durch ihre Lage in der Rindenschicht und die ver-
schiedene Anastomosierungsweise von den centralen
Stämmen unterscheiden lassen. Sie sind in der Zwölfzahl, 6 auf
ejeder Körperhälfte, vorhanden (Figur des Textes \(a_1-a_{12}\)) und
liegen zwischen den Dotterkammern und den Subcuticularzellen,
jedoch dringen sie hie und da tiefer ins Innere bis zur Schicht
der inneren Längsmuskeln ein. Sie nehmen ihren Ursprung im
Scolex von den Ästen der Schlingen oder von davon abgehenden
Abzweigungen, ziehen sich dorsal- oder ventralwärts nach der
Peripherie, treten in die Rindenschicht ein und durchlaufen die
Kette der Glieder in unregelmäßigen Zickzacklinien (Taf. II,
Fig. 11 Wg), indem sie in ihrem Verlauf durch verschiedenerlei
Anastomosen und Inselbildungen ein zweites, von dem centralen
unabhängiges Gefäßnetz bilden, welches zum Unterschied als
peripheres Wassergefäßsystem bezeichnet werden soll. Eine
Kommunikation dieses mit dem centralen Systemes läßt sich nir-
gends in der ganzen Kette der Glieder erkennen.

Überblicken wir die Ergebnisse der vorhergehenden Dar-
stellung, so gelangen wir zu folgendem allgemeinen Bild: Das
Netz der Hauptstämme beginnt im Scolex mit einer Schlinge jeder-
seits der Medianlinie; die verlängerten Schenkel jeder Schlinge
repräsentieren jederseits die genannten 2 größeren centralen Längs-
stämme, die von gleicher Stärke sind, durch die Mittelschicht in
der ganzen Strobila verlaufen und das centrale Gefäßnetz
bilden; zweitens entspringen im hinteren Scolexende aus jenem
Komplex 12 dünner Äste, die gleich in die Rindenschicht übet-
treten und durch das Gewebe derselben ebenso die ganze Strobila
durchlaufen und das periphere Gefäßnetz bilden, welches
sich nirgends mehr in Kommunikation mit dem ersten befindet.

Alle Längsstämme fand ich im letzten Gliede getrennt nach
außen mündend, weil ich in keinem der untersuchten Exemplare
das ursprüngliche Endglied vor mir hatte.

In Bezug auf den histologischen Bau der Hauptstämme des
Wassergefäßsystems kann ich die Angaben PINTNER's 1), daß sie

1) PINTNER, a. a. O., S. 21.
N. K. Germanos,

„ein wohlausgebildetes Epithel besitzen, das zweifelsohne als Matrix ihrer glasernen, homogenen Membran aufzufassen ist“, bestätigen und noch bemerken, daß die Epithelzellen bei der vorliegenden Species sehr dicht aneinander gereiht waren.

Fassen wir die erlangten Resultate zusammen, so sehen wir, daß unsere Species in der Anordnung des Wassergefäßsystems im allgemeinen und besonders der Centralstämme mit keinem der bis jetzt untersuchten Bothriocephalen übereinstimmt; man könnte vielmehr eine solche in gewissen Punkten mit den Täniaden und mit Caryophyllaeus mutabilis annehmen.

3) Alle vier Stämme des centralen (wie auch die des peripheren) Systems verlaufen durch die ganze Strobila bis zum letzten Gliede unverändert; sie behalten ihr ursprüngliches Lumen bei, was bei anderen Cestoden nur im Jugendzustand sich findet.

In Bezug auf die Queranastomosenbildung läßt sich hier große Ähnlichkeit mit den Täniaden erkennen. Nach den Angaben Steudener's 1) „tritt bei den Täniaden, sobald am Hals die Abschnürungen der einzelnen Glieder beginnen, auch die Bildung einer Queranastomose ein, welche bei allen Täniaden ohne Ausnahme

1) Steudener, a. a. O., S. 12.
am hinteren Rande eines jeden Gliedes verläuft und sich immer als ein einfaches Quergefäß, niemals als Wiederholung des Gefäßringes im Kopf darstellt. Diese Gefäßanastomose verbindet jederseits nur das große der beiden Gefäße, das kleine ist dabei gänzlich unbeteiligt". Wenn wir die beiden größeren Gefäße der Tänien (die ventral gelegenen nach Pintner) als den beiden inneren Centralstämmen (Taf. II, Fig. 10 Wg′b und Wg′b′ und Figur des Textes C′′ und C′) unserer Species entsprechend betrachten, so haben wir auch hier dasselbe Verhalten vor uns.

Eine derartige Queranastomosenbildung beschreibt Pintner bei Tetrarhynchus longicollis, ebenso v. Roboz bei Solenophorus megalophalus.

Andererseits könnte man die in der vorliegenden Species scharf ausgesprochene Differenzierung des Wassergefäßsystems in ein centrales und ein peripheres mit der etwas ähnlichen Anordnung des Wassergefäßsystems bei Caryophyllaeus mutabilis vergleichen. Nach Pintner 1) „charakterisiert sich das Gefäßsystem bei Caryophyllaeus mutabilis hauptsächlich durch eine scharf ausgesprochene Trennung der tiefer liegenden Hauptlängsstämme von einem sekundären oberflächlich gelegenen Gefäßnetz. Die Zahl der dickeren Hauptgefäße schwankt zwischen 8 und 12. Je zwei derselben liegen einander näher als den übrigen Stämmen". Allerdings fehlt bei dieser Vergleichung ein sehr wichtiges Moment, ich meine die Lage der Stämme; denn bei Caryophyllaeus mutabilis sind auch die tieferen Hauptlängsstämme in der Rindenschicht eingelagert. Indes hat es sich durch die neuesten Untersuchungen von Will 2) herausgestellt, daß dies Verhalten nicht für die ganze Länge des Caryophyllaeus-Körpers gilt. Zwar im Rumpfsteile, wo die Dotterdrüsen die Mittelschicht einnehmen, liegen die gesamten Hauptlängsstämme in der Parenchymlage der Rindenschicht, im Hals aber, wo die Dotterdrüsen aufhören, treten die 4 aufsteigenden Kanäle 3) in die Mittelschicht über und verlaufen innerhalb der Nervenhauptstämme. Man sieht daher auf einem Querschnitt durch den Halsteil (Will, Fig. des Textes II) 4 Stämme in der Mittelschicht, je 2 auf jeder Körperseite eingelagert, während die anderen ihre Lage in der Rindenschicht beibehalten.

3) Will unterscheidet nach van Beneden und Fraipont aufsteigende und absteigende Hauptgefäße.
Nach diesen Befunden von WILL wird die Ähnlichkeit zwischen Caryophyllaeus mutabilis und unserer Species erhöht. Vollständig ist allerdings die Ähnlichkeit nicht, doch glaube ich dieses in beschränktem Grade bei Caryophyllaeus mutabilis vorkommende Verhalten des Wassergefäßsystems als Ausgangspunkt für die Erklärung des Befundes bei meiner Species annehmen zu dürfen. In der letzteren zeigen die Subcuticularzellen einerseits und die Dotterdrüsen und die Lagen der Längsmuskeln andererseits eine so große Ausdehnung, daß sie kaum noch freien Platz für das wohlaustrangeste Gefäßnetz des Wassergefäßsystems lassen. Die Folge davon ist: ein Teil der Längsstämme verschiebt sich allmählich nach innen bis zur Mittellinie des Körpers und legt sich jederseits der Uteruswindungen, wo kein anderes Organ außer den Hoden existiert. Endlich trennt er sich gänzlich von dem peripheren Gefäßnetz und wird zu einem besonderen und selbständigen System, welches die Mittelschicht versorgt. Mit dieser Trennung und neuen Einlagerung der Längsstämme sind weiter verbunden a) eine Vergrößerung des Lumens der Hauptstämme und b) Veränderungen in der Art der Anastomosenbildung; es könnte nämlich eine komplizierte Anastomosierung zwischen den beiden inneren Längsstämmen $W g' b$ und $W g' b'$ (Taf. I, Fig. 10) wegen der dazwischen befindlichen und sehr mächtig entwickelten Uteruswindungen u. s. w. nicht mehr stattfinden. Infolgedessen oblitterierten hier die Anastomosen und beschränkten sich auf eine einzige Queranastomose am hinteren Ende jedes Gliedes. Die Entwicklungsgeschichte hat nachzuweisen, ob und in welchen Entwicklungsstadien diese Vorgänge sich abspielen.

4) Was endlich die gegenseitige Lage der centralen Längsstämme betrifft, so nimmt die vorliegende Species eine isolierte Stelle innerhalb der Klasse der Cestoden ein.

Kalkkörperchen. Hier wäre es am Platze, jene eigentümlichen, lange Zeit hindurch, für Eier angesehenen Gebilde, die sogenannten Kalkkörperchen, mit wenigen Worten zu besprechen. Sie sind überall im bindegewebigen Parenchym und in gleicher Menge sowohl in der Rinden- wie in der Mittelschicht vorhanden und bald vereinzelt, bald gruppenweise eingestreut; es gibt kreisförmige mit einem Durchmesser von 0,016 und andere wieder mit nur 0,006 mm; ovale oder elliptische mit Längendurchmesser von 0,012 und 0,009 mm Breite, biskuitförmige oder drei-
Bothriocephalus schistochilos n. sp.

27

eckige mit abgestutzten Ecken u. s. w. (Taf. II, Fig. 12). Sehr selten erscheinen sie ganz homogen, vielmals sind sie mit mehreren konzentrischen Streifen versehen und gewähren so das Aussehen von Stärkekörnern. Mit Alaukarmin gefärbt, tingieren sie sich nicht stark, sie zeigen aber die konzentrische Schichtung ausgezeichnet, während dieses Bild bei den mit Hämatoxylin gefärbten nicht so deutlich hervortritt. Claparède ¹) hatte bei Diplostomum rachiaeum Henle und anderen Trematoden die Kalkkörperchen in den blasenartigen Endigungen der Wassergefäße gefunden und daher die Ansicht ausgesprochen, daß auch bei den Cestoden ein Zusammenhang zwischen Kalkkörperchen und Exkretionssystem existieren könnte, ja er glaubte sogar, diesen Zusammenhang bei Triaenophorus nodulosus mehrmals mit Sicherheit erkannt zu haben. Dagegen vermochten die neueren Forscher diesen Vorgang nicht zu bestätigen, und auch ich kann auf Grund meiner Untersuchungen einen Zusammenhang von Kalkkörperchen und Exkretionssystem nicht finden.

Geschlechtsorgane.

Der weibliche Geschlechtsapparat besteht aus der Vagina, dem Ovarium mit dem Oviductus und dem Uterus; dazu kommen noch die Dotterdrüsen und die Schalendrüsen. Zu dem männlichen Apparat gehören die Hoden mit den Samengängen, das Vas deferens und der zur Stütze derselben dienende Hohlmuskel und der Cirrusbeutel. Ich beginne mit der Beschreibung der weiblichen Organe, indem ich auf die-

jenigen Punkte ausführlicher eingehen werde, in denen das vorliegende Tier mehr oder weniger von den übrigen Bothriocephalen abweicht.

Vagina. Wie ich schon bei der Besprechung der äußeren Form des Tieres gesagt, liegt dem vorderen Gliedrande zunächst der Porus genitalis (Taf. I, Fig. 4 P, vergl. auch Taf. II, Fig. 13 P), welcher in eine trichterförmige, mit papillenartigen Erhebungen belegte Grube, den Sinus genitalis (Sg) führt, in dessen Grunde zwei Öffnungen münden: oben die des Endabschnittes des Vas deferens, die Cirrusöffnung (Cro), unten die Vaginaöffnung (Vo), eine ovale oder runde, mit einem Durchmesser von 0,030 mm. Die Vagina (Taf. II, Taf. 13 V) verläuft zuerst dicht unter dem Cirrusbeutel, erstreckt sich bis zum hinteren Ende desselben und berührt die Lage der Ringmuskeln, wo ihr Lumen sich halbkugelig erweitert; dann biegt sie um und zieht nach der Ventralfläche (vergl. auch Taf. II, Fig. 15 V), den Uterus dorsalwärts von sich lassend. Hierauf wendet sie sich, immer ventral gelegen, nach dem hinteren Gliedrande und nach mehreren Windungen erreicht sie das Ovarium, dessen Mittelstück sie überschreitet; am hinteren Ende des Gliedes angekommen, erweitert sie sich zu einer großen, bald flaschenförmigen, bald ovalen Blase, dem Receptaculum seminis (Taf. II, Fig. 15 Rs), von dem ein engen Kanal zu dem Ovidukt führt. Wir können damit fünf Abschnitte unterscheiden: 1) den Anfangskanal (Sommer's und Landois' Scheideeingang) von der Vaginaöffnung bis zu der dorsalen Ringmuskellage von 0,006 mm Durchmesser; 2) die dorsale halbkugelige Erweiterung mit einem Durchmesser von 0,010—0,015 mm; dieses merkwürdige Gebilde kommt bei keinem anderen Bothriocephalus vor, und ich glaube, daß seine Entstehung dem Umstande zuzuschreiben ist, daß hier durch zahlreiche Fasern der Scheidenkanal auf die Dorsalfäche befestigt wird, wodurch eine Dehnung der dorsal gelegenen Wand und damit eine Erweiterung seines Lumens an dieser Stelle zustande kommt; 3) den mittleren Kanal (Sommer's und Landois's Scheidenkanal) bis zum Receptaculum seminis, dessen Durchmesser an den verschiedenen Stellen je nach dem Füllungsgrade mit Samenflüssigkeit und je nach dem verschiedenen von den Uterusschlingen ausgeübten Druck ungewöhnlich wechselt und im Mittelwert von 0,008 mm Durchmesser ist; 4) das Receptaculum seminis, welches, von der Ventralseite aus gesehen, links von dem Ovidukt liegt, eine Länge von 0,070 mm und eine
Bothriocephalus schistochilos n. sp.

Breite von 0,040 mm besitzt, und 5) den in den Ovidukt überführenden Befruchtungsgang mit einem Durchmesser von 0,004 mm.

Was die histologische Struktur der Vagina betrifft (Taf. II, Fig. 14), so finde ich dieselbe mit einer homogenen, cuticularähnlichen Membran (M) im Innern ausgekleidet; diese Membran nimmt im Anfangskanal an Dicke zu und setzt sich bis zur Vaginaöffnung fort, wo sie, wie Leuckart schon bemerkt hat, in die Cuticularbedeckung des Körpers übergeht. Um diese Membran legt sich eine fast gleich dicke Schicht von Ringfasern (Rf) und endlich eine spärliche Reihe von Zellen, die fast parallel der Längsachse des Kanals gerichtet sind. Ganz abweichend von diesem allgemeinen Verhalten zeigt das Receptaculum seminis eine innere epitheliale Auskleidung, deren Zellen, mit deutlichen Kernen versehen, senkrecht zur Wandung des Organs stehen und eine Länge von 0,006 mm haben. Nach Cilen im Lumen der Vagina, wie sie Moniez 1) von anderen Bothriocephalen beschreibt, habe ich vergebens gesucht; ebensowenig kann ich das Vorhandensein einer inneren Schicht von Zellen mit Kernen und ziemlich homogenem Protoplasma, wie v. Ronoz bei Solenophorus megalophageus beschreibt, konstatieren.

Ovarium, Dotter- und Schalendrüsen. Von den Drüsen des weiblichen Geschlechtsapparats ist nur wenig zu sagen. Das Ovarium (Taf. II, Fig. 15 Ov) liegt dicht hinter der ventralen Ring Muskelschicht am hinteren Ende des Gliedes und stellt einen Drüsenschlauch dar, bestehend aus zwei großen, bis über die Mitte der Länge des Gliedes reichenden Seitenstücken und einem dieselben am hinteren Ende des Gliedes verbindenden Mittelstücke (Ms). Das ganze Ovarium wird von einer zarten, strukturlosen und glashellen Membran umgeben und umfaßt eine große Menge von ovalen oder rundlichen Eizellen (Fig. 15 Ei und Fig. 16 Ei), die aber meist dicht aneinander gedrängt liegen und dadurch eine länglich-polygonale oder dreieckige Gestalt annehmen. Der Durchmesser des Kernes beträgt 0,002 mm und derjenige der ganzen Zelle 0,015 mm. Von der hinteren Seite des Mittelstückes entspringt ein gemeinsamer Oviductus (Taf. II, Fig. 15 Ovd), ein anfänglich geräumiger Gang, welcher enger wird und den feinen Befruchtungsgang aufnimmt; nachher biegt er um und geht in den Anfangsteil des Uterus über; an der Stelle der

Umbiegung münden in ihn einerseits das Sammelrohr der Dotterdrüsen und andererseits die Schalendrüsen.

Der Dotterstock (Taf. I, Fig. 5) ist ein umfangreicher Drüsenapparat, welcher aus zahlreichen, in einfacher Lage und in regelmäßigen Abständen voneinander im Parenchym der Rindenschicht eingelagerten Dotterkammern oder Dotterdrüsen (Dd) besteht. Letztere sind Zellenkomplexe von rundlicher oder ovaler Gestalt mit 0,040—0,060 mm Durchmesser; sie bilden eine Lage rings um die innere Längsmuskelschicht herum und lassen nur einen kleinenbezirk am Mittelfeld der Ventral- und Dorsalseite frei. In der Reihe der aufeinander folgenden Glieder sind sie derartig zerstreut, daß man die Dotterdrüsen eines Gliedes nicht abgrenzen kann; vielmehr scheinen die Dottergänge der vordersten Kammer eines Gliedes [wie schon ERSCHRIED und später SOMMER und LANDOIS in ihrer Arbeit über Bothriocephalus latus beschrieben 1)], zum Sammelrohr des vorangehenden Gliedes zu führen. Von jeder einzelnen Dotterdrüse geht ein mit zarter Hülle versehener Ausführungs­gang; alle diese Gänge münden ineinander und bilden ein ausgedehntes Röhrenwerk, von dem eine Anzahl größerer Äste abgehen, die sich schließlich zu einem Sammelrohr (Taf. I, Fig. 15 Dr) vereinigen, welches in die Mittelschicht eintritt und in den Anfang des Uterus einmündet. Eine Erweiterung des Sammelrohres zu einem Dotterreservoir, wie SOMMER und LANDOIS beschreiben 2), läßt sich hier nicht erkennen.

Zu den weiblichen Geschlechtsdrüsen gehören endlich die Schalendrüsen (Taf. II, Fig. 15 Sd), welche hinter und etwas rechts von dem Ovidukt liegen. Jede einzelne Drüse stellt eine einfache, ei- oder birnförmige Zelle von 0,020 mm Länge dar, welche durch einen Ausführungs­gang an der Stelle, wo der Ovidukt in den Uterus übergeht, ausmündet.

Uterus. Der Uterus nimmt seinen Anfang von dem Ovidukt. Sein Anfangsteil (Taf. II, Fig. 15 Ut) verläuft gerade gestreckt oder leicht gekrümmt unter dem Mittelstück des Ovariums; von da aus schlägt er den Weg nach oben ein und beschreibt zwischen der Vagina und dem Vas deferens eine Anzahl von unregelmäßigen und darmähnlichen kleineren oder größeren Windungen, welche die Membran der Ovarien etwas verdrängen und eine Art von sehr tiefen, meist bis zur seitlichen Wandung des Stückes rei-
Bothriocephalus schistochilos n. sp.

chenden Einbuchtungen bilden, wo sie sich einschieben. Gewöhnlich zählt man 5—6 Schlingen jederseits der Medianlinie des Gliedes, von denen die obersten links und rechts von dem Cirrusbeutel und manchmal über dessen Niveau hinauf steigen. Das Endstück der letzten Schlinge wendet sich nach der Ventralseite und endet auf derselben hinter dem Porus genitalis in eine selbständige Öffnung (Taf. I, Fig. 2 u. 4 Vo, und Taf. II, Fig. 13 u. 18 Uo), welche bald auf der Medianlinie des Körpers, bald rechts, bald links von ihr liegt. Die Weite des Uterusschlauches in seinem Anfangsteile beträgt 0,035—0,040 mm, von da ab aber nimmt sie sehr rasch zu, und weiterhin zeigen die Schlingen ein übermäßig weites Lumen, welches aber nicht durch die Entfernung der Schlinge von dem Anfangsteile bedingt ist, sondern nur von der jeweiligen stärkeren oder geringeren Ansammlung von Eiern abhängig ist.

Die befruchteten chitinösen Eier haben eine ovale Form und scheinen in der vorliegenden Species von dem gewöhnlichen Bau der Bothriocephalen-Eier nicht abzuweichen; der Längendurchmesser beträgt 0,050—0,070 mm, der Breitendurchmesser 0,020 bis 0,030 mm und die Dicke der chitinösen Hülle 0,004 mm.

Männliche Geschlechtsorgane.

Der männliche Geschlechtsapparat zeigt sich nicht so kompliziert wie die weiblichen Geschlechtsorgane; er umfaßt die Hoden mit ihren Ausführungsgängen, das Vas deferens und seine muskulösen Stützapparate.

Was ich besonders an dieser Stelle bemerken will, ist folgendes: Erstens daß die Hodenbläschen, im Gegensatz zu den Angaben
Sommer's und Landois' von Bothriocephalus latus 1), eine leicht erkennbare Grenzmembran besitzen, und darin stimmt auch die vorliegende Species mit den von anderen Forschern untersuchten Cestoden überein. Zweitens zeigt diese Species eine Abweichung vom Bothriocephalus latus darin, daß alle Samengänge eines Gliedes in den Sammelraum desselben Gliedes einmünden. Das Ergebnis Sommer's und Landois' 2), das übrigens bereits Erschricht gefunden hat, wonach die Dottergänge der vorhergehenden Gliedes münden, findet auch bei unserer Species Bestätigung; ein solches Verhalten aber fand ich auch für die Samengänge nicht vor; vielmehr sah ich, daß die Hodenblaschen jedes einzelnen Gliedes von denen des folgenden durch eine schmale Lage von Parenchym sehr deutlich abgegrenzt sind.

Vas deferens. Das Vas deferens ist ein vielfach gewundener Schlauch von 0,007 mm Durchmesser, welcher, an der Rückenseite der Mittelschicht verlaufend, zahlreiche Windungen hinter und zwischen den Uteruswindungen beschreibt. Auf diese Weise steigt es bis fast zum vorderen Rande des Gliedes hinauf, wendet sich dann etwas ventralwärts und tritt in die muskulösen Stützapparate hinein. Letztere verhalten sich wie bei Bothriocephalus latus; der obere davon, der Cirrusbeutel (Taf. I, Fig. 5 Cb, und Taf. II, Fig. 13, 15 Cb), ist eiformig, mit der stumpfen Seite nach rückwärts gerichtet, und nimmt die ganze Strecke von dem Sinus genitalis bis zur dorsalen Ringmuskelschicht ein, indem seine Längsachse senkrecht zur Längsachse des Gliedes steht. Die größte Breite des Cirrusbeutels beträgt 0,090 mm. Seine Wandung, die eine Dicke von 0,008 mm hat, wird von zarten, mit großen Kernen versehenen und mehrfach miteinander verfilzten Muskelfasern gebildet, welchen sich Muskelfasern, von der Ventral- und Dorsalseite des Gliedes abwärts, beimischen und zur Stütze des ganzen Organes dienen. Von der Innenfläche der Wandung entspringen zahlreiche Muskelfasern, welche radial verlaufen und sich an dem vielfach innerhalb des Cirrusbeutels gewundenen Endabschnitt des Vas deferens inserieren.

Der zweite muskulöse Apparat ist kugelig und von 0,030 mm Durchmesser. Seine Wandung hat eine Dicke von 0,006 mm, und die von der Innenfläche entspringenden zarten, kernlosen und

1) Sommer und Landois, a. a. O., S. 51.
2) Sommer und Landois, a. a. O., S. 59.
Bothriocephalus schistochilos n. sp.

cilienartigen Muskelfasern verlaufen strahlenförmig zu dem durchgehenden Vas deferens, an welchem sie sich befestigen. Dieser Hohlmuskel schließt sich an der Unterseite des hinteren Teiles des Cirrusbeutels an, jedoch nicht genau auf der Medianlinie desselben, sondern er rückt rechts oder links etwas in die Höhe und sein Pol, welcher mit dem Cirrusbeutel in Berührung tritt, plattet sich gegen diesen ab. Mit diesen Lageveränderungen des Hohlmuskels steht auch der Verlauf der Vagina und die Lage ihrer halbkugeligen Erweiterung in Zusammenhang; da wo der Hohlmuskel auf der rechten Seite der Cirrusblase angelagert ist, verläuft die Vagina links von demselben, und bei ihrem Weiterverlauf zur Dorsalseite bildet sie die halbkugelige Erweiterung, welche in diesem Falle links und dorsal von dem Hohlmuskel liegt; im nächstfolgenden Gliede verhält sich die Sache umgekehrt.

Der Endabschnitt des Vas deferens, welcher als Penis funktioniert, verläuft innerhalb des Cirrusbeutels, wo er mehrere Spiralwindungen bildet und in der oberen Öffnung des Sinus genitalis (Taf. II, Fig. 13 Cro) endet. Hier geht seine cuticulare Wandung, die in diesem Abschnitte des Samenleiters sehr stark entwickelt ist und in Längsfalten in das Lumen des Organs springt, in die Cuticula der Körperoberfläche über.

Ebenfalls außer Sommer und Landois folgende Ansicht 2): „Der Cirrus scheint übrigens nicht die Bedeutung eines Kopulationsorgans zu haben. Thatsache wenigstens ist, daß auch bei eingezogenem Cirrus ein Aussickern der Samenflüssigkeit aus der Öffnung des Samenleiters in den Sinus genitalis und die Scheidenöffnung stattfindet. Ferner hatten wir auch bei sorgfältigster Untersuchung mehrerer hundert Glieder nicht einmal Gelegenheit, den Cirrus in der Scheide zu finden. Endlich läßt ein Blick auf Taf. VII, Fig. 2 und das Lageverhältnis des Scheideneingangs zur Cir-
rusblase es nicht einmal als möglich erscheinen, daß der Cirrus als Kopulationsorgan in die Scheide gelangen könnte.“ Nach der zweiten Ansicht wird dem Cirrus die Bedeutung eines Kopulationsorganes mit Sicherheit zugeschrieben.

Ich will es dahingestellt sein lassen, ob man den Cirrus in die Vaginalöffnung eingestülpt gesehen hat oder nicht, und stütze mich bei der vorliegenden Species nur auf die Lageverhältnisse der beiden Öffnungen (Cirrusöffnung und Vaginalöffnung) und auf die Art und Weise der Herausstülpung des Cirrus. Mit Entscheidungsfähigkeit kann man daraus schließen, daß der Cirrus eines Gliedes zur Selbstbefruchtung nicht dienen kann. Nicht nur, weil die beiden Öffnungen, wie Sommers und Landois 1) ganz richtig bemerken, so angeordnet sind, daß das Überführen der Samenflüssigkeit aus der Öffnung des Samenleiters (Taf. II, Fig. 13 Cro) in die Vaginalöffnung (Vo) ohne die Vermittlung irgend eines Organs vor sich gehen kann, sondern hauptsächlich weil der Vorgang der Hervorstülpung in der Weise vor sich geht, daß der Cirrus nur direkt nach dem Porus genitalis ausgestoßen wird; und an diesem Vorgang beteiligt sich nicht nur der Endabschnitt des Samenleiters, sondern auch der ganze vordere Teil des Cirrusbeutels rückt bis zum Porus genitalis vor, und manchmal ragt er sehr weit aus demselben heraus. In vielen Fällen fand ich fast die Hälfte des Cirrusbeutels aus dem Porus genitalis herausstehend (Taf. II, Fig. 17 u. 18). Allerdings kann bei einer solchen Hervorstülpung eine Umbeugung des Cirrus in die Vaginalöffnung desselben Gliedes zum Zwecke der Befruchtung nicht stattfinden.

Wenn also dem Cirrus die Bedeutung eines Begattungsgangs zugeschrieben werden soll, so wäre das nur möglich, wenn die Befruchtung zwischen den verschiedenen Gliedern eines Individuums oder zwischen den Gliedern verschiedener Individuen erfolgen würde.

III. Systematisches.

Wenn wir zum Schluß aus den Resultaten der vorliegenden Untersuchung die systematische Stellung dieses Tieres bestimmen wollen, so finden wir, daß es eine Menge von Anklangen an die

1) Sommers und Landois, a. a. O., S. 56.
Bothriocephaliden bietet und infolgedessen mit vollem Recht in dieser Familie eingereiht werden muß. Andererseits aber zeigt es eine Reihe von nicht unwesentlichen Besonderheiten, welche die Aufstellung einer neuen Species notwendig machen. Auf diese oben schon ausführlich geschilderten und betonten Besonderheiten will ich nicht mehr eingehen; ich werde hier nur die vorliegende Species mit den anderen bis jetzt in Seehunden gefundenen Bothriocephalen insofern einer Vergleichung unterwerfen, als es nötig sein wird, um nachzuweisen, daß wir es hier mit einer neuen Species zu thun haben.

Es sind bis jetzt in Seehunden folgende Bothriocephalen gefunden:

Bothr. tetrapterus v. Sieb. in Phoca vitulina.
Bothr. fasciatus Kr. in Phoca annellata und hispida.
Bothr. elegans Kr. in Phoca cristata.
Bothr. antarcticus Baird in einer nicht bestimmten Phoca-Species.
Bothr. variabilis Kr. in Phoca vitulina, cristata und barbata.
Bothr. phocarum Fabr. (Taenia anthocephala Rud.) in Phoca cristata und barbata.
Bothr. lanceolatus Kr. in Phoca barbata.
Bothr. hians Dies. in Phoca annellata und barbata und in Leptonyx monachus.
(Bothr. Phocae foetidae Kr.?)
(Dibothrium hians Dies.)
Bothr. cordatus Leuck. in Trichechus rosmarus und Phoca barbata.

Von diesen sind zuerst Bothr. tetrapterus, Bothr. fasciatus und Bothr. variabilis außer Betracht zu lassen wegen der bei diesen vorhandenen Zwei- resp. Dreizahl (Bothr. variabilis) der Geschlechtsoffnungen; ebenso sind Bothr. elegans und antarcticus auszuschließen wegen ihrer Körperlänge, und weil bei ersterem die hintersten Glieder viel kürzer sind (0,2 mm) und bei letzterem Anhängsel an den Grubenflügel beschrieben wurden.

Von den vier übrigen hat Bothr. phocarum mit seinem ganz verschieden gebauten Kopfe und mit einer Körperlänge von 16 cm gar keine Ähnlichkeit mit unserer Species; ebenso Bothr. hians Dies., dessen Körperlänge über 30 cm beträgt.

Bothr. lanceolatus nähert sich etwas der vorliegenden Species in der Größe und Gestalt des Körpers (lanzettförmig,
1—3,5 cm Körperlänge); er besitzt aber eine viel größere Breite, von 6 mm und bei anderen Exemplaren von 12 mm und außerdem zeigt er, so viel aus der unvollständigen Beschreibung Krabbe's zu ersehen ist, große Unterschiede in der Ausbildung der Geschlechtsorgane, welche bei ihm schon im ersten Gliede sichtbar sind und im 13.—14. Gliede ausgebildete Eier besitzen.

Endlich zeigt Bothr. cordatus LEUCK. eine gewisse Ähnlichkeit mit unserer Species in der Art und Weise der Gliederung des Körpers und in der Gestalt des Scolex; in der Körperlänge findet sich aber ein enormer Unterschied (115 cm beim Bothr. cordatus). Es kommt dazu noch, um uns hier nur auf die äußeren Merkmale zu beschränken, die ganz eigentümliche Gestaltung der Ränder unserer Species, welche hinten gespalten sind und wie Ohrlappen herunter hängen. Dieses sehr charakteristische äußere Kennzeichen für die vorliegende neue Species veranlaßt mich, ihr den Namen Bothriocephalus schistochilos zu geben 1).

1) Σχιστός = gespalten, χείλος = Rand, Σχιστόχειλος = mit gespaltenen Rändern.
Erklärung der Abbildungen
zu Tafel I u. II.

In allen Figuren bedeutet:

A vorderer Gliedrand;
B hinterer Gliedrand;
E Mittelfeld;
D Seitenfelder;
P Porus genitalis;
Sq Sinus genitalis;
Uo Uterusöffnung;
C Cuticula; äußere, mittlere, innere Schicht derselben;
Fb Fibrillenschicht unter der Cuticula;
St Stäbchenschicht;
pLM periphere,
mLM mittlere,
iLM innere Längsmuskelschicht;
Sc Subcuticularzellen;
Rm Ringmuskelschicht;
\(dvM \) Dorsoventralmuskeln;
Wg periphere Wassergefäße-
kanäle;
Wg' centrale Wassergefäße-
kanäle;
N Nervenstrang;
Kk Kalkkörperchen;
Hb Hodenbläschen;
Vd Vas deferens;
Cro Cirrusöffnung;
Cr Cirrus;
Cb Cirrusbeutel;
Vo Vaginaöffnung;
V Vagina;
Rs Receptaculum seminis;
Ov Ovarium;
Ovd Ovidukt;
Sd Schalendrüsen;
Ut Uterus;
Dr Dottersammelrohr.

Die Erklärung der übrigen vorkommenden Buchstaben findet sich bei den einzelnen Figuren angegeben.

Tafel I, Fig. 1—9.

Fig. 1. Kopf und die ersten Glieder von Bothr. schistochilos.
Zeiß Ok. 2, 1/2 A. Cam. luc. gezeichnet. Ansicht von der Ventralfäche.

Fig. 2. Bothriocephalus schistochilos von der Ventralfäche aus
gesehen. Lupenvergrößerung. Cam. lucida gezeichnet. (Die natür-
lchen Dimensionen des vorliegenden Exemplars sind folgende: Länge
des Körpers 19,5 mm; größte Breite des Leibes 4 mm; Länge des
Kopfes 1,4 mm; Breite des Kopfes 0,8 mm.)

Fig. 3. Flächenschnitt durch den Kopf und die ersten Glieder.
Lupenvergrößerung. \(Wl \) ringförmiger Wulst, \(Gl \) die ersten Glieder.
Fig. 4. Der Endabschnitt des Körpers zwei verschiedener Exemplare, viermal vergrößert. Bei vier Gliedern ist der Cirrus herausgestülpt.

Fig. 5. Querschnitt durch ein geschlechtsreifes Glied in die Höhe des Cirrusbeutels. Zeiß A. Ok. 2. Die Dotterkammern und die Hodenbläschen sind etwas stärker vergrößert.

Fig. 6. Ein Stück des vorhergehenden Querschnittes, viermal stärker vergrößert. Zeiß F. Ok. 4. Die Zellen etwas schematisch.

Fig. 7. Flächenschnitt durch die Cuticula (α) und die darunter liegenden Schichten. Zeiß D. Ok. 4.

Fig. 8. Längsschnitt durch den Kopf und die ersten Glieder, um die Lage und den Verlauf der inneren Längsmuskeln zu zeigen. Zeiß A. Ok. 2.

Fig. 9. Zwei dorsoventrale Muskelfasern mit Myoblasten. Zeiß Apochromat. Ok. 12.

Tafel II, Fig. 10—18.

Fig. 10. Schematische Darstellung der Lage und des Verlaufs der centralen Längstämmen des Wassergefässystems durch Rekonstruktion aus einer Serie von Flächenschnitten. Die Ziffern zeigen die Zahl des betreffenden Gliedes an. Qa Queranastomosen zwischen den beiden inneren Längstämmen; An Anastomosen zwischen dem inneren und dem äußeren auf jeder Körperhälfte liegenden Stämme. Zeiß \(1/2\) A. Ok. 2.

Fig. 11. Längsschnitt durch die Gegend des äußeren Centralstammes geführt, um den Verlauf des Stammes in zickzackförmiger Linie anzugeben. Zeiß \(1/2\) A. Ok. 2.

Fig. 12. Kalkkörperchen aus verschiedenen Gegenen des Körpers. Zeiß D. Ok. 3.

Fig. 13. Längsschnitt durch die Mündung der Geschlechtsorgane. Zeiß D. Ok. 2.

Fig. 14. Längsschnitt durch den mittleren Abschnitt der Vagina. M homogene Membran; Rf Ringfaseru; Cl Zellen. Zeiß D. Ok. 4.

Fig. 15. Schematische Darstellung der Lage und des Verlaufs der weiblichen Geschlechtsorgane, von der Ventralseite aus gesehen. Ei Eizellen; M homogene Membran; Ms Mittelstück des Ovariums; Bg Befruchtungsgang. Zeiß A. Ok. 4.

Fig. 16. Einzelne Eizellen aus dem Ovarium. Zeiß. D. Ok. 4.

Fig. 17. Längsschnitt durch drei aufeinander folgende Glieder, bei welchen ein großer Teil des Cirrusbeutels herausgestülpt ist. Zeiß \(1/2\) A. Og. 2.

Fig. 18. Flächenschnitt durch den vorderen und bis zum Porus genitalis hervorgestülpten Teil des Cirrusbeutels. Zeiß D. Ok. 2.
Die Entwicklung des Spinnapparates bei Trochosa singoriensis Laxm. mit Berücksichtigung der Abdominalanhänge und der Flügel bei den Insekten.

Von

A. Jaworowski in Lemberg.

Mit Tafel III u. IV.

Ein Blick in die Litteratur des Spinnapparates bei den Araneina zeigt uns sofort, daß derselbe weit besser in anatomischer als in entwicklungsgeschichtlicher Hinsicht bekannt ist. Der entwicklungsgeschichtlichen Untersuchung stellten sich Schwierigkeiten in den Weg, die nicht leicht zu überwinden waren. Ich gelangte daher erst nach einer langen Reihe von Untersuchungen zu Resultaten, die vielleicht in einer viel kürzeren Zeit in gleichem Maßstabe erzielt wären, wenn mir meine Standesobliegenheiten als Gymnasialprofessor es gestatteten, und ein frisches Material 1) fortwährend zur Verfügung gestanden wäre.

Da die Entwicklung der Spinnwarzen nur zum Teil und dies nur oberflächlich bekannt war, so hatte dies zur Folge, daß einerseits die Ursache des Auftretens ihrer verschiedenen Anzahl (4 oder 6) bei den Araneina unbekannt blieb, andererseits bei den

1) Trochosa sing. findet sich bekanntlich am äußersten Rande Ostgaliziens und in der Ukraina vor.
Spinnen Organe, z. B. Cribellum vorkommen, deren Natur und Entstehung erst noch zu ermitteln nötig war.

Der Spinnapparat bei Trochosa singoriensis während der Entwicklung besteht aus folgenden Bestandteilen: aus a) den 6 Spinnwarzen samt den Spinndrüsen, b) einem rudimentären Cribellum, c) den Spinnklauen und d) einem Calamistrum. Einen jeden dieser Bestandteile will ich einzeln besprechen, doch, wie die Entwicklungsgeschichte es erfordert, die Entstehung der Spinnwarzen und des Cribellums gleichzeitig behandeln.

I. Die Entwicklung der Spinnwarzen, des Cribellums und der Spinndrüsen.

HEROLD (26) kennt im embryonalen Zustande nur die Stelle, „das Ende des Bauchfleckens“, an welcher die Spinnwarzen entstehen.

CLAPAREDE (14) kannte die Entwicklung der Spinnwarzen noch nicht. In der Fig. 26 u. 27, Taf. III von Pholcus spilionides stellt er sie in der Zahl 4 dar, ohne eine nähere Angabe über ihre erste Entstehungsart.

SALENSKI (49) gebührt das Verdienst, zuerst behauptet zu haben, daß das dritte und vierte Paar der Abdominalanhänge am Schluß der Embryonalentwicklung sich in die Spinnwarzen umwandelt, doch ließ er bezüglich der Entstehung der vollen Zahl der Spinnwarzen die Frage offen, indem er schreibt: „Von den drei Paaren der Spinnwarzen entwickeln sich in der zweiten Periode nur zwei Paare. Das dritte Paar entwickelt sich bedeutend später und auf eine ganz andere Weise. Dieser Unterschied in der Entwicklung entspricht dem Unterschied ihrer Lage und Größe. Das dritte Paar entwickelt sich nicht aus den Abdominalfüßchen, sondern erscheint zwischen dem ersten, über der nach hinten gelegenen Öffnung in Gestalt zweier konischen Erhebungen. Beim Embryo, wie auch beim entwickelten Tier sind sie bedeutend kleiner als die zwei letzten Paare.“

BALFOUR (3) war bezüglich der Entwicklung der Spinnwarzen im Unklaren. Er glaubt, daß die vier Paare der Abdominalanhänge verschwinden, und zweifelt, ob sich die zwei letzten Paare in Spinnwarzen umwandeln.

LOCY (38, S. 82) bestätigt die Beobachtung von SALENSKI,
doch bezüglich der Entstehung des dritten Paares der Spinnwarzen ist er mit seinem Urteile sehr vorsichtig, wenn er sich, wie folgt, äußert: „In addition to these two large pairs there is a pair of smaller median mamillae, the origin of which I have not traced.“

Wie schwierig die Erkenntnis der Entwicklung der vollen Anzahl der Spinnwarzen sich auch anderen Forschern während der Untersuchungen darbot, ergiebt sich aus ihren verschiedenen Angaben.

Schon vorher hatte SCHIMKIEWITZ (51) vermutet, daß die Entwicklung der Spinnwarzen auf eine Art von Neubildung zurückzuführen sei, eine Ansicht, die durch Untersuchungen von BARROIS (4, S. 544) ihre Bestätigung findet. Der letztere schreibt: „les filières elles-mêmes naissent à cette époque sous forme d’assez larges soulèvements de la peau, situés à la limite postérieure des plaques sternalles; elles n’apparaissent d’abord qu’au nombre de deux paires: la troisième, plus petite, ne se forme que plus tard.“

MORIN (40) führt die Angabe SALENSKI’s an, nämlich daß das dritte und vierte Paar der Abdominalanhänge, d. i. am vierten und fünften Abdominalsegment, zu Spinnwarzen werden, das zweite Paar hingegen, am dritten Abdominalsegment, der Rückbildung anheimfällt, was erst KISHINOYE (31) ganz richtig abbildet. Der letztere Forscher glaubt auch, daß die Entwicklung des dritten Spinnwarzenpaares bei Agalena erst nach dem Ausschlüpfen ‘aus dem Eie, somit im postembryonalen Zustande, stattfinde.

Die neuesten Untersuchungen finden wir in KORSCHELT-HEIDER, Lehrbuch der vergleichenden Embryologie, vor. Es wird hier angegeben, daß die Spinnwarzen mit Rücksicht auf die Konstatierung einer größeren Anzahl der Abdominalanhänge aus dem vierten und fünften Paar hervorgehen, wozu vielleicht noch das sechste Paar miteinbezogen werden dürfte.

LANG (36, S. 539) stellt es auf Grund vergleichend-anatomischer Betrachtungen als sehr wahrscheinlich hin, daß die zwei oder drei Paar Spinnwarzen rudimentäre Abdominalgliedmaßen seien, das Cribellum hingegen der letzte Rest eines weiteren (vierten) abdominalen Gliedmaßenpaares sei.

Wir sehen also, daß die Entwicklung der vollen Anzahl der Spinnwarzen bis jetzt unbekannt ist, daß aber auch das erste Entstehen derselben verschiedene Darstellungen erfahren hat.

Meine Untersuchungen an Trochosa singoriensis berechtigen
mich, die eben erzielten Resultate zu veröffentlichen. Da es sich aber vor allem darum handelt, aus welchen Abdominalanhängenräumen die Spinnwarzen entstehen, so muß ich die Ergebnisse der darauf gerichteten Untersuchungen gleich vorausschicken.

Bekanntlich wird die Anzahl der Abdominalanhänge mit vier Paaren angegeben (Salenski, Balfour, Schimkiewitz, Kishinoye, Locy und Morin), bei Trochosa fand ich (27) seiner Zeit 5 Paare, das letzte jedoch stark reduziert, und Claparède hatte schon vorher bei Clubione 6 Paare gefunden. Die Dislokation, resp. die Entwicklung der eben erwähnten Anhangspaare scheint verschieden zu sein. Salenski fand bei Clubione, Schimkiewitz bei Agalena und seiner Zeit auch ich bei Trochosa am ersten Abdominalsegment kein Anhangspaar vor, Claparède, Balfour und andere zeichnen das erste Paar der Anhänge am ersten Abdominalsegment, und die neuesten Untersuchungen von Korschelt und Heider (32) sind insofern von Wichtigkeit, als sie bei einer nicht näher bestimmten Spinnenart je ein Abdominalanhangspaar nicht nur am ersten, sondern auch am sechsten Segment als zurückgebildet schildern, somit die Beobachtungen Claparède's bestätigen. Der letzte Fall veranlaßte mich zu wiederholten, seiner Zeit an vielen Embryonen angestellten Untersuchungen, und ich fand nun bei Trochosa folgendes vor.

In einem Stadium, aber vor Reversion (Fig. 1) sind am zweiten, dritten, vierten und fünften Abdominalsegment die Anhänge in derselben Linie wie die Cephalothorax-Extremitäten ausgebildet, nach hinten stufenweise immer kleiner und von verschiedener Form. Nach vorn von der Basis der Abdominalanhänge und gegen die Mittellinie des Körpers ist in einem jeden Segment eine deutliche ektodermale Verdickung, die Anlage des Ganglions, sichtbar. Am ersten Abdominalsegment des Trochosaeembryos treten bei einer stärkeren Vergrößerung dieselben Teile auf, doch ist das Abdominalfüßchen ganz zurückgebildet, wie dies aus der Fig. 2 zu ersehen ist. Ein derartiger Sachverhalt läßt uns schließen, daß alle Spinnen ursprünglich auch am ersten Abdominalsegment entsprechende Anhänge hatten, doch im Laufe der Zeit ein Teil von ihnen sie schon frühzeitig der Rückbildung anheimfallen ließen. Ich muß jedoch hier ausdrücklich bemerken, daß mir die konstante Anzahl von sechs Paar Abdominalanhängen an der Bauchseite der Araneinen dennoch recht zweifelhaft scheint, da man in gewissen Fällen (Fig. 3) sie nicht nur am 2.—6. Segment bei Trochosa sing, deutlich entwickelt findet, sondern deutliche Spuren auch am 7.—10.
Segment mit nach hinten allmählich abnehmender Größe zum Vorschein kommen. Ein derartiges Verhalten bringt die Spinnen nicht nur in eine nähere genetische Beziehung zu den Skorpionen, sondern macht es auch wahrscheinlich, daß sie ähnlich wie die Insekten nach GRABER (19) in phylogenetischer Hinsicht von den polypoden bezw. pantopoden Formen, die etwa den Würmern ähnlich waren, abzuleiten sind.

Die Rückbildung der Abdominalanhänge bei Trochosa sing. findet weniger an vorderen, stark aber an den hinteren Segmenten des Abdomens statt. Am ersten Abdominalsegment ist der Anhang während der Entwicklung schwach sichtbar, am zweiten dient er als Operculum über das Stigma der sog. Lunge, am dritten ist er gleichfalls deutlich entwickelt, doch wie Fig. 4 am Längsschnitt zeigt und wie es bereits auch KISHINOYE (Fig. 34, Taf. XV) richtig zeichnet. Das Innere entwickelt kein Mesodermgewebe. Die Abdominalanhänge des vierten und fünften Segmentes allein sind bevorzugs, sich im Laufe weiterer Entwicklung in die Spinnwarzen umzuwandeln, während die Anhänge übrig gebliebener Abdominalsegmente, und zwar des dritten Segmentes, wo sie zuweilen am stärksten entwickelt erscheinen, und des sechsten Segmentes, schon sehr frühzeitig ganz verschwinden und an der Warzenbildung überhaupt gar keinen Anteil nehmen (Fig. 5).

Die Form der Abdominalanhänge ist während der Entwicklungszeit veränderlich. Ich habe mich schon früher (27, 28) damit beschäftigt, doch gelang es mir nicht, seiner Zeit die Frage nach der Entwicklung der vollen Anzahl der Spinnwarzen endgültig zu lösen. Vor der Reversion ist die Gestalt der Abdominalanhänge einfach, zwei- oder auch dreilappig. Konstant ist die Form des Anhangs am zweiten und sechsten Segment, am dritten hingegen ist sie zwei-, ja auch dreilappig (Fig. 6). Anders ist es nach der Reversion. In diesem Entwicklungsstadium und zwar in der Fig. 7 besitzt das vierte und fünfte Paar der Abdominalanhänge eine ganz charakteristische Form. In beiden Paaren bestehen die Abdominalanhänge aus Doppelsäckchen, die der Größe nach im vierten Paare einander beinahe gleich sind, das Innensäckchen aber d. i. das der Mittellinie des Körpers nächst gelegene überlagert das Außensäckchen der Länge nach beinahe zur Hälfte. Beide Säckchen des vierten Paares, die ich sowie die des folgenden fünften Paares der Kürze halber als Exo- (ex) und Endopodit (en) bezeichne, sind von rundlich-elliptischer Form. Diese Teile des fünften Abdominalanhanges am fünften Segment sind ungleich, das Endopodit ist be-
dentend kleiner als das Exopodit, auf dem es ganz aufgelagert ist und mit dem es an der Basis verschmolzen erscheint. Es ist also klar, daß in einem gewissen Entwicklungsstadium, wenn diese Säckchen aufeinander aufliegen (Fig. 5, 8), der Beobachter sie als eines vor sich zu sehen glaubt oder zu ganz irregen Deutungen gelangt. Nicht minder wichtig für die Lösung der Frage nach der Entwicklung der vollen Anzahl der Spinnwarzen stellt sich der Buchverhalt in der Fig. 9 vor. Der Anhang am vierten Abdominalsegment scheint bei schwacher Vergrößerung nur aus einem Säckchen zu bestehen, hingegen ist der des nächstfolgenden Segments derart entwickelt, daß man hier sofort die beiden Bestandteile der Extremität vor sich hat. Das Exopodit übertrifft das Endopodit drei- bis viermal an Größe. Bei einer stärkeren Vergrößerung, beim Heben und Senken des Mikroskoptubes repräsentiert sich der Anhang des vierten Segments nicht als ein einfaches (Fig. 10), sondern als ein doppeltes Säckchen, wobei ein Säckchen an das andere von der Seite dicht angepreßt ist. Der Anhang des fünften Segments, und zwar das Exopodit, ist auch hier, wie ich seiner Zeit (28) bereits zur Kenntnis brachte, im embryonalen Zustande zweigliedrig (vergl. Fig. 8 aab).

Dies der Sachverhalt der Entwicklung der Abdominalanhänge des vierten und fünften Paares, und mit Hinsicht auf die bereits durch Salenski konstatierte Thatsache, daß sie nach Verlagerung an das Körperende unter gleichzeitiger Anschließung in der Mittellinie (vergl. Fig. 5) die Spinnwarzen liefern, ergibt sich von selbst die richtige Anzahl derselben. Die Exopodite des vierten Paares der Abdominalanhänge liefern im Laufe weiterer Entwicklung das erste, vorderste Spinnwarzenpaar, die des fünften Paares das hinterste, die Endopodite des vierten Paares verkämmern, und die des fünften Paares bilden das mittlere Spinnwarzenpaar.

Cribellum. Da nun bei Trochosa, wie bemerkt, auch an dem vierten Segment der Anhang während der Entwicklung ein Endopodit enthält, so ist es selbstverständlich, daß dieses im Falle seiner Persistenz im Laufe weiterer Entwicklung auch ein Spinnwarzenpaar liefern würde, dessen Lage eine ähnliche wäre, wie die der mittleren Spinnwarzen. Die Endopodite gehen jedoch in dem Maße, wie sich diese Teile der Mittellinie nähern, während die Bauchsegmente, vom sechsten angefangen, bis zum After miteinander verschmelzen und sich rückbilden, allmählich ein, und schon nach der ersten Häutung kann man an ihrer Stelle nur mit Schwierigkeit Ueberreste in Form eines stark rückgebildeten

A. Jaworowski,
Entwicklung des Spinnapparates bei Trochosa singor. LAXM. 45

Cribellums (Fig. 11 a u. b), vorfinden, die später auch ganz verschwinden. Wir gelangen hiermit zu dem Schluß, daß die Spinnen, die ein Cribellum besitzen, ein solches gleichfalls aus einem Paar der Endopodite entstehen ließen und, da dieselben ähnlich wie die des nächstfolgenden Paares eingliedrig waren, ihre Höhe infolge des Anpassungsvermögens allmählich einbüßten. Die Leiste, die das Cribellumfeld bei gewissen Spinnen in zwei gleiche Teile teilt, entstand aus dem Zusammenreffen zweier chitinösen Wänden entsprechender Extremitätenteile — ist aber auch diese verkümmert oder ganz eingegangen, so ist diese Modifikation des Cribellums durch weitere Rückbildung leicht zu erklären.

So glaube ich nun das Wesen und Entstehen des Cribellums richtig begründet zu haben. Es bleibt mir noch übrig mitzuteilen, daß wir bisher keine entwickelungsgeschichtliche Mitteilung hierüber besitzen, daher die Ansichten verschiedener Autoren geteilt sind. Vor allem sei hier noch hervorgehoben, daß CAMBRIDGE (11) bei der Spinne Oecobius 8 Spinnwarzen zeichnet, was vielleicht dadurch zu erklären ist, daß die Cribellumendflächen über die basalen etwas gewölbt waren, somit die entsprechenden Endopodite in der Rückbildung etwas zurückgeblieben sind. BLACKWALL (7) erklärte richtig das Cribellum, ohne jedoch Beweise zu liefern, als ein viertes Paar der ganzen Länge nach verwachsener Spinnwarzen und hielt an dieser Ansicht fest, da er auch in einer späteren Arbeit (8) davon nicht zurückgetreten ist. Seine Abbildungen, Benennung und Beschreibung scheinen übrigens auch dafür zu sprechen, daß ihm kleine Erhebungen über die Oberfläche zu bestehen schienen. BERTHKAU's (5, 6) Untersuchungen bekräftigen diese Ansicht. Seine Beschreibung der Cribellumdrüsen, sowie das Endigen der Ausführungsgänge in sog. Spinnröhren, tubuli textorii, sprechen dafür.

Einer entgegengesetzten Meinung wäre unter anderen THORELL (55) zu nennen, welcher glaubte, daß das Cribellum durchaus nicht aus einem Spinnwarzenpaar entstanden gedacht werden könne. Da er jedoch in den Cribellumfeldern anfangs kleine Tracheenmündungen enden sah, von dieser Ansicht später auch abkam, ohne etwas Entscheidendes anzugeben, so ist seine Ansicht als nicht stichhaltig anzusehen. Daß die Cribellumdrüsen mit Geschlechtsfunktion, resp. mit der Bereitung des Cocons durch das Weibchen gewissermaßen in Zusammenhang stehen, dies ist aus den Angaben von BERTHKAU (6) und SIMON (54) ersichtlich. Nach ihnen ist das Cribellum bei den Weibchen und jungen
Männchen gut entwickelt, bei erwachsenen Männchen hingegen bereits rudimentär.

Das Cribellum kann infolge der Rückbildung ganz eingehen, — ich sage infolge der Rückbildung, da, wie wir oben sahen (Fig. 7), ein solches im embryonalen Zustande durch die stark entwickelten Endopodite des vierten abdominalen Anhangspaares gut repräsentiert wird. Das Cribellum ist somit durchaus nicht als eine Neubildung bei den Spinnen, die sich durch Auftreten eines solchen Organs von den übrigen Arachniden unterscheiden sollen, zu betrachten — es ist nur ein wesentlicher und accommodierter Bestandteil der Abdominalanhänge.

Auf eine ähnliche Weise, wie die Endopodite des vierten Paares der Abdominalanhänge eingingen und das Cribellum liefern, ist dann auch die Rückbildung der mittleren Spinnwarzen zu erklären, insbesondere aber bei solchen Spinnen, die während ihres Lebens verhältnismäßig wenig Spinnstoff zu liefern brauchen. Bei den Tetrapneumones im embryonalen Zustande dürfte man da interessante Resultate erzielen, und es wird sich ergeben, daß die Endopodite des fünften Abdominalanhangspaares ähnlich wie die des vierten ganz eingehen, somit nur die vier Exopodite die bekannte Spinnwarzenanzahl liefern.

Spinndrüsen. Im Anschluß an die Erklärung des Entstehens der Anzahl der Spinnwarzen (6 oder 4) sowie des Cribellums sei es mir gestattet, auch das mitzuteilen, was mir über die erste Entwicklung der Spinndrüsen bekannt geworden ist. Vor allem muß ich jedoch erwähnen, daß über die Entwicklung der Spinndrüsen MORIN (40) die erste Mitteilung macht. Es heißt nach ihm, daß diese in einem gewissen Stadium, an der Spitze des dritten Paares der Abdominalfüßchen und zwar in Form einer kleinen ektodermalen Einstülpung beginnt. Eine ähnliche ektodermale Einstülpung ist nach ihm am vierten Paar nicht sichtbar, doch glaubt er, daß sie sich zur selben Zeit entwickeln müsse. Jene Einstülpung vergrößere sich, werde flaschenförmig, der innere blind endigende Teil werde zur Drüse, der zurückgebliebene zum Ausführungsgang.

Mit diesen Angaben von MORIN stehen meine Beobachtungen nicht in Einklang. Junge Trochosa singoriensis kommen ziemlich unentwickelt zur Welt, sie sehen z. B. noch nicht 1), und ihre

1) Dies dürfte vielleicht der Grund sein, warum sie von der Mutter noch eine gewisse Zeit nach dem Ausschlüpfen auf dem Rücken getragen werden.
Entwicklung des Spinnapparates bei Trochosa singor. Laxm.

Spinnwarzen funktionieren erst nach einer späteren Häutung. Trochosa ist ein dankbares Untersuchungsobjekt zur Konstatierung der Art der Entwicklung der Spinndrüsen, die sich hier im post-embryonalen Zustände entwickeln. Wenn wir jedoch vorerst Mörns Fig. 31, Taf. II, und Fig. 18, Taf. IV, näher in Betracht ziehen, so scheint es mir, daß dieser Forscher einem Irrtum angemessen ist, was um so leichter stattfinden konnte, als ihm die Entwicklung der mittleren Spinnwarzen sowie die des Cribellums noch nicht bekannt war. Es ist hier die Möglichkeit durchaus nicht ausgeschlossen, daß wir an den Figuren, die die Schnitte vorstellen, die beiden Säckchen, das Endo- und Exopodit des Abdominalanhanges, vor uns haben, aber keineswegs eine Einstülpung, die zur Bildung einer einzigen Spinndrüse führen sollte. — Bei den Embryonen von Trochosa singoriensis, welche sich bereits zum Ausschlüpfen anschicken, findet man am Längsschnitt durch die Spinnwarzen des vierten und fünften Segments, daß das Mesodermgewebe an dieser Stelle sehr stark ausgebildet und noch im steten Wachstum begriffen ist. Das die Spinnwarzen ausfüllende Gewebe ist, wie die Fig. 4 zeigt, viel dichter und seine Kerne zuweilen in parallele Reihen geordnet. Die Kerne des unter den Spinnwarzen liegenden Mesodermteiles sind mehr zerstreut. Von einer Einstülpung und Bildung der Spinndrüsen im Sinne Mörns ist hier absoluts nichts zu sehen. Erst wenn die jungen Trochosa zur Welt kommen, ist die Entwicklung der Spinndrüsen zu sehen.

Auch erachte ich als notwendig, den äußeren Bau der Spinnwarzen in den jüngsten Stadien kennen zu lernen, denn dadurch gelangen wir zur Erkenntnis, daß das Spinnorgan alle seine Bestandteile nicht gleichzeitig, sondern allmählich entwickelt.

An einem Flächenschnitt in der Richtung der Spinnwarzenmuskeln (Fig. 12) und ähnlicher ihm paralleler (Fig. 13) ist die Anlage der Spinndrüsen bei der Trochosa vor der zweiten Häutung schon ziemlich stark entwickelt. Im Mesodermgewebe zwischen dem Darm, den Körperwänden und Spinnwarzenmuskeln (Fig. 12) ist eine gewisse Anzahl von dunkleren Stellen. Dies sind die Querschnitte der Spinndrüsen von verschiedener Form. Auch an der Basis der Spinnwarzen ist eine gewisse Anzahl von Spinndrüsen entwickelt. Die letzteren sind verschieden groß und finden sich auch im Innenraum der Spinnwarze vor.

An einem etwas schießen Flächenschnitt erkennt man, daß die Entwicklung der Spinndrüsen und der Ausführungswege nicht gleichzeitig ihren Anfang genommen hat (Fig. 14). Während näm-
A. Jaworowski,

lich die einen Spinndrüsen von der Spinnwarze sich einstülpen, sehr weit in das Innere des Mesodermgewebes eindringen, dabei bauchig oder cylinderförmig werden, ihr Ausführungsgang dementsprechend recht lang ist, und dadurch Glandulae ampullaceae darstellen, sind die anderen in der Entwicklung später aufgetreten. Es liefern von den letzteren die einen, die zu beiden Seiten spitz sind, die Glandulae tubuliformes, während sich die anderen, die am wenigsten entwickelten, in die Glandulae aciformes umwandeln. Bei gewöhnlicher Betrachtung stellen sich die Spinndrüsen als grobkörnige Gebilde dar, doch bei genauer Prüfung und starken Vergrößerungen erweist sich ihr Bau aus rundlichen, im Durchschnitt 0,0047—0,0057 mm großen, dicht aneinander angeschmiegen, mit Kernen versehenen Zellen (Fig. 15). Diese Zellen sind im Ausführungsgang schon frühzeitig anzutreffen. Die Anlage der Spinndrüse ist nicht auf jenes netzartige Mesodermgewebe zurückzuführen, sondern sie ist selbständig, so daß man behaupten kann, daß die Drüsen im Laufe ihrer weiteren Entwicklung in dieses hineinwachsen. In Anbetracht dessen, daß die Spinndrüse, anatomisch untersucht, in ihrem Inneren mit keiner Cuticularmembran ausgekleidet ist, könnte man verlockt sein, die Beobachtung Morin's, daß sie ektodermalen Ursprungs wäre, nicht gut zu heißen und dies nur für den Ausführungsgang gelten zu lassen — doch in Anbetracht dessen, daß sie wirkliche Cruraldriisen sind, wie dies ihre Entwicklungsgeschichte bestätigt, war ich bemüht, speziell auf diesen Punkt noch weiter einzugehen, und gelangte hiermit zu folgendem Resultate.

Das jüngste Stadium, das von mir beobachtet werden konnte, gewährt die Ansicht, daß die Spinndrüsen an den Spinnwarzen in Form von ektodermalen Einsenkungen in größerer Anzahl zur Entwicklung gelangen. Die so entstandenen Säckchen werden bald am apikalen Ende etwas erweitert und mit einem grobkörnigen Inhalt versehen (Fig. 12), wobei die Spinndrüsen, wenn sie noch in den Warzen vorhanden sind, zuweilen ein traubenförmiges Aussehen darbieten. Das nächstfolgende Stadium (Fig. 16) wird durch das weitere Wachsen der Spinndrüse und Veränderung ihres Inhaltes veranlaßt. Die Spinndrüsen selbst werden keulen- oder kolbenförmig, und dadurch tritt schon die deutliche Differenzierung dieser Einstülzung in ihre Bestandteile zum Vorschein, nämlich in die eigentliche Drüse, die bereits aus den Zellen aufgebaut ist, und in den Ausführungsgang, der sich in Form einer durchsichtigen Cuticularmembran vorstellt. Der Verlauf der weiteren
Entwicklung unterliegt schon geringen Abweichungen. Es wächst die eigentliche Drüse infolge der enormen Längenausdehnung des Ausführungsganges in das netzförmige Mesodermgewebe (Fig. 16, 15) hinein, wobei ihre grobkörnigen Zellen nicht immer deutlich zum Vorschein gelangen. In der Fig. 15 ist es auch ersichtlich, daß zwischen der Spinndrüse und dem netzförmigen Mesodermgewebe noch ein freier Raum übrig geblieben ist. Mich dünkt, daß dieser infolge der durch Reagentien veranlaßten Kontraktion entstanden ist. Das Einbiegen des Ausführungsganges gewisser Drüsen kommt ziemlich spät im postembryonalen Leben zustande.

Was nun die Entwicklung der Spinnkegel an den Spinnwarzen anbelangt, so muß ich hier die Bemerkung vorausschicken, daß es mir nicht gelungen ist, ihren Entwicklungsgang genau zu verfolgen. Schon sehr frühzeitig, gleich nach der ersten Häutung im postembryonalen Leben erscheinen die Spinnkegel an der Spitze der Spinnwarzen als ektodermale Ausstülpungen. Ihre Anzahl zu dieser Zeit ist noch recht gering. An den vorderen Spinnwarzen (Fig. 17, 18) konnte ich ihrer nur 4 oder 6 zählen, an den hinteren, und zwar bei den letzteren am Exopodit 6, und am Endopodit nur 4. Auch existiert bereits ein deutlicher Unterschied zwischen den Spinnkegeln beider Warzenpaare. Während nämlich an dem vorderen Warzenpaar die Basalteile (Fig. 17, 18) niedrig, kegelförmig und stark aufgetrieben sind, sind sie an dem Exo- und Endopodit des hinteren Abdominalanhangsopaeres (Fig. 19, 20) von gleicher Form, doch bedeutend in die Länge ausgezogen. Es sind dies die Unterschiede, die gleich im postembryonalen Leben auftreten und auch später bei der Spinne erhalten bleiben. Die Basalteile der Spinnkegel, wie bereits erwähnt, müssen als ektodermale Ausstülpungen, die Endteile dagegen als modifizierte Borsten angesehen werden. Letzterer Fall wird insbesondere dadurch unterstützt, daß an den Spinnkegeln manchmal Borsten ansitzen, die noch allseits ganz kleine Härchen an sich tragen, und die sie später ganz eingehen lassen. Die Borsten sind gerade oder sabelartig gekrümmt und werden erst zu Spinnröhrchen, wenn ihr vorderes, freies Ende mit einer Öffnung versehen wird. Es ist nicht leicht, den Entwicklungsgang des Spinnröhrchens zu beobachten, es ist mir jedoch in gewissen Fällen zu konstatieren gelungen, daß sich in der Spitze der Borsten schwarze Flecken vorfinden (Fig. 18), deren Entstehen auf den Luftinhalt zurückzuführen ist. — Ungleich groß ist die Anzahl der Spinnkegel in späteren Stadien. Bei einer erwachsenen
Spinne finde ich an den vorderen Warzen 80—90, an den hinteren und zwar an dem Exopodit 80—100 und an dem Endopodit 48—55, woraus ersichtlich ist, daß die größte und die kleinste Anzahl auf den entsprechenden Teilen des hinteren Spinnwarzenpaares vorherrscht.

II. Die Spinnklauen.

Wie die Spinnklauen entstehen, welchen Verlauf ihre Entwicklung nimmt, darüber haben wir in der Litteratur keine Anhaltspunkte.

HEROLD, der eine eben aus dem Ei ausgeschlüpfte Epeira, seine Fig. 7 u. 8, Taf. II, und eine andere nach der Häutung Fig. 9—12 gezeichnet hat, erwähnt von der Entwicklung dieses Organs überhaupt nichts. Bei der letzteren fand er, daß der Körper nur mit kurzen steifen Borsten bedeckt ist. CLAPARÈDE stimmt damit bei Lycosa agetica für den embryonalen Zustand überein, doch zeichnet er von einer nicht näher bestimmten Epeira-Art in der Fig. 54, Taf. VII, die Füße hier und da mit Borsten besetzt, das Endglied hingegen mit je zwei Krallen versehen, — einen Fall, den wir bei den Araneina überall vorfinden und der sich bei vielen anderen Arthropoden wiederholt. CLAPARÈDE's Zeichnung kann ich jedoch nicht beistimmen, nach welcher bei den Spinnen auch auf den Pedipalpen zwei Krallen vorkämen, da ich nicht nur bei Trochosa, sondern auch bei den anderen Spinnen eine solche stets in der Einzahl angetroffen habe, was als ein charakteristisches Merkmal für diesen Anhang des Cephalothorax gelten kann.

Betrachten wir nun näher die in Rede stehenden Gebilde aller Cephalothorax-Anhänge kurz vor der ersten Häutung der Trochosa singoriensis. Fig. 21, 22 stellen das Endglied des ersten, zur Entwicklung gelangten Anhangs, der Mandibel (Cheliceren), von beiden Seiten dar. Dieses ist an der Basis stark erweitert und an der Spitze hakenartig gekrümmt, an der Innenseite, von oben gesehen, besitzt es eine Reihe verschieden entwickelter Zähne, von denen der zweitunterste und der vorletzte die breiteste Basis besitzt, der letzte hingegen spitz ist und von den übrigen durch das Zustandekommen einer Lücke ziemlich entfernt liegt. Fig. 22 stellt denselben Anhang, von unten gesehen, vor. In beiden Fällen ist neben der Basis des Endteiles eine steife Borste eingelенkt.
Die Klause der Pedipalpen (Fig. 23—25) ist an der Spitze des Anhangs in der Einzahl vorhanden. Sie besteht aus einem hufeisenförmigen Basalstück und einem in der Mitte desselben von unten nach oben dünner werdenden, an der Spitze jedoch zuweilen unter 90° gekrümmten Endteilen, auf dessen konvexen Krümmungsstellen manchmal ein oder zwei Höcker wahrnehmbar sind.

Das Endglied der übrigen Cephalothorax-Extremitäten ist stets mit zwei Hauptklauen und einer Zwischenklause (Afterklaue) versehen. Im wesentlichen besteht auch hier die Klause aus ähnlichen Bestandteilen, wie die der Pedipalpe, doch ist das Basalstück, weil es mittelbar an ein anderes stößt, insofern modifiziert, als der Außenarm des hufeisenförmigen Gebildes nach unten, d. h. gegen die Anheftungsstelle gesenkt ist. Die Innenseite dieser Klause ist bisweilen hockerig, wie mit stumpfen Zähnchen besetzt. Zwischen den Innenarmen der hufeisenförmigen Basalteile der Hauptide Klause findet sich der sog. Afterklaue vor, die etwa die halbe Höhe der wirklichen Klause erreicht.

Sie gleicht einem stark entwickelten platten Zahn, dessen Außenseite konvex und dessen Innenseite konkav gekrümmt ist (Fig. 26), somit im allgemeinen eine gleiche Form besitzt, wie die stärker entwickelten ihr verwandten Hauptkragen, abgesehen davon, daß die konkave Seite infolge der noch nicht stattgefundenen Einbiegung gar nicht sichtbar ist (Fig. 27, 28). Auf der Membran zwischen den Innenarmen beider hufeisenartiger Basalteile ist bisweilen eine größere Gruppe abgestumpfter zahnartiger Höcker anzutreffen (Fig. 29, 30), die in zahlreichen Fällen ganz fehlen. Alle Klauen haben einen Innenraum, sie sind, sozusagen, röhrenförmig, und an ihrer Basis ist etwa in der Mitte, doch gegenüber der Außenseite, gleich wie bei vorher erwähnten Anhängen eine Borste gewachsen. Bemerkt sei hier noch, daß die Afterklaue zuweilen fehlen kann.

Was die Klauen des vierten, fünften und sechsten Paares der Cephalothoraxanhänge anbelangt, so sei hier bemerkt, daß wir sie von gleicher Beschaffenheit und einem gleich ähnlichen Baue wie bei den vorhergehenden Extremitäten vorfinden (Fig. 31).

Die Entstehung dieser Klauen, die ich als Ur-, bezw. Embryonalklauen bezeichne, glaube ich in Anbetracht dessen, daß an den Extremitäten auch andere größere und kleinere Borsten, die ersteren an der Spitze (Fig. 32) hakenartig gekrümmt erscheinen, von diesen ableiten zu dürfen. Die Stellung und der Gebrauch
der an der Spitze der Extremität eingesenkten Borsten zog die Notwendigkeit ihrer Modifikation nach sich.

Ich bemerke noch, daß die Urklaue, mit denen die Spinne zur Welt kommt, auch eigene Muskelfasern (s, s, Fig. 33) haben, durch die sie in gewissen Fällen ganz in das Innere des Fußes eingezogen werden können, so daß dadurch die Extremität an der Spitze wie eingestülpt erscheint. Ob diese Erscheinung auch mit irgend einer ursprünglichen Funktion verbunden war, dies wollen wir dahingestellt lassen; Thatscache ist es, daß die Muskelfasern später eingehen und die Klauen samt der Cuticularhaut während der nächsten Häutung abgestoßen werden.

Eine nicht minder große Schwierigkeit bietet uns die Ableitung der Spinn- resp. Kammlauen der Spinnen aus den Borsten durch Anpassung der Urklaue. Das, was ich hier mitteile, ist der erste Versuch, ihre Genesis aufzuklären.

Die erste Häutung wird bei Trochosa singoriensis dadurch eingeleitet, daß sich die Innenhaut von der äußeren abhebt und zwischen den so gebildeten Chitinlagen eine dichte, körnige Flüssigkeit auftritt, die die spezielle Untersuchung der feineren Bestandteile und die weiteren Vorgänge in denselben zu beobachten nicht zuläßt (Fig. 34). Während nun die definitive Extremität infolge der Kontraktion der einzelnen Glieder (Fig. 35) auch die Gelenkstellen gegen den Körper einzieht und dadurch den Eindruck gewährt, als ob sie in einer anderen wie neu entstanden wäre, bilden sich an ihr die Haare, deren Verlauf der Entwicklung aus trichogenen Zellen ähnlich ist, wie W. Wagner (57) beschreibt und abbildet, und die Klauen aus. Nun beginnt ihr rasches Wachstum, es strecken sich die einzelnen Glieder und die Kammlauen erreichen die vorher beschriebenen Urklauen (Fig. 36), wo sie infolge des Druckes die ursprüngliche Haut sprengen und dadurch die Häutung der Extremität einleiten.

Sehen wir uns eine Kammlauge etwas genauer an, und zwar beginnen wir der Reihe nach von der ersten, die sich in der Einzahl an der Spitze der Pedipalpen vorfindet. Diese ist, wie Fig. 37 vorstellt, sichelförmig, doch minder stark gebogen als die der Füße. Auf der Innenseite besitzt sie 6 Zähne, die von der Spitze gegen die Basis zu an Größe abnehmen. Die ersten zwei sind am größten. An der Basis, hinter den kleinsten Zähnen, ist eine Erhabenheit in Form eines größeren, niedrigen, doch stark abgestumpften Zahnes. Die ersten zwei Zähne besitzen eine schwache Krümmung. Sie sind, ähnlich wie die Spitze (der Spitz-
Entwicklung des Spinnapparates bei Trochosa singor. LAXM. 53

zahn), gestreift. Die Streifen verlaufen von der Rückenseite schief gegen die Innenseite und die Basis. Hinter dem Rücken dieser Klause, in einer gewissen Entfernung von ihr, befindet sich eine Stachelborste. Die Kammklauen der übrigen Extremitäten sind stark sichelartig gekrümmt, doch ist der Krümmungswinkel kleiner als der der Embryonalklauen. Am stärksten sind sie am ersten und vierten Paar entwickelt. Die Form und die Anzahl der Zähne an denselben ist verschieden. Am ersten Paar der in Rede stehenden Anhänge (Fig. 38) besitzt die Klause außer der Spitze 13, am zweiten Paar 10 (Fig. 39), davon 2 ganz kleine, am dritten 8 (Fig. 40) und 2—3 ganz kleine nicht entwickelte, am vierten Paar 9 (Fig. 41), und 3 ganz kleine, wie am dritten Fußpaar. Viel deutlicher ist der Verlauf der Streifen an den Kammklauen als an denen der Pedipalpen. Die sogen. Afterklause ist dadurch ausgezeichnet, daß sie etwa in der Mitte der Innenseite einen recht spitzen, borstenartigen Zahn besitzt. Hinter der Rückenseite, in der nächsten Nähe der Klause, wie an den Pedipalpen findet sich kein Borstenstachel vor. Umgeben ist sie jedoch von Haaren, welche von beiden Seiten scharf sägeartig gezähnt sind. — Die Mandibellklause (Fig. 42), insbesondere nach der zweiten und den folgenden Häutungen, verrät gewissermaßen die Entwicklungsvorgänge der Pedipalpen und der Extremitäten. Auf der Innenseite sind auch hier 12 ganz stumpfe, niedrige, in einer Reihe dicht aneinander gestellte Zähne vorhanden, die bei den in der Entwicklung stark fortgeschrittenen und alten Individuen nicht vorzufinden waren. Es sei hier auch bemerkt, daß in den Kieferklauen (Fig. 42) um diese Zeit die Entwicklung der Giftdrüse, also ziemlich spät, zustande kommt. Dies ist insofern von Wichtigkeit, als wir uns den Schluß erlauben, daß die Spinnen, möglich wie die Insekten, ursprünglich vielleicht von Pflanzensäften lebten, mit der Zeit jedoch an die tierische Nahrung angewöhnt, auch die Giftdrüse zur Bewältigung der Beute entwickeln ließen.

Bei dieser Gelegenheit muß ich noch Erwähnung thun, daß die Anzahl der Zähne in den Kammklauen der vier letzten Cephalothorax-Extremitäten erwachsender Spinnen geringer ist, als bei der soeben erwähnten, die noch ganz jung waren. In den Kammklauen des ersten Paares der Gangfüße sind 7 Zähne, davon die letzten 2 proximalen schwach entwickelt, — in denen des zweiten Paares auch 7, wo von ein Zahn mittelstark, die letzten 2 stufenweise in der Rückbildung begriffen sind, — in denen des dritten Paares 10, davon die letzten 2—3 stetig kleiner sind.

Es entsteht nun die Frage, wie die Kammklauen aus den einfachen Embryonalklauen entstanden sind. Die Beantwortung der Frage scheint leicht zu sein, doch um so schwieriger ihre Begründung.

Ich habe schon oben erwähnt, daß vor dem Zustandekommen der Häutung zwischen der Haut und der Extremität eine trübe Flüssigkeit auftritt, die die direkte Beobachtung der Entwicklung der einzelnen Zähne an der Kammklaue unmöglich macht (Fig. 34). Ich habe nun einen anderen Weg wählen müssen und kam zu den Resultaten, die ich hier mitteile.

So wie die Ur- oder Embryonalklauen aus den Borsten durch Entwicklung und stärkere Einbiegung entstehen, so auch die Spinn- oder Kammklauen, doch ist die Entstehung der Zähne an ihnen auf sekundäre Prozesse zurückzuführen. Betrachten wir die Spitze einer stark entwickelten Stachelborste derselben Extremität (Fig. 43), so sehen wir, daß sie an der Spitze gleichfalls einge- bogen erscheint und, von der Seite gesehen, eine ganze Reihe von stumpfen Zähnen trägt. Von einem jeden Zahn zieht sich schieflaufwärts gegen die Basis eine seichte Vertiefung und zwar etwa bis zur Mittellinie, die die Borstendicke markiert. Diese Vertiefungen bilden die Streifen, deren ich vorher Erwähnung that. Sie gehen, ohne die Richtung zu ändern, gewöhnlich in eine punktierte Linie über (Fig. 44). Wird der Stachel nicht von der Seite, sondern so besichtigt, daß er zum Teil auch die Innenseite
Entwicklung des Spinnapparates bei Trochosa singer. Laxm. 55

bloßstellt, so ergiebt es sich, daß die sechste Rinne gegen die Innenseite schief aufwärts steigt, genau an der Innenseite umbiegt, um wieder schief herunter, doch gegen die Rückseite ihren weiteren Verlauf zu nehmen. Die Stärke der Umbiegung dieser seichten Furche ist an verschiedenen Stellen verschieden. Schwächer ist sie an der Spitze, von da gegen die Basis ist sie im Zuge des Seitenrandern. Furchen zahnartige Stachelborste mir Spinnenwickelungssymmetrie Epidermisaustülpung in daß stehen, der alsdann die weiter entlegene einen spitzen Winkel bildet (Fig. 45). — Vergleichen wir nun die Kammklauen einer 5 mm großen Spinne (Fig. 46) mit der Fig. 43, so ergeben sich ähnliche Entwicklungszustände an der Kammklaue wie an einer Stachelborste. α, β und γ... repräsentieren uns noch ähnliche Stadien, hingegen α, b c... bereits Zähne, die durch das tiefe Einschneiden der Furchen in die stärker entwickelte Borste entstanden sind. Die Streifung der Klaunenzähne glaube ich auf noch weitere, aber ähnliche Prozesse zurückführen zu dürfen.

Die Entwicklungsart der Kammklauen aus den einfachen Stachelborsten führt uns in der Erkenntnis der Arthropodenhaare überhaupt um einen Schritt weiter. So schwer es auch ist, den Ausgangspunkt für die Entwicklung der Haare zu wählen, zumal die Borste als ein modifiziertes Haar angesehen wird, und dieses die Stachelbildung nach sich ziehen soll, so glaube ich in Anbetracht dessen, daß sich diese Epidermalbildungen als einfache Schläuche repräsentieren, nicht zu fehlen, wenn ich von einer embryonalen Borste, die an ihrer Oberfläche glatt ist, den Ausgangspunkt nehme. Wie nun die Zähne an der Kammklaue entstehen, habe ich schon oben beschrieben, ich muß nun hinzufügen, daß bei der Haaranlage, wenn statt der Zähne entsprechende Teile in die Länge ausgezogen sind, sie dadurch die einseitig gefiederten Haare liefern. Wird aber die ganze Oberfläche der dünnen Epidermisaustülpung derart gefürchtet, daß sie dadurch ihre Entwicklungssymmetrie dennoch beibehält (Fig. 47, 48), so wird die Stachelborste zu beiden Seiten gezählt, das Haar hingegen beiderseits gefiedert. Die Symmetrie kann zuweilen bei den Borsten gestört sein (Fig. 49), wo sich auf der einen Seite an der Spitze zahnartige größere Vorsprünge bilden. In dem Falle gehen die Furchen fast durch die ganze Länge der Borste parallel zu den Seitenrändern. Wie weiter das allseitig befiederte Haar bei den Spinnen entsteht, dies durch Beobachtung zu konstatieren, gelang mir nicht. Da die Fiederchen (die Härchen) auf der Oberfläche des Haares sehr regelmäßig und in Reihen verteilt sind, darf man
meines Erachtens diese Erscheinung gleichfalls auf eine entsprechende Teilung der peripheren Furchenregionen und Entwicklung entsprechender Ausstülpungen zurückführen.

Die in Kalilauge ausgekochten Stachelborsten erwachsener Individuen zeigen, unter dem Mikroskope geprüft, ihr Lumen (Fig. 50) von Querdiaphragmen durchzogen, die sich, je näher sie der Spitze liegen, um so dichter aneinander anschließen. Im Innern der so gebildeten Kammern findet sich ein feines sekundäres Netz, gleichfalls aus Chitin gebildet.

III. Das Calamistrum.

Cribellum und Calamistrum, dies sind die Organe, die heutzutage verhältnismäßig wenige Spinnen haben, und die als ein charakteristisches Merkmal zur systematischen Einteilung dieser Arachnidenabteilung verwendet wurden. Bei Trochosa singoriensis kommen beide Organe im erwachsenen Zustande nicht vor, doch während der embryonalen Entwicklung und kurz nach dem Ausschlüpfen aus dem Ei sind sie an entsprechenden Stellen in weiterer Rückbildung noch anzutreffen.

Vom Cribellum war oben die Rede, was jedoch das Calamistrum anbelangt, so sei hier bemerkt, daß es schon sehr frühzeitig, noch vor der Bedeckung des Embryos mit Haaren, bereits seine Anlage erlangt. In Fig. 51 sehen wir einen stark entwickelten Nerv hervortreten, der sich zwiebelartig an die Hypodermis anschließt und an die Chitin haut direkt anlehnt. Seiner histologischen Natur nach besteht er aus kleinen, 0,0076—0,0095 mm großen Ganglienzellen, die im zwiebelartig verdickten Teile wie in Reihen angeordnet sind. Die letztere That sache macht auf mich den Eindruck, als ob daselbst ein Faserbündel vorhanden wäre. Bemerkt sei hier, daß die Chitin haut, an die sich der Nerv anpreßt, im optischen Schnitt wie gezähnelt erscheint. Die Calamistrumhaare fehlen zu der Zeit, als der Embryo aus dem Ei ausschlüpft, gänzlich. Die zwiebelartige Verdickung des Nervs ist nicht immer leicht herauszufinden, ich habe daher der Orientierung halber, um das Aufsuchen dieses Teiles zu erleichtern, auch die embryonalen Muskeln in der Figur eingezeichnet. — Ein ähnlicher Nerv, wie der des Calamistrums des letzten Extremitätenpaares, ist auch in den drei ersten Extremitätenpaaren anzutreffen, doch ist er viel schwächer und anders entwickelt. Im
allgemeinen ist seine Struktur homogen, nur an dem Anheftungspunkt besitzt er einige Ganglienzellen. In der Fig. 52 ist der Punkt der Anheftung des entsprechenden Nervs an einen Muskel dargestellt, da, wie ich bemerke, der Calamistrumnerv durch Abspaltung von dem die Extremität versorgenden Hauptnerven entsteht, doch in den Anhangspaaren schon sehr frühzeitig der Rückbildung anheimfällt. Die Entwicklung des Calamistrumnerves in allen Extremitäten, insbesondere im letzten Paar und zwar zur Zeit, als das soeben ausgeschlüpfte Individuum noch die Urklauen besitzt, die Spinnkrallen hingegen erst in Entwicklung begriffen sind, gestattet uns den Schluß zu ziehen, daß diese Stellen bei den Ahnen der Spinnen ursprünglich eine Art von Fühlfunktion ausübten, im letzten Fußpaar aber gelangten diese Nerven zu einer besonderen Ausbildung, vielleicht deshalb, als dieses Organ bei Anfertigung von Netzen durch die Spinne gewissermaßen als Zirkel zur Distanzmessung angewendet wurde. Einen ähnlichen Verlauf der Nerven in den Pedipalpen, sowie in den Mandibeln gelang es mir nicht zu konstatieren.

Gelegentlich sei mir gestattet, da JUL. Wagner (56) das sog. HALLER'sche Gehörorgan bei Ixodes eingehend studierte, ich hingegen die Zeichnungen und die genaue Beschreibung desselben einer der nächsten Abhandlungen beischließen werde, hier zur Kenntnis zu bringen, daß sich auch bei diesen Tieren am ersten Extremitätenpaare das sog. HALLER'sche Organ als ein dem Calamistrum homologes Fühlorgan entwickelt, zu dem durch Abspaltung zwei Nerven herantreten und birnförmig anschwellen, obgleich sie unterhalb der Anschwellung je eine feine Abzweigung weiter aussenden.

Anhang.

Durch den Nachweis, daß die sog. Lungen bei Trochosa nicht aus den Kiemen, sondern aus dem vorderen Teil, dem Vorraum der Embryonaltrachee abzuleiten sind, ferner, daß auch die Kiemen durch Herausstülpen der einzelnen Lungenrespirationslamellen nach außen und ihre Anpassung an das Wasserleben der Tiere entstanden gedacht werden können, habe ich gezeigt, daß die Araneina nicht etwa von den Xiphosuren, sondern von den Tracheaten abzuleiten sind, ja daß auch die Crustaceen dem gemeinsamen Tracheatentamme angehören. Nehmen wir verschiedene Entwicke-
Jaworowski, lungenmomente der Spinne in Betracht, insbesondere den Umstand, daß die letzten Segmente hinter den Abdominalanhängen, die die Spinnwarzen liefern, an der Bauchseite eingehen und miteinander verschmelzen, während sie sich an der Rückenseite, wenn auch ungleichmäßig, dennoch entwickeln, so gelangen wir zu dem Schluß, daß die Ahnen der Spinnen ursprünglich einer länglicheren Form angehörten, die mit Rücksicht auf die Anzahl der Abdominalanhänge polypode Formen waren, und deren Vorfahren, die Prototrapezata, aus den Annelliden durch Anpassung an das Landleben entstanden gedacht werden können. Es ist wahrscheinlich, daß die Urformen vorerst ihren vorderen Körperteil an das Luftleben anpaßten und die vorderen Körperanhänge entwickelten, während der übrige Körperteil nur noch das Atmen im Wasser unterhielt. Ein solcher Entwicklungszustand erlaubte den Tieren das Wasser zu verlassen, auf das Land oder auf Pflanzen zu kriechen, kürzere oder längere Zeit in einem feuchten Medium zu verweilen, und auch den übrigen Körperteil an das Luftleben zu accommodationieren. Erst im zweiten Entwicklungszustand konnten sich auch am Abdominalteil die Anhänge bilden, die Tiere polypod bzw. pantopod werden. Da aber bei diesen Tieren die vorderen Anhänge auch früher ihre Lokomotionsfähigkeit anfingen und infolgedessen sich stärker als die hinteren entwickelten, so kam es mit der Zeit zur Bildung zweier Körperteile, eines vorderen, des Cephalothorax, an dem sich vorwiegend die Extremitäten und damit im Zusammenhang die dazu gehörigen Muskeln entwickelten, und eines hinteren, des Abdomens, in dem die vegetativen Organe geborgen werden.

In das Detail der einzelnen Entwicklungsvorgänge und Körpermodifikationen bei dem Mangel an Thatsachen sich schon jetzt einzulassen, dünkt mir, ist nicht ratsam, doch will ich einen Punkt herausgreifen, der mit großer Wahrscheinlichkeit für meine Hypothese bürgt.

Die Erscheinung, daß auch bei den anderen Landtieren der Arthropodengruppe, so bei den Insekten, die Abdominalanhänge vorhanden sind, veranlaßt mich, diese miteinander zu vergleichen, und so gewissermaßen einen phylogenetischen Beitrag über die Ahnen der Spinnen und Insekten zu schaffen.

Rathke (46) war der erste Entdecker der Abdominalanhänge bei den Insekten und deutete sie, wie später auch Ayers (1), als Kiemen. Bütschli (10), wenn auch nicht ganz ausdrücklich, Kowalewski (33), Graber (19, 20, 21, 22), Heider (25), Haase (24)
Entwicklung des Spinnapparates bei Trochosa singor. LAXM. 59

Der Grund der verschiedenen Auffassung abdominaler Anhänge, die bei den Insekten, nicht aber bei den Spinnen, speziell untersucht wurden, gipfelt vorzüglich in ihrer unvollständigen Entwickelung und gleichzeitigen Existenz der Drüsen. Die triftigsten Gründe für die Auffassung dieser Anhänge als verkümmerte Extremitäten liefert uns unstreitig Graber (21) in seiner letzten diese Frage behandelnden Arbeit. Wenn ich diesen Gegenstand hier etwas näher berühre, so geschieht dies, um zu beweisen, daß die Abdominalanhänge der Insekten, die denen bei Araneina homolog sind, nur als nicht entwickelte Lokomotionsorgane aufzufassen sind. Bei einem derartigen Sachverhalt tritt an uns auch vorerst die Frage heran, zu welcher Art wir die Spinndrüsen der Araneina zu rechnen haben, und nach Beantwortung dieser noch die zweite, nämlich, ob wir ähnliche Drüsen auch bei den Insekten vorfinden können.

Bezüglich der ersten Frage lassen wir vorerst Eisig (16, S. 393) sprechen. Nach ihm heißt es: „Für die Beurteilung der morphologischen Bedeutung der so exquisiten Spinndrüsen der Araneiden ist ihr Bezugsverhältnis, d. h. ihre Konzentrierung auf den Hinterleib im Bereiche des Afters nicht wenig hinderlich gewesen. Sie münden zwar an dieser Stelle vermöge mehrgliedriger Fortsätze; ob aber diese letzteren, die sog. Spinnwarzen, als ebenso viele modifizierte Extremitäten aufgefaßt werden dürfen, dies schien bis vor kurzem noch überaus fraglich. Und doch ist die Entscheidung dieser Frage von großer Wichtigkeit; denn sind erst einmal ihre Spinnwarzen als Homologon der übrigen Rumpfanhänge nachgewiesen, so können wir auch mit um so mehr Recht und um so mehr Aussicht auf Zustimmung die
Spinndrüsen der Araneiden den Coxal- oder Spinndrüsen der Myriopoden etc. vergleichen.

Die Abdominalanhänge gewisser Insekten (Hydrophilus piceus, Meloë scabriusculus) sind nach Graber (20, 22) in einem gewissen Stadium denen der Spinnen, aus denen sich die Spinnwarzen entwickeln, ähnlich und nehmen eine sog. „zweilappige Form“ an. Er unterscheidet bei Hydrophilus einen lateralen oder Stigmallappen und einen medianen Lappen, die ich bei Trochosa entsprechend als Exo- und Endopodit bezeichnet habe, und sprach seine Meinung aus, daß der eine oder der andere der Rückbildung anheimfällt, somit einfach wird. Im letzteren Zustande kann der Abdominalanhang auch gegliedert erscheinen.

Der letztere Fall ist für uns von hoher Wichtigkeit, denn er erlaubt uns, die Abdominalanhänge der Insekten und Spinnen auf ein ursprüngliches einheitliches Entwicklungsschema zurückzuführen. Gewiß sind als wichtigste darauf bezügliche Beobachtungen die von Wheeler (62) anzuführen. Er sagt doch auch in seiner neueren Arbeit, daß die Anhänge „in all their forms and stages“ den Eindruck rudimentärer Gebilde machen und auch vorher (60, 61), daß die Anhänge sowohl bei Nepa als auch Cicada nachträglich eingestülpft werden, alsdann bei Cicada eine Sekretion mit eingeschlossenen Vakuolen, bei Nepa hingegen Fäden bilden, die einen pinselartigen Büschel zusammensetzen. „Diese Fäden“, sagt er, „sind oft wellenförmig gebogen und ihre oft rauhen Umrisse, sowie die Leichtigkeit, mit der sie miteinander
Entwicklung des Spinnapparates bei Trochosa singor. LAXM. 61

Die Frage, warum die Drüsen, ich will sie Primitivspinndrüsen nennen, bei allen Insekten der Verkümmerung und Rückbildung anheimgefallen sind, hingegen bei den Arachniden, wenigstens bei Araneina sich zu so vollkommenen Organen entwickelt haben, ist nicht leicht zu beantworten. Man könnte sie damit beantworten wollen, daß selbst unter den Arachniden nur Skorpione und Spinnen Abdominalanhänge besitzen, die anderen hingegen infolge einer anderen Lebensweise mit der Zeit solche ganz einbüßten; doch scheint es mir, daß dies zu ihrer Lösung insofern unzweckmäßig erscheint, als sich umgekehrt auch gewisse Insekten ähnlich wie die Spinnen anpassen konnten, somit auch bei ihnen die Entwicklung der Spinnwarzen zustande gekommen wäre. Zur Lösung dieser Frage ist wohl das Hauptargument auf das Zustandekommen der Flügel bei den Insekten zu richten, und dies sei mir gestattet näher zu erörtern.

Bis heutzutage ist in der Phylogenie der Insekten eine der wichtigsten und interessantesten Fragen die nach der Entwicklung ihrer Flugwerkzeuge. Doch ist ihre Lösung in ein tiefes Dunkel gehüllt. Gegenbaur (17), Lubbock (39) und Redtenbacher (47) glauben die Tracheenkiemen der Ephemeridenlarven und die Flügelanlagen als homodynamische Bildungen ansehen zu dürfen, eine Ansicht, welche weiter Dohrn (15) mit den Elytren derannelidenähnlichen Insekten in Beziehung bringt. In Anbetracht dessen, daß die geflügelten Insekten von den im Wasser lebenden Formen abgeleitet werden müßten, stehen Korschelt und Heider (32) in Anschluß an Kennel (30), welcher die phylogene Reihe von Peripatus durch die Myriopoden und Thysanuren zu den Orthopteren darstellt, dieser Flügelbildungstheorie deshalb entgegen, weil das lauter an das Landleben angepaßte Formen sind. Es heißt nach ihnen (S. 882): „Wir haben keine Ursache, anzunehmen, daß in die Voraltersreihe der geflügelten Insekten (Pterygogenea) sich eine im Wasser lebende Ahnenform eingeschoben habe. Die Lebensweise der im Wasser vorkommenden Larvenformen der Hemimetabola werden wir, ebenso wie ihre derselben angepaßten Respirationsorgane als sekundär erworben betrachten dürfen.“ Auch Grassi (23) schloß sich der erwähnten Theorie der Flügelbildung bei den Insekten nicht an und glaubt sie auf eine Neuererbung, auf abgegliederte, selbständig gewordene Faltenbildungen am Rande der Tergalplatten zurückführen zu dürfen.

Diese Theorien, das Schwinden der Abdominalanhänge samt
Entwicklung des Spinnapparates bei Trochosa singor. LAXM. 63

Drüsen bei den Insekten, veranlaßte mich, einige Betrachtungen über die Genese des Entstehens der Flugwerkzeuge bei ihnen anzuzeigen. Wohl liegen uns bereits entsprechende Entwicklungsumrisse über die Flügel der Insekten von WEISMANN (58, 59), VAN REES (48), KOWALEWSKI (34), SEMPER (53), LANDOIS (35), PANKRITIUS (44), C. SCHAEFFER (50) u. a. vor, doch ist man hier kaum über die ersten Anfänge hinaus, man ist darüber einig, daß die Flügel, ähnlich wie die übrigen Extremitätenanlagen, als einfache Hypodermisansätze innerhalb einer peripodialen Einsenkung angelegt werden.

Gleiche Entwickelungserkennungen dürften aber gleiche Entstehungsgründe haben. Es ist klar, daß bei der Ableitung der Arthropoden von den Würmern die Annahme berechtigt erscheint, daß die letzteren sich an das terrestrische Leben, an das Luftleben hätten accommodieren müssen, d. h. gewisse Hypodermiserscheinungen, die Tracheen entwickeln lassen. Ein derartiger Fortschritt in der Entwicklung dieser Organismen, um die Bewegungen am feuchten, staubfreien Strand zu erleichtern, führte sofort zur Bildung der Körperanhänge. Die Entwickelungsschichte lehrt uns auch, daß die Bildung der Tracheen entweder gleichzeitig mit der der Extremitäten vor sich geht, oder die erstere der letzteren vorausläuft. Nun habe ich auch schon seiner Zeit gezeigt, daß die Entwickelung der Extremitäten samt ihren Anhängen von der der Tracheen, resp. sog. Lungen abhängig ist. Da die Rückbildung der Tracheen bei Trochosa von hinten schon längst stattgefunden hat, und unter dem dritten Anhangspaar in Ausnahmsfällen eine kleine Einsäue zu beobachten ist, so ist es selbstverständlich, daß eine Figur, die uns GRABER liefert, und die das erste Entstehen der Abdominalgliedmaßen veranschaulicht, um so willkommener erscheint, als dadurch ein sicheres Licht auf die Genese der Arthropodenextremität geworfen wird. In dieser wertvollen Darstellung (20, Fig. 38 Taf. III) ist die Stigmenöffnung am zweiten Abdominalsegment mit sty bezeichnet, mit der die zweilappige Abdominalexremität (ma₂a und la₂a) in unmittelbarem Zusammenhang steht. Mit Hinweis auf die Auslegung, daß durch das Ausstülpung der Respirationslamellen die Bildung einzelner Anhänge an der Extremität der Arthropoden zu erklären ist, kann man folgern, daß im gewissen Stadium nur ein wulst- bzw. sackartiger Vorsprung anzutreffen ist. Diesen Fall dürfte HEIDER's Zeichnung bei Hydrophilus bestätigen. Durch weiteres Vorstülpungen der Tracheen kommt
Jaworowski, der zweite Lappen bei Hydrophilus zustande, und bei Gryllotalpa vulgaris nach Graber auch der dritte. Im Laufe weiterer Entwicklung können die einzelnen Lappen voneinander mehr entfernt oder modifiziert sein (vergl. Graber (20), Fig. 42, Taf. III).

In Anbetracht dessen, daß im embryonalen Zustande bei den Insekten die Gliedmaßen einfach oder lappig durch das einseitige Tracheenvorstülpchen angelegt werden, ist es uns gestattet, in gewissen Fällen auch dort Konklusionen zu machen, wo gewisse charakteristische Merkmale stark modifiziert oder bedeutend ver-}

tusch werden.

Mit Berücksichtigung der Tracheenverteilung auf dem Peripatuskörper, ja auch bei den Myriopoden, insbesondere bei Scutiger (36, S. 494, 37 I, S. 21), dürfen wir annehmen, daß auf den Thoraxsegmenten der Urinsekten noch je ein Paar zum Atmen dienende Hypodermiseinstülpen vorhanden waren, die mit der Zeit in der Funktion durch die übrigen, insbesondere die abdominalen ersetzt, die Hautduplicaturenbildung in Form von Säckchen, ähnlich den Abdominalanhängen, veranlassen, während sie selbst verkümmert und eingingen. Das Vorkommen paariger Hautduplicaturen bei Calotermes nach Müller (41) an allen Thoraxsegmenten, von denen die am ersten verkümmern, an den letzteren sich zu Flügeln entwickeln, unterstützt unsere Annahme.

Noch mehr findet sie ihre Bekräftigung durch die schönen Beobachtungen von Weismann (59) an Corethra plumicornis. Bei ihr weist ein jedes Thoraxsegment 4 Imaginalscheiben auf: 2 ventrale und dorsale. Von den dorsalen Paaren verwandelt sich das des Mesothorax in die Flügel, das des Metathorax in die Halteren um, während aus der entsprechenden Anlage des Prothorax bei Corethra der stigmenträgende Dornfortsatz der Puppe, bei Simulia dagegen ein Büschel von Tracheenkiemen hervorgeht. Die Entwicklung des Tracheenstigma an dem Dornfortsatz der Puppe bei Corethra müssen wir, da die Tracheen in diese Hautduplicaturen hineinwuchern, als sekundär erworben deuten, bei Simulia hingegen und ähnlich auch bei Chironomus die Entwicklung der Tracheenkiemen resp. der Kiemen aus den Tracheen auf den ursprünglichen Charakter zurückführen, wonach sich nach Zerspaltung der Hautduplicatur in derselben die Tracheen entwickelt haben. In Anbetracht dessen, daß am Keimstreif der Ephemera die Stigmen angelegt werden, ist zu schließen, daß diese und andere ähnliche Insekten ursprünglich terrestrischer
Entwicklung des Spinnapparates bei Trochosa singer. LAXM. 65

Abstammung seien, und daß bei ihnen die Entwicklung der Kiemen auf eine gleiche Entstehungssart wie bei den Crustaceen zurückzuführen sein wird. Die sog. Tracheenkiemen, die infolge der Accommodation an das Wasserleben entstanden, wären somit der ersten Anlage nach mit der der Flügel übriger Insekten ähnlich und dadurch wird sich eben die Giltigkeit der Gegenbaurschen Flügeltheorie speciell für diese Insekten herausstellen. Daß die Flügel bei den Urinsekten eine lange Zeit zur vollkommenen Entwicklung nötig hatten, dies ist aus der Entwicklung derselben bei den unmetabolischen Sechsfüßern zu erschließen, wo sie nach einer jeden Häutung immer größer, funktionsfähiger erscheinen.

In Anbetracht dessen, als z. B. die jungen Blattiden mit Ausnahme der Flügel den Eltern fast vollkommen gleichen, dürfen wir annehmen, daß zur Zeit, als die Urinsekten an den Abdominalanhängen die Spinndrüsen entwickelt hatten, bei ihnen die Anlage der Flügel schon vorhanden war und hiermit erst später zur vollen Entwicklung kommen. — Es entsteht die Frage, ob das Eingehen der einen dieser Organe die Entwicklung der anderen zur Folge haben konnte. Mich dünkt, daß dieser Fall höchst wahrscheinlich ist. Es wird zwar das Zustandekommen der Flügel bei den Insekten anders erklärt und Korschelt-Heider (32, S. 883) notieren folgendes: „Man darf vielleicht annehmen, daß der Übergang von der kriechenden Bewegungsweise zum Flug durch eine kletternde Bewegungsart vermittelt wurde, bei welcher einzelne Distanzen durch den Sprung zurückgelegt wurden, was zur Ausbildung fallschirmartiger Verbreiterungen der Thoraxsegmente Anlaß gab. Der Übergang von solchen, noch unbeweglichen, als Fallschirm zur Verwendung kommenden Hautduplikaturen zu abgegliederten, selbständig thätigen Lokomotionswerkzeugen erscheint uns ziemlich plausibel.“ Dies ist bis jetzt gewiß die zutreffendste Annahme, doch möchte ich sie nicht als eine wahrscheinliche zu bezeichnen wagen, denn das Insekt könnte sich während des Falls nur zufälligerweise mit den Hautduplikaturen derart wenden, daß es diese als Fallschirm benützen könnte, was doch mit dem Wesen der Adaption im Grunde genommen im Widerspruche steht. Übrigens giebt es auch Spinnen, die bedeutende Sprünge vollführen, und bei ihnen ist bis jetzt keine Spur von Flügelanlagen bekannt. Meine Ansicht bezüglich der Notwendigkeit der Entstehung der Insektenflügel lautet dahin, daß wir annehmen müssen, daß die Urinsekten vor dem stärkeren Feinde
flihend mittels eines Spinnfadens sich herunterschnellen konnten, doch nach Vorübergehen der Gefahr zur Rückkehr auf den ursprünglichen Standpunkt alle Thätigkeit der an die Extremitäten und Flügelanlagen angelegten Muskeln erwachen ließen. Mit den Extremitäten griffen sie an den Faden, durch die Bewegung und das Schlagen der Flügelanlagen an die Luft erleichterten sie sich den Körper in der Richtung des Fadens hinaufzuschleudern. Die weitere Anwendung und Accommodation der Flügelanlagen führte somit die Flugfunktion herbei (vergl. die Ansicht von SIMROTH [54 a]). Doch da die Urspinnen auch von lebender tierischer Beute gelebt zu haben scheinen, wie dies aus der frühzeitigen Entwicklung der Kieferklauendrüse zu erschließen ist, gegen die Urinsekten als Pflanzenfresser von ihnen auch in dem Falle, als sie sich auf einem Faden heruntergeschlichen hatten, verfolgt werden, glaube ich richtig zu urteilen, daß, da der Gebrauch der Flügel ins Leben gerufen werden mußte, die Rückbildung der Spinndrüsen bei diesen Tieren als naturgemäß erscheint.

Ich kann die Arbeit nicht zum Abschluß bringen, ohne derjenigen Anhaltspunkte zu gedenken, die in phylogenetischer Hinsicht für die Arthropoden von Wichtigkeit wären.

Am Körperstamm der luftatmenden Arthropoden sind an den Anhängen ektodermale Drüsen ausgebildet, die für unsere weitere Schlußfolgerung von Nutzen sein dürften. Die Gift- und Spinndrüsen bei der Araneina, — die Speichel- und die Abdomendrüsen bei den Insekten, — die Gift- und die Speicheldrüsen, deren letzteren KÖRSCHELT-HEIDER (32) im Gegensatz zur Angabe HEATHCOTE's (32, S. 754) die ektodermale Abstammung wahrscheinlich machen, und die Hüftdrüsen der letzten 4—5 Beinpaare bei den Chilopoden, — und nur Hüftdrüsen an den Beinen gewisser Diplopoden, — weiter die Spinndrüsen in den griffelförmigen Gebilden am Ende des Körpers bei Symphyla, — die Schleimdrüsen an der Spitze der Oralpapillen, und die Cruraldrüsen an der Basis der Füße bei Peripatus, — ja auch die Speicheldrüsen der Crustaceen (36, S. 344) dürften als Belege sein, daß diese Gebilde bei den Ähnen der Arthropoden längs des ganzen Körperstammes als homologe Drüsen, die den Cruraldrüsen zuzuählen sind, ausgebildet waren. Der Grund, daß die Drüsen sich an den Körperehängen vorfinden, oder an der Basis derselben dennoch im innigsten Zusammenhange mit ihnen stehen, berechtigt mich, den Vergleich derselben von EISIG (16, S. 403) mit den Borstendrüsen der Parapodien der Capitelliden zu accep-
Entwicklung des Spinnapparates bei Trochosa singor. Laxm. 67

tieren, — und mit Hinsicht darauf, daß bei den Insekten und Spinnen sich zweizipfelige Abdominalanhänge vorfinden, deren Ein-stülpsungen die Drüsen­natur verraten oder auch Spinnstoff liefern, und darin mit Parapodien der Anneliden eine große Ähnlichkeit zeigen, — bin ich der Ansicht, daß eben ihre Parapodien wirk-
liche, nicht weiter entwickelte Extremitäten seien. Bei der Be-
achtung der Ursache der Extremitäten-Entwicklung bei den Spinnen, Insekten und den Crustaceen stellt sich heraus, daß die Erklärung der Kiemenexistenz neben den Parapodien an ihrer Dorsal- oder Ventralseite keine Schwierigkeit bereitet und so zu deuten wäre, wie dies bei den Crustaceen gezeigt worden ist (29). Die Capitelliden und andere nächstverwandten Würmer scheinen mir somit an das Landleben angepaßte Tiere gewesen zu sein, die vielleicht infolge der Nahrung oder anderer Verhältnisse wieder in das Wasser zurückgewandert sind. Entwicklungsgeschichtliche Untersuchungen sind speziell für die erste Genesis der Parapodien höchst erwünscht, dadurch kommen wir ins klare, daß die Proto-
tracheata, und dies ist auch wahrscheinlich, unter diesen Würmern bezw. ihnen ähnlichen zu suchen sind.
Verzeichnis der einschlägigen Schriften.

7) J. Blackwall, On the number and structure of the mamulae employed by Spiders in the process of spinning. Trans. Lin. Soc. London, XVIII.
26) M. Herold, Von der Erzeugung der Spinne im Ei. 1824.
37) R. Latzel, Die Myriopoden der österreichisch-ungarischen Monarchie, I. Hälfte, 1880, II. Hälfte, 1884.
43) — Przycynek do embryologii majka. (Beitrag zur Embryologie von Meloë.) Kosmos, Lemberg (Lwów) 1891.
44) P. Panchitius, Beiträge zur Kenntnis der Flügelfertigung bei den Insekten. Inaug.-Diss., Königsberg 1884.
52) — Études sur le developpement des Araignées. Arch. de Biol., T. VI, 1887.
54a) H. Simroth, Die Entstehung der Lauttiere. Leipzig 1891.
Entwicklung des Spinnapparates bei Trochosa singor. Laxm. 71

Erklärung der Abbildungen
zu Tafel III u. IV.

Allgemeine Bezeichnungen.

a After; $aa_1 - aa_6$ Abdominalanhänge vom ersten bis zum sechsten Paar; ap Apicalglied; au Ausführungsgang der Spinndrüse; b Basalglied; c Cöliomsackwand; cr rückgebildetes Cribellum; d Dotter; ds Darmschlauch; dw Darmwand; e ventrale Einsenkung (?) in dem Ganglion; eau Eiubiegung des Ausführungsganges der Spinndrüse; eh Eihaut; en Endopodit; ex Exopodit; $g_1 - g_3$ Ganglien des ersten bis zum dritten Abdominalsegment; gd Giftdrüse der Kieferklauen; gda deren Ausführungsgang; h die Haut; hs hintere Spinnwarze; m Spinnwarzenmuskul; ms mittlere Spinnwarzen; n Nerv; pr Proctodaeum; s Muskelfasersehne; sp Spinndrüsen; v vordere Spinnwarzen.

Tafel III.

Sämtliche Figuren von Trochosa singoriensis LAXM.

Fig. 1. Ein Embryo von Trochosa sing. vor der Reversion. Am ersten Abdominalsegment der Anhang aa_1 rückgebildet. Vergr. Zeiß A, Ok. 1.

Fig. 2. Ein Teil des Embryo der vorhergehenden Figur vergrößert. An den Ganglien ist wahrscheinlich eine Einsenkung vorhanden. Vergr. Zeiß A, Ok. 4.

Fig. 3. Ein Embryo vor der Reversion. Am Abdomen sind vom ersten bis zum vorletzten Leibessegment Abdominalanhänge vorhanden, vom siebenten jedoch angefangen in deutlichen Spuren. Vergr. Zeiß A, Ok. 1.

Fig. 4. Ein Längsschnitt durch einen Embryo nach der Reversion, um zu zeigen, daß im dritten Abdominalanhang sich kein Gewebe differenziert, hingegen die nächstfolgenden sich in Spinnwarzen umwandeln. Vergr. Zeiß D, Ok. 1.

Fig. 5. Ein Embryo während der Reversion. Die Abdominalanhänge sind stark entwickelt, die des vierten und fünften Segments bestehen aus Endo- und Exopodit, der des dritten stark verflacht und des sechsten schon rückgebildet. Vergr. Zeiß A, Ok. 1.

Fig. 6. Die Abdominalanhänge eines Embryo vor der Reversion. Vergr. Zeiß A, Ok. 1.

Fig. 7. Der Endteil des Abdomens eines Embryo vor Abschluß der Reversion. Die Abdominalanhänge des vierten und fünften Segments wandeln sich in Spinnwarzen um. Vergr. Zeiß A, Ok. 1.
Entwicklung des Spinnapparates bei Trochosa singer. LAXM. 73

Fig. 9. Ein Teil des Abdomens eines Embryo vor Abschluß der Reversion von unten gesehen. Das Endopodit des vierten Paares ist undeutlich, das des folgenden Paares vollkommen ausgebildet. Vergr. Zeiß C, Ok. 4.

Fig. 10. Eine entsprechende Partie des vorhergehenden Embryo stärker vergrößert. Die Exopodite zwei-, die Endopodite eingliedrig. Vergr. Zeiß D, Ok. 4.

Fig. 11 a und b. Bei den ganz jungen Spinnen zwischen den Exopoditen des vierten Anhangspaares ein rückgebildetes Cribellum vorhanden. Das Cribellumfeld der Fig. 11 a weist Zellen wahrscheinlich drüsigen Charakters auf. Vergr. Zeiß D, Ok. 3.

Fig. 12. Ein Flächenschnitt durch den Endteil des Abdomens einer ganzen jungen Spinne nach der zweiten Häutung. Vergr. Zeiß C, Ok. 1.

Fig. 13. Ein paralleler Flächenschnitt zu dem der vorhergehenden Fig. Vergr. Zeiß C, Ok. 1.

Fig. 15. Zwei Spinndrüsen mit ihren Ausführungsgängen einer Spinne von gleichem Alter wie in Fig. 14, umgeben vom wabigen Mesodermgewebe. Vergr. Zeiß F, Ok. 1.

Tafel IV.

Fig. 16. Die Entwicklung der Spinndrüsen noch vor dem Eindringen in das wabige Mesodermgewebe (Leber?) einer ganz jungen Spinne nach der zweiten Häutung. Vergr. Zeiß F, Ok. 1.

Fig. 17. Die Spitze der vorderen Spinnwarze einer jungen Spinne nach der zweiten Häutung mit vier Spinnkegeln. Vergr. Zeiß F, Ok. 1.

Fig. 18. Dasselbe wie in der vorhergehenden Figur, doch mit sechs Spinnkegeln. Vergr. Zeiß F, Ok. 1.

Fig. 19. Ein Teil der Spitze der hinteren Spinnwarze, aus gleichem Entwicklungsstadium wie der Fig. 18, um die Gestalt der Spinnkegel zu demonstrieren. Vergr. Zeiß F, Ok. 1.

Fig. 20. Die Spitze der mittleren Spinnwarze von gleichem Alter wie Fig. 19 einer ganz jungen Spinne. Vergr. Zeiß F, Ok. 4.

Fig. 21 und 22. Die Mandibelklaue eines ausgeschlüpften Embryos, und zwar in Fig. 21 von oben und in Fig. 22 von unten gesehen. Vergr. Zeiß F, Ok. 1.

Fig. 23—25. Die Pedipalpenklaue einer eben aus dem Ei ausgeschlüpften Spinne, in verschiedener Stellung und Ausbildung. Vergr. Zeiß F, Ok. 3.

Fig. 26—30. Die Klauen der Extremität des ersten Paares in verschiedener Form und Ausbildung des aus dem Ei ausgeschlüpften Embryos. Vergrößerung der Fig. 26, 27, 28 und 30 Zeiß F, Ok. 3, hingegen der Fig. 29 Zeiß D, Ok. 4.
Fig. 31. Die Klauen nebst Afterklaue der Extremität des zweiten Paares einer Spinne von gleichem Alter wie der vorhergehenden Figuren. Vergr. Zeiß F, Ok. 1.

Fig. 32. Die Außenwand des Endgliedes einer Extremität mit den an der Spitze gekrümmten Borsten von einer aus dem Ei ausgeschlüpften Spinne. Vergr. Zeiß F, Ok. 1.

Fig. 33. Eine an der Spitze eingestülpte Extremität einer Spinne von gleichem Alter wie in Fig. 32. Vergr. Zeiß D, Ok. 1.

Fig. 34. Die Häutung der Extremität, an der sich bereits die Kammklauen entwickeln. Vergr. Zeiß D, Ok. 1.

Fig. 35. Die Stellung der Endglieder der Extremität mit Kammklauen und die eingeleitete Häutung derselben. Vergr. Zeiß C, Ok. 1.

Fig. 36. Die Kammklauen berühren mit ihren Spitzen die Embryonalklauen, und infolge des weiteren Wachstums der Extremität wird die Häutung veranlaßt. Vergr. Zeiß D, Ok. 1.

Fig. 37. Die erste erschienene Kammklaue der Pedipalpe einer ganz jungen Spinne. Vergr. Zeiß D, Ok. 1.

Fig. 38. Die Kammklau des ersten Extremitätenpaares. An der Afterklaue ein spitzer Zahn in Form einer Borste einer Spinne von gleichem Alter wie in Fig. 37. Vergr. Zeiß D, Ok. 1.

Fig. 39. Die Kammklaue des zweiten Extremitätenpaares derselben Spinne wie in Fig. 38. Die kleineren Zähne sind durch das Haar verdeckt. Vergr. Zeiß D, Ok. 1.

Fig. 40. Die Kammklaue des dritten Extremitätenpaares einer Spinne wie in der vorhergehenden Figur. Vergr. Zeiß D, Ok. 1.

Fig. 41. Die erstentwickelte Kammklaue des vierten Extremitätenpaares derselben Spinne wie in Fig. 40. Vergr. Zeiß D, Ok. 1.

Fig. 42. Eine Mandibelklaue mit der Giftdrüse derselben Spinne wie in Fig. 41. Vergr. Zeiß D, Ok. 1.

Fig. 43—45. Teile der Stachelborsten, die sich an den Extremitäten befinden, in verschiedener Stellung, um die Streifen zu demonstrieren. Vergr. Zeiß D, Ok. 1.

Fig. 46. Eine Kammklaue einer 5 mm großen Spinne, um zu zeigen, daß die Zähne durch Abblätterung entstehen. Vergr. Zeiß F, Ok. 1.

Fig. 47—49. Stachelborsten des zweiten Gliedes der vierten Extremität mit verschiedener Streifung. Vergr. der Fig. 47 und 48 Zeiß D, Ok. 1 und der Fig. 49 Zeiß F, Ok. 1.

Fig. 50. Ein Stück einer Stachelborste in Kalilauge ausgekocht. Innerhalb Chitindiaphragmen und Chitinnetz. Vergr. Zeiß C, Ok. 1.

Fig. 51. Entsprechendes Stück der Extremität des vierten Paares, wo sich das Calamistrum befindet, einer aus dem Ei, doch mit Embryonalklauen ausgeschlüpften Spinne. Der Calamistrumnerv schwillt an seiner Anheftungsstelle zweibelartig an. Vergr. Zeiß D, Ok. 1.

Fig. 52. Ein gleiches Stück der Extremität des dritten Paares wie in der vorhergehenden Figur. Der Verlauf des Nervs ist derselbe, doch ist die Gestalt und die Struktur eine andere. Vergr. Zeiß D, Ok. 1.
Ein Beitrag zur Kenntnis der Augen-, Kiefer- und Kiemenmuskulatur der Haie und Rochen.

Von

Dr. Berthold Tiesing

aus New Haven, U. S. A.

Mit Tafel V—VII.

Einleitung.

Die vorliegenden Untersuchungen erstrecken sich daher vorwiegend auf die Angehörigen dieser Abteilung. Zum Ausgangspunkt für die Vergleichung diente ein Vertreter der von Vetter nicht bearbeiteten Squalidae nictitantes, Mustelus laevis; daran schlossen sich die Rajidae Torpedo ocellata, Rhinobatus annulatus und Raja clavata an.

Die Muskeln sämtlicher Kopfnerven wurden einer genaueren Präparation unterzogen und dabei namentlich auf ihre Innervation
geprüft. Entsprechend der Wichtigkeit der letzteren wurde die Einteilung der Arbeit nach den Nerven gewählt.

Der erste kleinere Abschnitt behandelt die Augenmuskeln und die Augenmuskelnerven, der zweite größere die Muskeln des Visceralskelettes und ihre Nerven. Am Schlusse ist eine kurze Zusammenstellung der wichtigeren Resultate gegeben.

Mein hochverehrter Lehrer, Herr Hofrat Professor M. Fürringer, gab mir die Anregung zu dieser Arbeit sowie das be­zügliche Material für die Untersuchung und gewährte mir während derselben die mannigfachste Unterstützung. Es ist mir eine angenehme Pflicht, ihm dafür meinen besten Dank auszusprechen.

Schließlich sei diese Erstlingsarbeit mit ihren mancherlei Schwächen der Nachsicht des Lesers anempfohlen.

A. Augenmuskeln und Augenmuskelnerven 1).

Taf. V, Fig. 1—7.

Die Augenmuskeln der Selachier bestehen bekanntlich aus den 4 Mm. recti superior, medialis s. internus, inferior und lateralis s. externus, sowie den beiden Mm. obliqui superior und inferior.

1) Eine ausführliche zusammenfassende Darstellung der Augen­muskulatur der Selachier fehlt bisher. Abbildungen, sowie mehr oder minder kurze Notizen finden sich bei Trapp (1836), der auf Fig. 15 die Augenmuskeln von Torpedo bipunctatus abbildet, Stannius (1854, S. 173, 174), der mehr allgemein über die Augenmuskeln der Fische handelt, Carus und D’Alton (1855), welche auf Taf. II, Fig. 3 eine treffliche Abbildung des Bulbus von Carcharias glaucus und seiner Muskeln geben, Owen (1866, S. 336), welcher mehrere Mitteilungen über die Verhältnisse bei Galeus und Sphyra macht, und Leuckart (1876, S. 267, Fig. 61), welcher die Augenmuskeln von Acanthias abbildet und kurz bespricht. Eine eingehendere Berücksichtigung wurde den Augenmuskelnerven zu teil, hinsichtlich welcher namentlich auf Stannius (1849, S. 16—20), Bonsdorff (1853: Raja), Gegenbaur (1871, S. 513, 514: Hexanchus), Jackson and Clarke (1876, S. 10: Echinorhinus), Marshall and Spencer (1881, S. 470 ff.: Scyllium) und Ewart (1889, S. 527 u. 532: Læmargus, S. 535, 536: Raja batis) verwiesen sei. Weitere Reproduktionen und Zusammenfassungen finden sich in den Lehrbüchern der vergleichenden Anatomie.
Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen.

Die Innervation geschieht durch N. oculomotorius (Mm. recti superior, internus, inferior, obliquus inferior), N. trochlearis (M. obliquus superior) und N. abducens (M. rectus externus).

Dazu kommt bei Mustelus noch der Nickhautmuskel ¹), der gemeinhin bei den Augenmuskeln abgehandelt wird. Da derselbe jedoch von einem Aste des Ram. inframaxillaris nervi trigemini versorgt wird, ist er erst bei der Trigeminusgruppe der visceralen Muskulatur zu besprechen.

I. Muskelgebiet des Nervus oculomotorius.

1) Musculus rectus superior.
2) "" medialis s. internus.
3) "" inferior.
4) "" obliquus inferior.

1) M. rectus superior (rs).

Der M. rectus superior ist bei Mustelus laevis (Fig. 5) ein ziemlich schmaler, schlanker Muskel, dessen Dicke und Breite in seiner ganzen Länge ziemlich gleich bleibt. Bei Raja clavata, Rhinobatus annulatus (Fig. 7) und Torpedo ocellata (Fig. 6), bei welchen die Ursprünge sämtlicher geraden Augenmuskeln sehr dicht aneinander gerückt und auf einen kleinen Raum beschränkt sind, hat der Muskel eine mehr dreieckige Gestalt (Taf. V, Fig. 2, 3 u. 4), und verbreitert sich von dem schmalen Ursprunge aus bis zu seinem Ansatze am Bulbus sehr beträchtlich.

Der Ursprung des M. rectus superior liegt bei Mustelus laevis (Fig. 1) dicht hinter dem Foramen nervi ophthalmici profundi und in der nächsten Nachbarschaft des Foramen n. oculomotorii zwischen den Ursprüngen der Mm. rectus internus und externus. Seine vordersten Fasern werden hier von denen des M. rectus internus überdeckt. Bei Raja, Rhinobatus und Torpedo hat eine Verschiebung der Ursprünge der geraden Augenmuskeln nach hinten stattgefunden; bei ihnen befindet sich die Stelle, von

welcher die Fasern des M. rectus superior entspringen, weiter hinter dem Loch, aus welchem der Oculomotorius austritt. Wie bei Mustelus werden auch bei den Rochen seine Fasern an ihrem Ursprunge fast ganz von denen des M. rectus internus überlagert (Fig. 2, 3, 4, 6, 7).

2) M. rectus medialis s. internus (rm).

Dieser Muskel ist bei Mustelus (Fig. 5) besonders kräftig und breit entwickelt.

Er entspringt unmittelbar vor dem Foramen nervi ophthalmici profundi (Fig. 1) und hinter dem des Oculomotorius.

Bei Raja (Fig. 3) ist auch der Ursprung dieses Muskels weiter nach hinten gerückt und liegt über denen der Mm. recti inferior und superior, die Fasern beider zum Teil deckend.

Bei Torpedo (Fig. 2) und Rhinobatus (Fig. 4), wo der Ramus ophthalmicus profundus nervi trigemini nicht durch ein gesondertes Loch aus der Schädelwand tritt, sondern sich den Fasern des Hauptstammes anschließt, ist die Gruppierung der Muskelursprünge zu einander infolgedessen eine etwas andere als bei Mustelus laevis.

3) M. rectus inferior (ri).

Der bei Mustelus in der Hauptsache parallelfaserige Muskel entspringt unterhalb des Foramen n. ophthalmici profundi, zwischen diesem und dem von dem M. rectus externus umgebenen Foramen nervi abducentis, verläuft schräg nach vorn und unten und tritt dann zwischen Bulbus und M. obliquus inferior. Seine Fasern werden an ihrer Insertion am Bulbus von den sie teilweise kreuzenden des M. obliquus inferior von unten her überdeckt (Fig. 1 u. 5).

Bei Raja, Torpedo und Rhinobatus ist der Ursprung auch dieses Muskels gegen den Austritt des N. oculomotorius nach hinten und unten verschoben und befindet sich hier dicht neben den Wurzeln des Augenstiels (Fig. 2, 3, 4); der übrige Verlauf gleicht dem von Mustelus.

4) M. obliquus inferior (oi).

Dieser Muskel entspringt bei Mustelus (Fig. 1 u. 5), Torpedo (Fig. 2) und Rhinobatus von der vorderen unteren Kante der Augenhöhle, bei Raja in noch größerer Ausdehnung von derselben
Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen. 79
(Fig. 3). Er hat bei allen untersuchten Selachiern eine dreieckige Gestalt mit breitem Ursprungs- und schmalem Insertions-
teile; namentlich bei Raja dehnt sich der Ursprung des hier sehr dünnen Muskels über einen beträchtlichen Teil der unteren Kante der Augenhöhle aus (Fig. 3). Bei Torpedo (Fig. 2) erstreckt sich der Ursprung bis zu der unteren Fläche des Schädels fast bis zur Mittellinie hin.

Nervus oculomotorius (III) 1).

Der Nervus oculomotorius, welcher diese vier Muskeln versorgt, läuft von seinem Austritte an der Basis des Mittelhirns schräg nach vorn und außen und durchbohrt in dieser Richtung die Schädelwand.

Je nach der Lage seines Durchtritts zu den Augenmuskeln nimmt er einen verschiedenen Verlauf.

Bei Mustelus (Fig. 1 u. 5) spaltet er sich in einen dorsalen Ast 2), welcher sich mit zwei sofort auseinandergehenden Zweigen zu M. rectus superior und M. rectus internus begiebt, und in einen ventralen 3), welcher zunächst nach hinten und unten verläuft, wobei er den M. rectus superior durchbohrt und sich über den Augenstiel und danach um den Hinterrand des M. rectus inferior herumschlingt. Darauf wendet er sich an der Unterfläche dieses Muskels nach unten und vorn, giebt ihm Zweige ab und endet schließlich vorn in der Unterseite des M. obliquus inferior.

Auf seinem Wege über den Augenstiel giebt er einen feinen R. ciliaris 4) ab, welcher sich mit einem Zweig des R. ophthalmicus profundus verbindet und mit demselben zum Bulbus geht.

1) Die obige Beschreibung stimmt im wesentlichen mit den Angaben von Stannius bei Acanthias und Raja (S. 16), Bonsdorff bei Raja (S. 187 ff.), Gegenbaur bei Hexanchus (S. 512), Marshall and Spencer bei Scylium (S. 470) und Ewart bei Laemargus (S. 527) und Raja (S. 535) überein. Jackson and Clarke geben bei Echino-
rhinus an, daß der N. oculomotorius auch ein Fädchen zum M. rectus externus abgebe. Da sich dieser Befund bei keinem von Anderen und mir untersuchten Selachier wiederfindet, so dürfte er mit Vorsicht aufzunehmen sein; vielleicht handelt es sich nur um eine Durchsetzung des genannten Muskels.

2) Upper branch von Marshall and Spencer, Superficial branch von Ewart.

4) Dieses feine Fädchen (R. ciliaris von Stannius und Gegen-
baur) haben Stannius bei Acanthias, Carciarias, Raja clavata und
Bei Raja, Torpedo und Rhinobatus schlägt sich der ventrale Ast nach hinten um den M. rectus superior herum, ohne ihn zu durchbohren; im übrigen stimmt die Art des Verlaufs des gesamten Nerven mit der von Mustelus überein.

Torpedo unterscheidet sich nur insofern, als hier die Spaltung des Nerven in den dorsalen und ventralen Ast schon innerhalb der Schädelhöhle erfolgt und beide mit gesonderten Öffnungen die Schädelwand durchsetzen. Der ciliare Ast konnte hier wegen Kleinheit des Präparates nicht sicher dargestellt werden.

II. Muskelgebiet des N. trochlearis.

M. obliquus superior (os).

Die Ursprungsstelle des M. obliquus superior befindet sich bei Mustelus (Fig. 1, 5) und Rhinobatus (Fig. 4, 7) an der vorderen Wand der Augenhöhle unterhalb der Eintrittsoffnung des N. ophthalmicus profundus in den Schädelknorpel und Oberhalb des Ursprungs des M. obliquus inferior.

Bei Torpedo (Fig. 2, 6) liegt sie vor derjenigen des letztgenannten Muskels und erstreckt sich wie diese ebenfalls zur unteren Schädelfläche bis zur Mittellinie.

Bei Raja (Fig. 3) entspringt der M. obliquus superior in einiger Entfernung vor und über dem Foramen opticum und dorsal von dem vorderen Teile des Ursprungs des M. obliquus inferior und nimmt den innersten Teil der vorderen Augenhöhlenwand resp. Präorbitalleiste ein.

Bei allen untersuchten Selachiern verläuft der Muskel nach hinten, außen und etwas nach oben und inseriert an der dorsalen Circumferenz des Bulbus.

Nervus trochlearis (IV) 1).

1) Im wesentlichen mit den von Stannius (S. 17), Bonsdorff (S. 189 ff.), Gegenbaur (S. 512), Marshall and Spencer (S. 472) und
tritte durch die Schädelwand bei Mustelus lacvis in zwei, bei Rhinobatus (Fig. 4), Raja (Fig. 3) in 4 oder 5 kleine Äste, welche dieselbe am dorsalen Teile der Orbita getrennt durchsetzen. Von da verläuft der Nerv direkt unterhalb dem N. ophth. sup. (cf. (Fig. 1: Mustelus) und gelangt mit zahlreichen Zweigen zu seinem Muskel.

Der N. trochlearis ist viel schwächer als der N. oculomotorius, aber relativ nicht so dünn wie bei den höheren Wirbeltieren.

III. Muskelgebiet des N. abducens.

M. rectus lateralis s. externus (rl).

Dieser Muskel entspringt bei Mustelus (Fig. 1) in der Umgebung der Öffnung für den N. abducens; der Nerv tritt also aus dem Knorpel direkt in den Muskel ein (Fig. 1).

Bei Raja (Fig. 3), Torpedo (Fig. 2 u. 6) und Rhinobatus (Fig. 4 u. 7) liegt die Ursprungsfäche des M. rectus externus hinter derjenigen aller anderen Muskeln, ziemlich dicht vor dem Foramen trigemini. Der Nerv hat nur einen kurzen Verlauf und tritt in der Nähe des Ursprungs in den Muskel ein.

Die Ansätze der Muskeln am Bulbus in Bezug auf die Breite ihrer Ansätze bieten nichts Bemerkenswerteres dar.

Nervus abducens (VI).

Der N. abducens tritt ventral von dem N. acusticus aus dem Hinterhirn und läuft in der Schädelhöhle nach vorn und außen, um nach ziemlich kurzem Verlaufe die Schädelwand im hinteren Bereiche der Orbita in schräger Richtung zu durchbrechen.

Bei Mustelus ist er, nachdem er durch die Schädelwand ge-

treten ist, vollständig von dem M. rectus externus umhüllt und verzweigt sich sofort in ihm. Bei Torpedo, Raja und Rhinobatus tritt er gleich zu seinem Muskel, so daß auch hier sein Verlauf in der Augenhöhle ein sehr kurzer ist.

B. Muskeln des Visceralskelettes und ihre Nerven 1).
Taf. VI und VII, Fig. 8—16.

Vetter hat in seiner mustergültigen Untersuchung die Muskeln des Visceralskelettes bekanntlich in die 4 Gruppen der oberflächlichen Ringmuskulatur, der oberen Zwischenbogenmuskeln, der

Die Innervation des visceralen Muskelsapparates erfuhr durch die soeben und auf S. 76 citierten Arbeiten von Stanniüs (1843), Bonsdorff (1853), Gegenbaur (1871), Jackson and Clarke (1876), Marshall and Spencer (1881), Van Wijhe (1882) und Ewart (1889, 1890) Berücksichtigung. Über die wahrscheinliche Innervation der Nickhautmuskulatur handelt Stannius (1849, S. 18).
mittleren Beuger der Bogen und der ventralen Längsmuskulatur verteilt. Die letzte Gruppe kann hier außer Betracht gelassen werden, da sie dem spinalen Nervengebiete angehört; die drei ersten dagegen sind echte Kopfmuskeln, welche von den Nn. trigeminus, facialis, glossohyoideus und vagus versorgt werden.

I. Muskelgruppe des Nervus trigeminus.

1) M. levator labii superioris.
2) M. adductor mandibulae.
3) M. levator maxillae superioris.
4) M. constrictor superficialis dorsalis I (incl. M. levator palpebrae nictitantis u. M. retractor palpebrae superioris).

2) Nach den Mitteilungen des Herrn Professor M. Fürbringer auch mit einzelnen Ausnahmen, über welche dieser an anderer Stelle selbst berichten wird.
1) M. levator labii superioris (lls)¹).

Bei Mustelus (Fig. 5 u. 9) entspringt dieser Muskel von der vorderen Wand der Augenhöhle unterhalb des Processus praeorbitalis. Sein Ursprung erstreckt sich nach unten und vorn bis zur Mittellinie und liegt hier hinter der Nasenkapsel zwischen ihr und dem Palatinum. Der sehr kräftige Muskel läuft nach unten und hinten und geht in den M. adductor mandibulae über, in welchem man seine Fasern bis zum medialen hinteren Rande des Unterkiefers verfolgen kann.

Bei Torpedo (Fig. 10 u. 14) ist dieser Muskel in zwei völlig gesonderte Portionen geschieden, eine mediale und eine laterale. Es sind dies lange schmale Muskeln, welche zwischen der Ethmoidalregion des Schädels und dem Kieferbogen laufen.

Der M. levator labii superioris medialis (llsm) entspringt ziemlich breit unterhalb und etwas vor dem Processus praeorbitalis von der seitlichen hinteren Ethmoidalregion und verläuft, allmählich schmäler werdend, nach dem Unterkiefer zu, wo er in der Nähe des Mundwinkels in eine lange Sehne übergeht. Diese Sehne tritt zwischen zwei Portionen des M. adductor mandibulae (am) ein und wird von den Fasern der lateralen (aml) an ihrem Ansatz bedeckt.

Der M. levator labii superioris lateralis (llsl) entspringt etwas hinter dem Gelenke von der unteren Kante der vorderen Ethmoidalregion. Er läuft nach hinten und etwas nach außen und unten, wobei er sich allmählich etwas verbreitert, und inseriert am Gaumenfortsatz des Palatoquadratum.

Bei Raja (Fig. 11 u. 13) und Rhinobatus (Fig. 12 u. 15) ist ein weiterer Fortschritt im Zerfall des Muskels zu beobachten.

¹) Von Vetter zuerst mit dem obigen Namen bezeichnet. Cuvier-Duménil (1838, II, S. 69) dürfte die Teile des Muskels bei den Rochen unter A mit No. 1, 2 und 3 anführen und vergleicht sie mit dem M. masseter der höheren Wirbeltiere; doch ist eine genaue Identifizierung seiner Bezeichnungen und Beschreibungen nicht möglich. Stannius (1849, S. 47) thut des Muskels mit folgenden Worten Erwähnung: „Muskel, welcher von der Schnauzenbasis über den Oberkiefer absteigt, um an den Labialknorpel und später sehlig an den Unterkiefer sich zu befestigen.“ Desgleichen Jackson and Clarke (1876, S. 84): „Small cylindrical muscle, which lies behind the labial cartilages, and extend between the inferior edge of the orbit and the external angle of the mouth.“
Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen. 85

Derselbe wird hier durch fünf gesonderte Portionen vertreten, welche zunächst als Levatores labii superioris I. bis V. bezeichnet werden mögen.

Der M. levator labii superioris I. (lls₁) entspringt bei beiden von dem unteren Rande der Augenhöhle direkt hinter der Ethmoidalregion, wobei sich insbesondere bei Rhinobatus sein Ursprung fast bis zur Mittellinie erstreckt. Von da läuft er um die vordere Kante des Palatoquadratum herum nach hinten und geht in der Nähe des Mundwinkels in eine Sehne über, welche an der unteren Fläche des Unterkiefers inseriert.

Auch hier senkt sich dieser Muskel ähnlich wie der M. levator labii superioris medialis bei Torpedo in den Adductor mandibulae ein und trennt ihn in eine mediale und laterale Portion.

Der M. levator labii superioris II. (lls₂) entspringt mit einer ziemlich langen Sehne von der hinteren oberen Fläche der Ethmoidalregion etwas vor dem Processus praerinalis.

Bei Raja bildet er einen ziemlich breiten Muskel, bei Rhinobatus ist er weniger stark entwickelt und schmäler. Er liegt bei beiden in seinem Verlaufe nach hinten zwischen Kiefer und der lateralen Portion des M. adductor mandibulae, dessen Fasern seine Insertionsstelle am Unterkiefer decken.

Ein Teil seiner Endfasern verschmilzt mit dem M. adductor mandibulae, die übrigen setzen sich direkt an die Mandibula an.

Der M. levator labii superioris III. (lls₃) hat bei Raja und Rhinobatus seine Beziehungen zu dem Unterkiefer ganz aufgegeben und neue zu dem seitlichen Ethmoidalfortsatz gewonnen. Er entspringt von der vorderen seitlichen Fläche der Ethmoidalregion etwas vor und seitlich von dem Processus praerinalis und verläuft nach außen und hinten, um an der hinteren Fläche des seitlichen Ethmoidalfortsatzes zu inserieren.

Bei Rhinobatus ist er selbständig und ziemlich gut entwickelt, bei Raja kleiner und kürzer und hängt hier mit dem M. levator labii superioris IV. zusammen.

Der M. levator labii superioris IV. (lls₄) entspringt bei Raja dicht unterhalb des vorigen und mit ihm verbunden. Er verläuft nach unten und hinten und verschmilzt mit der sehnenigen ventralen Fläche des M. adductor mandibulae derart, daß seine sehngige Endausbreitung in der Hauptsache in den Adductor übergeht und durch diesen auf den Unterkiefer wirkt.

Bei Rhinobatus ist dieser Teil zu einigen sehnenigen Fasern reduziert, die mehr seitlich als bei Raja von der hinteren Fläche
des lateralen Ethmoidalfortsatzes gemeinsam mit dem M. levator labii superioris V. entspringen.

Der M. levator labii superioris V. (lls₂) kommt bei Raja und Rhinobatus von der hinteren Fläche des seitlichen Ethmoidalfortsatzes.

Innerviert von einem oder einigen Ästen des R. mandibularis n. trigemini, welche noch vor den Zweigen für den M. adductor mandibulae abgegeben werden ¹).

homodynamen und vom zweiten Trigeminusast versorgten Muskel verliert hiermit auch ihre Wahrscheinlichkeit; immerhin, aber mit Reserve kann daran gedacht werden, daß er das imitatorische Homodynam eines älteren, von einem mehr vorderen Nerven versorgten Lippenknorpelmuskels darstelle.

2. M. adductor mandibulae (am)¹).

Bei Mustelus (Fig. 9) beginnt der kräftige Muskel von dem lateralen Drittel der unteren verbreiterten und ausgehöhlt Fläche des Palatoquadratum bis zum Gelenk hin.

Seine Fasern laufen von der unteren und untere inserieren an der untere Fläche des Unterkiefers, wo sie sich im Bereich der Breite desselben bis dicht an den äußeren Rand ansetzen.

Hier wird er teilweise von Fasern des M. constrictor ventr. II.

1) Wohl Cuvier-Duméris (S. 70) A No. 4 (quatrième muscle avec trois portions, deux antérieures et une postérieure), den er mit dem M. temporalis vergleicht. — Stannius führt ihn wahrscheinlich (S. 48) als „starken Kaumuskel“ an, Bonsdorff (S. 202) als „Masseter“. — Owen (1866, S. 213) beschreibt und bildet (Fig. 132) einen hierher gehörigen Masseter ab, der aber von dem Postfrontale entspringen soll; mehr stimmen die von ihm als Mm. maxillo-mandibulares bezeichneten Bildungen mit unserem Muskel überein. — Gegenbaur benennt den Muskel 1871 (S. 512) als „Hebemuskel des Unterkieferknorpels“, 1872 (S 210) als „Adductor des Kiefers“. — Ihm folgt Vetter (1874, S. 445—448), dessen Bezeichnung ich übernehme; bemerkenswert ist seine Angabe, wonach speziell bei den untersuchten Haiein ein halb muskuläres, halb sehnes Faserbündel, welches einen Rest des oberflächlichen Constrictor darstelle, dem eigentlichen Adductor aufliegt und mit ihm verschmolzen ist. — Dohn s gelangt auf Grund embryologischer Untersuchungen zu teilweise abweichenden Untersuchungen: In Studie IV (1884, S. 13, 14) erblükt er in dem Adductor das Homodynam mit den gesamten Muskeln eines oder mehrerer Visceralbogen; in Studie VII (1885, S. 39—44) leugnet er überhaupt eine serielle Homologisierung mit den Adductores arcuum visceraleium und ist geneigt, nur eine solche mit dem Constrictor anzunehmen, wobei er zugleich auf eine den Ursprungs- und Insertions- teil der distalen Partie des Muskels trennende Fascie, als vermutliches Homodynam eines zwei aufeinander folgende Constrictores trennenden Septums aufmerksam gemacht. Das alles geschieht unter lebhafter Polemik gegen Gegenbaur und Vetter, wobei des Letzteren Bemerkungen über die mit dem Adductor verschmolzenen Reste eines Constrictor ihm entgangen zu sein scheinen.
überdeckt, welche an dem straffen faserigen Bindegewebe, welches den M. adductor mandibulae überkleidet, ihre Insertion finden.

Am Mundwinkel schließen sich an den Adductor die Fasern des M. levator labii superioris an und verschmelzen in ihrem weiteren Verlauf so vollkommen mit ihm, daß eine natürliche Scheidung nicht möglich ist.

Torpedo (Fig. 10). Hier sind zwei resp. drei Muskelportionen vorhanden, welche als Teile eines ursprünglichen einheitlichen Adductor, wie er bei den Haien existiert, aufgefaßt und von ihm abgeleitet werden können.

Man kann eine mediale und eine laterale Portion unterscheiden, welche durch die Endsehne des M. levator labii superioris medialis voneinander getrennt werden. Von diesen zeigt wieder die mediale Portion einen weiteren Zerfall in eine mediale und laterale Abteilung, welche als M. adductor mandibulae medialis I. und II. unterschieden werden mögen.

Der M. adductor mandibulae medialis I. (amm₁) entspringt von dem oberen Rande des Palatoquadratum, und zwar von dessen medialem Drittel bis beinahe zur Mittellinie hin, wendet sich nach hinten und lateral, biegt am Mundwinkel herum und inseriert am unteren Rande des Unterkiefers.

Der M. adductor mandibulae medialis II. (amm₂) ist größer als die eben erwähnte Portion und liegt dieser nach außen hin an. Er entspringt von der oberen Kante des Palatoquadratum, verläuft ganz ebenso wie der Adductor mandibulae medialis I. und inseriert an der hinteren Kante des Unterkiefers seitlich von der Insertion des ersteren.

Der M. adductor mandibulae lateralis (aml) bildet einen kleinen, dem M. levator labii superioris medialis lateral aufliegenden, viereckigen Muskel.

Raja (Fig. 11 u. 13) und Rhinobatus (Fig. 12 u. 15). Im allgemeinen stimmen die Verhältnisse mit denen bei Torpedo überein. Auch hier ist die Muskelmasse in mehrere Portionen geschieden, welche durch den M. levator labii superioris I. in mediale und laterale getrennt werden.
Hier ist aber die mediale Portion die kleinere, einfacher gebildete, die laterale, welche bei Torpedo nur wenig entwickelt war, dagegen zu mächtiger Entfaltung gelangt und in zwei Teile (M. adductor mandibulae lateralis I. und II.) gesondert.

Lateral vom M. levator labii superioris I. (lls₁) liegen die zwei Portionen des großen lateralen Adductor, eine größere (Add. lat. II.), welche sich mit den Fasern der Teile der Mm. levatores labii superioris II.—V. vereinigt, und eine kleinere (Add. lat. I.), welche von ihnen überdeckt wird.

Der kleinere mediale M. adductor lateralis I. (aml₁) entspringt von der Basis des Processus muscularis des Palatoquadrum, läuft nach hinten und inseriert breit an der unteren Fläche des Unterkiefers.

Der größere laterale M. adductor lateralis II. (aml₂) beginnt mit einem Teil seiner Fasern vom Muskelfortsatz des Palatoquadrum; der übrige Teil, und dieser ist der größere, nimmt von einer breiten Aponeurose seinen Ursprung, welche, den Oberkiefer nach oben und hinten umfassend und umschlingend, zur oberen vorderen Kante des Unterkiefers gelangt.

Der breite und dicke Bauch verläuft an der Unterseite des Oberkiefers nach unten und hinten, um unterhalb der Mitte der Seite des seitlichen Ethmoidalfortsatzes die sehnenigen Teile der Mm. levatores labii superioris IV. und V. aufzunehmen. Weiterhin setzt er sich an den hinteren und unteren Rand des Unterkiefers an und überlagert hier den Ansatz des M. levator labii superioris II., der sich zwischen ihn und den Unterkiefer einschiebt. Durch die beschriebene Ausbreitung des Ursprunges, welche durch ein sekundäres Weiterschreiten der Ursprungfasern von dem ursprünglichen vorderen Bereiche des Palatoquadrum über die dorsale Fläche dieses Skelettteiles und weiterhin über die entsprechende Fläche der Mandibula zustande kam, gewinnt die oberflächliche Lage des Adductor lateralis I. einen ringförmigen, schlingenförmigen Typus, derart, daß die Fasern desselben von der
Dorsalfläche des Unterkiefers zur Ventralfläche desselben verlaufen und hierbei das Palatoquadratum vorn umkreisen. So liegen die Verhältnisse bei Raja. Rhinobatus unterscheidet sich dadurch von Raja, daß der Adductor lateralis II. nur von dem Muskelfortsatz des Palatoquadratum entspringt, dagegen den aponeurotischen Ursprung vom Unterkiefer vermissen läßt. Darin spricht sich ein primitiveres Verhalten gegenüber Raja aus.

Innerviert von den zuletzt abgegebenen Muskelästen des R. mandibularis nervi trigemini 1).

Der Adductor mandibulae zeigt bei den Haien einfachere und primitivere Verhältnisse als bei den Rochen, wo er in 2—3 mehr oder minder selbständige Portionen sich gesondert hat; damit geht bei den Rochen, namentlich bei Rhinobatus und Raja, die eigentümliche schlingenförmige Umwachung der Kiefer Hand in Hand, welche ebenfalls als eine sekundäre Erscheinung, ein sekundäres Weitergreifen der Muskelursprünge und -insertionen aufzufassen ist.

Allenfalls, bei Haien und Rochen, stehen Teile des oberflächlichen Constrictor zu dem eigentlichen Adductor in intimer Beziehung, mögen sie nun als Levator labii superioris sich von vorn her in wechselnder Weise in ihn einweben, oder mögen sie als Rudiment eines minder definierten dorsalen Constrictor mit seiner Oberfläche verschmelzen. Darauf hin aber die Existenz wirklicher, den Adductores arcuum visceralium homodynamer Adductorelemente zu leugnen, dürfte nicht zulässig sein.

3) M. levator maxillae superioris (lm)²).

Dieser ziemlich breite und dicke Muskel entspringt bei Mustelus (Fig. 5 u. 8) von einer Grube der Labyrinthregion dicht unter dem Processus postorbitalis.

2) Zum Teil Cuvier-Dumeril's A No. 5 (S. 70) entsprechend; doch deckt sich die bezügliche Beschreibung nicht ganz mit meinem Befunde. — Stannius (S. 46): Hebemuskel des Unterkiefers. — Owen (S. 213, Fig. 132 m): Temporal; doch soll dieser nach Owen bis zur Mandibula gelangen. — Vetter (S. 408, 420): Levator maxillae superioris. — Obschon mir die Bezeichnung Levator palatoquadrati die richtigere zu sein scheint, habe ich doch die Benennung der genannten Autoren übernommen.
Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen. 91

Er läuft nach unten und inseriert an der medialen Seite des Processus palatinus des Palatoquadratum.

Bei Torpedo (Fig. 14) nimmt die Ursprungsfäche einen großen Teil der oberen seitlichen Schädelwand im Bereiche der Labyrinth- und Orbitalregion ein und ist nach oben zu bis fast zur Mittellinie verbreitert.

Die Fasern des an seinem Ursprunge breiten Muskels konvergieren nach der Insertion am oberen hinteren Rande des Palatinum zu und verlaufen zwischen Spritzloch und Bulbus oculi nach unten und vorn.

Die Insertionsstelle ist bei Raja (Fig. 13) weiter nach vorne zu, bis auf die vordere Kante des Palatinalteiles des Palatoquadratum ausgedehnt und der Ursprungsteil des Muskels verhält sich nicht einfach, sondern wird durch den ihn durchsetzenden Facialis in zwei Köpfe, einen dorsalen und ventralen, geschieden, zwischen denen der genannte Nerv seinen Verlauf nach hinten und außen nimmt (Fig. 13).

Die durch die Vereinigung beider Köpfe entstandene Muskelmasse inseriert an der oberen vorderen Kante des Palatinum. Einige Fasern lösen sich von ihr ab und verlieren sich im Bindegewebe der Schleimhaut der oberen Schlundwand.

Der Muskel ist bei Rhinobatus (Fig. 15) viel schwächer entwickelt. Seine Insertionsstelle beschränkt sich auf die dem medialen Kopf bei Raja entsprechende Stelle unterhalb des Processus postorbitalis; auch seine Insertionsstelle ist schmal und findet an einem viel kleineren Teile der oberen vorderen Kante des Palatinum statt.

Innerviert von einem gleich nach dem Austritte aus dem Schädel abgegebenen Zweige des R. mandibularis nervi trigemini 1).

Wie Lage und Innervation beweisen, ist der M. levator

1) Von Stannius (S. 46) und Vetter (S. 411) ganz richtig angegeben. — Ob Bonsdorff's (S. 204) R. ad levatorem orifiicii sacci branchialis hierher gehört, erscheint mir sehr fraglich.

4) M. constrictor superficialis dorsalis I. (csd)\(^1\).

Auch Mustelus (Fig. 8) läßt einen Muskel in der Art wie bei Heptanchus vermissen, an seiner Stelle finden sich aber drei, von dem dritten Trigeminusast versorgte und unvollständig von einander getrennte Muskeln, welche offenbar aus einem Constrctor superficialis dorsalis I. hervorgegangene Differenzierungen darstellen. Dieselben mögen als M. constrictor superficialis I. \(\alpha, \beta, \gamma\) bezeichnet werden.

1) Nur von VETTER (S. 408) unter der obigen Bezeichnung bei Heptanchus beschrieben.

2) M. constrictor superficialis dorsalis I. \(\beta \) (Retractor palpebræ superioris) \((csd_1 \beta)^1\). Ein schlanker Muskelteil, welcher sich aus dem Constr. spf. dors. I.\(\gamma \) ablässt und hierauf mit nach vorn verlaufenden Fasern nach dem hinteren Ende des oberen Augenlides geht, an dem er mit einer schlanken und zarten Sehne sich anheftet.

3) M. constrictor superficialis dorsalis I.\(\gamma \) \((csd_1 \gamma)^2\). Die übrigbleibende Masse, schwächer, aber breiter als \(\alpha \). Dieselbe beginnt mit einem hinteren größeren Kopfe gemeinsam mit \(\alpha \) von der Labyrinth- und Occipitalregion des Schädels und mit einem vorderen kleineren Kopfe, welcher \(\beta \) angeschlossen ist. Beide, das hintere Ende von \(\beta \) umfassende Köpfe vereinigen sich danach zu einer schwachen Muskelausbreitung, welche dorsal und dorso-distal von dem Spritzloch sich erstreckt und hier oberflächlich an die Fascie ausstrahlt.

Beim Raja (Fig. 13) wird der Constrictor superficialis dorsalis I. \((csd_1)\) durch einen dünnen, aber breiten und nicht unanschaulichen Muskel repräsentiert, welcher von dem Labyrinthteil des Schädels nach unten und hinten vom Processus postorbitalis, im Anschluss an die Ursprungsfäche des M. levator maxillae superioris entspringt.

Er verläuft um die vordere Wand des Spritzloches, umgreift den Spritzlochknorpel und inseriert an der vorderen Kante des Hyomandibulare dicht an der Gelenkverbindung desselben mit dem Palatoquadratum.

Bei Torpedo (Fig. 14) finden sich außer den nach Verlauf, Ursprung und Ansatz dem eben beschriebenen Muskel bei Raja vollkommen entsprechenden Fasern noch solche, welche vom Spritzlochknorpel selbst ihren Ursprung nehmen, sich mit von dem erstgenannten Muskel abgezweigten Fasern zu einem ziemlich anschaulichen Muskel vereinigen und medial vom Hyomandibulare nach unten und hinten verlaufen. Dieser teilt sich zwischen Unterkiefer und Hyoid in drei gleiche Teile, von denen zwei an der Außenseite des Hyoids inserieren, der dritte in die seitliche Schlundwand ausstrahlt.

1) Meines Wissens nicht in der Litteratur erwähnt.
2) Desgleichen nicht erwähnt.
Rhinobatus (Fig. 15) zeigt nur insofern von Raja eine Verschiedenheit, als hier die Insertion auf den oberen hinteren Rand des Palatoquadratum übergreift.

Inneriert durch ein (Rajidae) resp. (Mustelus) einige feine Ästchen 1), welche von dem Nerven für den M. levator maxillae superioris sich abzweigen (siehe oben).

N. trigeminus (V).

Bei allen Selachiern teilt sich der N. trigeminus schon innerhalb der Schädelhöhle in drei Stämme, erstens den R. ophthalmicus superficialis, zweitens den R. ophthalmicus profundus und drittens den Truncus maxillo-mandibularis; letzterer bildet den eigentlichen Hauptstamm.

Bei Raja, Torpedo und Rhinobatus gehen alle drei durch ein gemeinsames Foramen der Schädelwand: bei Mustelus durchbricht jeder dieser Äste gesondert den Knorpel.

Die Löcher, durch welche die Rr. ophthal. superf. und profundus austreten, liegen über dem des Hauptstammes.

1) Der N. ophthalmicus superficialis (*N. oph. sp.*), welcher von Gegenbaur als ein Ramus dorsalis nervi trigemini aufgefaßt wurde, wird bekanntlich — nach den Untersuchungen von Marshall and Spencer, sowie van Wijhe — durch aus dem

Der Zerfall in die Nn. maxillares superior und inferior erfolgt bei Mustelus, Raja, Rhinobatus und Torpedo nahe der vorderen Kante des Palatoquadratum; bei ersteren etwas früher als bei letzteren.

Der N. maxillaris superior⁴) (incl. N. buccalis) (V₂) verzweigt sich mit zahlreichen sensiblen Ästen in der Haut und Schleimhaut der Umgebung der oberen Lippenknorpel, des Palatoquadratum und der Nasengegend. Motorische Zweige wurden nicht gefunden²).

Nach Abgabe der maxillaren Äste geht der Endstamm, N. maxillaris inferior s. mandibularis (V₃)³) weiter und versorgt zunächst den M. levator labii superioris ⁴), danach den M. adductor mandibulae ⁵). Seine Endverzweigung findet in der Haut des Unterkiefers statt. Mustelus zeigt hinsichtlich der Innervation der genannten, hier einheitlicher gebauten Muskeln einfachere Verhältnisse, während bei Torpedo, Raja und Rhinobatus mehrere Äste für die einzelnen Muskelportionen nachgewiesen werden konnten; auch hier werden die Zweige, welche die Teile

4) Vergl. Anm. 1 auf S. 86.

des M. levator labii superioris versorgen, früher abgegeben als diejenigen, welche für die Adductores mandibulae bestimmt sind.

II. Muskelgruppe des Nervus facialis.

1) M. levator rostri.
2) M. depressor rostri.
3) M. levator hyomandibularis.
4) M. constrictor superficialis dorsalis und ventralis II. mit M. depressor mandibularis und M. depressor hyomandibularis.

1) M. levator rostri (br)\(^1\).

Der M. levator rostri entspringt bei Raja (Fig. 13) und Rhinobatus (Fig. 15) zwischen Schädel und Schultergürtel von dem seitlichen Vorsprünge der Wirbelsäule, sowie teilweise von der bindegewebigen Wandung des hier liegenden Schleimkanales und von der oberflächlichen dorsalen Fascie. Zugleich findet sich bei Rhinobatus eine mehr oder minder intime Verbindung mit der von ihm bedeckten dorsalen Kiemenmuskulatur, insbesondere am lateralen Rande des Levator. Aus dem Ursprunge entwickelt sich ein langer und schlanker bandförmiger Muskel, der nach vorn und etwas lateralwärts verläuft und, immer dünner werdend, schließlich in der Höhe des M. levator hyomandibularis in eine dünne und lange Sehne übergeht, welche an dem vorderen Rande des Rostrums sich anheftet.

Bei Torpedo entspringt der Muskel von dem vordersten Teil der oberen Längsmuskulatur des Rumpfes und erscheint zunächst als eine direkte Fortsetzung derselben; die genauere Untersuchung und Betrachtung zeigt indessen, daß ein deutlich ausgeprägtes bindegewebiges Septum ihn von derselben scheidet. Während seines Verlaufes nach vorne geht er in der Nähe des Spritzloches in eine lange Sehne über, die am Ethmoidalfortsatze dicht am Gelenke inseriert.

Innerviert von einem feinen Zweige des Truncus hyoideo- mandibularis des N. facialis, welcher gemeinsam mit oder neben

\(^1\) Owen (S. 213): Fasciculus of the muscular investment of the branchial chamber of the Torpedo. Auf Fig. 139 (Torpedo) mit o bezeichnet.

Bd. XXX. N. F. XXIII.
dem Muskelast für den M. levator hyomandibularis gleich am Anfange des Stammes von dem Facialis abgeht.

Der M. levator rostri dürfte als eine frühzeitige und weitgehende Differenzierung aus dem oberflächlichen Gebiete des M. constrictor superficialis dorsalis II. aufzufassen sein, welcher durch sekundäres Wachstum, Veränderung in der Richtung seines Faserverlaufes und Eroberung resp. Ausbildung einer neuen Sehne aus dem vor ihm gelegenen Fascienbereiche zu einem eigentümlichen über den größeren Visceral- und Schädelbereich sich erstreckenden Längsmuskel sich umgestaltet hat.

2) M. depressor rostri (dr).

Der M. depressor rostri entspringt bei Raja (Fig. 11), Rhinobatus (Fig. 12) und Torpedo (Fig. 10) von der Fascie, welche die ventrale Längsmuskulatur bedeckt, und bildet einen Muskelbauch, welcher gewöhnlich etwas breiter als der des M. levator rostri ist. Nach vorn verlaufend, verschmälert er sich und geht in der Nähe des Mundwinkels in eine lange schlanke Sehne über, welche bei Raja, Rhinobatus am äußeren Rande des Rostrums und bei Torpedo am Ethmoidalfortsatze desselben dicht am Gelenk inseriert.

Innerviert durch einen Zweig des N. facialis, der im Bereich der Äste für den M. constrictor superficialis ventralis II. von dem R. hyoideus abgeht.

Der M. depressor rostri bildet den ventralen Antagonist des M. levator rostri und dürfte sich aus dem ventralen oberflächlichen Bereich des M. constrictor superficialis ventralis II. in der gleichen Weise entwickelt haben, wie der Levator aus dem dorsal. Mit dieser Modifizierung haben die oben gemachten Angaben auch für den Depressor rostri Geltung.

3) M. levator hyomandibularis (hm).

Wie bei den von Vetter untersuchten Haien ist auch bei Mustelus ein ganz selbständiger M. levator hyomandibularis

1) S t a n n i u s (1849, S. 65): Senker der Schnauze. Stannius macht auch genaue und richtige Angaben über seine Innervation. — Von Schneider (1890) auf Taf. XXIV, Fig. 1 (Raja) und 3 (Torpedo) abgebildet und bald als o (Quermuskel der Kiemen), bald als myml (Mylomaxillaris?) bezeichnet. Text und Richtigstellung dieser irrtümlichen Angaben fehlt.

2) Von Cuvier (1838, II, S. 71) wohl sub C No. 2 beschrieben. Stannius: Hebemuskel des Kiefersuspensoriums (S. 65), wo auch die Innervation ganz richtig angegeben wird.
Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen. 99

noch nicht ausgebildet, sondern repräsentiert einen Teil des M. constrictor superficialis dorsalis II. Dieser Muskel (Fig. 8 csd₂) entspringt hier einheitlich von der Labyrinth- und Occipitalregion des Schädels, wobei er den Nickhautmuskelsursprung deckt, sowie von der Fascie der dorsalen Rumpfmuskulatur und endet mit seinen vorderen tiefen Fasern an dem Hyomandibulare (M. levator hyomandibularis), während seine übrige oberflächliche Hauptsasse ventralwärts weiter verläuft und in den Constrictor superficialis ventralis II. übergeht.

Bei den Rochen ist die Scheidung vom Constrictor superficialis dorsalis vollzogen. Der deutlich ausgeprägte M. levator hyomandibularis entspringt hier, an den M. constrictor superficialis dorsalis I. anschließend, von der Labyrinthregion, verläuft nach außen und unten und inseriert bei Raja (Fig. 13) an den oberen zwei Dritteln, bei Torpedo (Fig. 14) am mittleren und bei Rhinobatus (Fig. 15) am unteren Drittel der oberen Kante des Hyomandibulare.

Innerviert von einem gleich am Anfange des Truncus hyoideo-mandibularis des N. facialis abgehenden Aste.

4) M. constrictor superficialis II. (cs₂).

A. M. constrictor superficialis dorsalis II. (csd₂)¹).

Mustelus (Fig. 8) bildet in dem Verhalten des Systems der Constrictoren ein Zwischenglied zwischen Heptanchus und Acanthias. Auch hier bilden sie eine zwischen Kieferbogen und Schultergürtel ausgebreitete Ringmuskulatur von einem in der Hauptsache gleichfaserigen Verlaufe, welche durch die Visceralbogen in einzelne aufeinanderfolgende Segmente geschieden wird.

Jedes dieser Segmente wird von dem zu dem betreffenden Visceralbogen gehörigen Nerven innerviert; somit nehmen an der Versorgung (abgesehen von dem schon obenerwähnten N. trigeminus für den M. constrictor spf. dorsalis I.) der Reihe nach die Nn. facialis, glossopharyngeus und vagus Anteil.

Die Umbildung der bei Heptanchus großen Kiemenpalten zu kurzen Kiemenlöchern ist hier bei Mustelus noch nicht so weit vorgeschritten wie bei Acanthias; doch steht Mustelus hierbei letzterem näher.

Der dem Facialisgebiete angehörende M. constrictor superficialis dorsalis II. entspringt mit seinen vorderen Fasern von dem

¹) Nach Vetter's Bezeichnung.
hinteren Ende der Occipitalregion des Schädels, mit seinen mittleren von der an dieselbe hinten anschließenden Fascie der dorsalen Längsmuskulatur, welcher hier mit dem lateralen Septum verwachsen ist und einen Schleimkanal umschließt, und mit seinen hintersten Fasern von dem durch die Verwachsung der Kiemenlöcher gebildeten Septum zwischen ihm (M. constrictor spf. dorsalis II.) und dem darauf folgenden M. constrictor superficialis dorsalis III. Dieses Septum steigt von der obersten Ecke des Kiemenloches schräg nach vorne aufwärts und verbindet sich mit der Fascie der dorsalen Längsmuskulatur; nach innen und vorn zu befestigt es sich an dem betreffenden Kiemenbogen und schließt den oberen äußeren Kiemenbogen ein.

Bei Raja (Fig. 13), Rhinobatus (Fig. 15) und Torpedo (Fig. 14) ist an Stelle des bei Mustelus noch ziemlich einfachen und einheitlichen Verhaltens der Constrictoren der Kiemenbogen eine größere Komplikation getreten, indem hier ein Zerfall in eine Reihe von Portionen sich findet, welche verschiedenen Faserverlauf haben.

Bei Mustelus zerfiel der M. constrictor superficialis dorsalis II. nach seinem Ansatz in zwei Teile, von denen der vordere zu dem Hyomandibulare verliert, der hintere in die Fasern des M. constrictor superf. ventralis II. überging.

Der vordere Teil stellt bei Raja, Rhinobatus und Torpedo den M. levator hyomandibularis (lehm) vor, welcher schon oben (S. 99) genauer dargestellt ist.

Zum Unterschiede von den transversalen sehigen Zwischenbändern, welche sich zwischen den aufeinander folgenden Abschnitten des M. constrictor dorsalis finden, soll diese Sehne als horizontale Sehne bezeichnet werden.

Diese vorderen Fasern sind an ihrem Ursprunge mit den Fasern des M. levator hyomandibularis verwachsen und zeigen damit und durch ihren Verlauf noch die ursprüngliche Zusammengehörigkeit dieses Muskels mit dem M. constrictor superf. dorsalis II. an.

Bei Torpedo sind die Fasern kräftiger ausgebildet und selbständiger als bei Raja; bei Rhinobatus fehlen sie fast ganz.

Die hintere Portion des hinteren Teiles des M. constrictor superf. dors. II. entspringt von der, zwischen M. constrictor superf. dors. II. und III. befindlichen Sehne, verläuft schräg nach vorn und unten und inseriert an der horizontalen seitlichen Sehne.

Innerviert von feinen Seitenzweigen des R. hypoideus nervi facialis.

B. M. constrictor superficialis ventralis II. (csv_2).

Die tiefere Schichte des M. constrictor spf. ventralis II. entspringt von einer Fascie, welche die ventrale Längsmuskulatur bedeckt; hinten verschmilzt sie vollständig mit der oberflächlichen Schichte. Ihre nach vorn und außen verlaufenden Fasern gehen in eine starke Sehne über, die am Hyoid inseriert; ihre hintersten Fasern vereinigen sich zwischen Unterkiefer und Kiemenkorb mit der oberflächlichen Schichte und verschmelzen dort zugleich mit dem M. constrictor spf. dorsalis II.

Auch dieser Muskel hat bei den Rochen, *Raja* (Fig. 11), *Rhinobatus* (Fig. 12) und *Torpedo* (Fig. 10) Umgestaltungen erfahren, welche einerseits zu höheren Differenzierungen, andererseits zum Schwunde gewisser Muskelpartien geführt haben.

Die aus der bei Mustelus zusammenhängenden Muskelsmasse
hervorgegangenen einzelnen Portionen lassen sich in einen vor-
deren und einen hinteren Teil sondern:

1) Der vordere Teil. Denselben gehören zwei nur an ih-
rem Ursprunge verwachsene Muskeln an, von denen der eine
der oberflächlichen, der andere der tieferen Schichte des M. con-
strictor superf. ventr. II. bei Mustelus entspricht.

a) Die oberflächliche Schichte (M. depressor mandibularis, dpr.md.) fehlt bei Torpedo; bei Raja (Fig. 11) und Rhi-
obatus (Fig. 12) entspringt sie ziemlich breit von der die ven-
trale Längsmuskulatur deckenden Fascie. Von da verläuft sie,
schmäler werdend, nach dem Unterkiefer und inseriert sich an
der unteren Fläche desselben.

b) Die tiefere Schichte (M. depressor hyomandibularis, dpr.hm) ist bei allen drei untersuchten Rochen (Fig. 10, 11, 12)
vorhanden. Sie entspringt ebenfalls von der Fascie der ventralen
Längsmuskulatur, bedeckt von dem M. depressor mandibularis und
mit ihm an seinem Ursprunge verwachsen. Auch sie beginnt mit
breitem Ursprunge und geht mit konvergierenden Fasern in
einen schmalen Insertionsteil über, der sich an der unteren Fläche
des Hyomandibulare anheftet.

2) Der hintere Teil des Constrictor superficialis ven-
tralis II. entspringt bei Raja (Fig. 11), Torpedo (Fig. 10) und
Rhinobatus (Fig. 12), von der zwischen M. constrictor superf.
ventr. II. und III. befindlichen Zwischensehne und ist zugleich mit
fasern der ventralen Längsmuskulatur verbunden. Die nach
außen und vorne verlaufenden Muskelfasern inserieren an der oben
beschriebenen horizontalen Sehne.

Innerviert von ventralen Zweigen des R. hyoideus nervi
facialis.

Hierher gehört auch der vorderste, vom N. facialis versorgte
Abschnitt des elektrischen Organes von Torpedo. Das-
selbe verdankt bekanntlich seine Entstehung der Umwandlung
des Randteiles (dorso-lateralen Gebietes) des M. constrictor su-
perficialis in elektrische Platten, und zwar kommen hierbei die
vier von den Nn. facialis (R. hyoideus), glossopharyngeus (R.
posterior) und vagus (Rr. posteriores der beiden ersten Nn. bran-
chiales vagi) Branchiomen der genannten Muskels in Betracht.
Wie hierbei das elektrische Organ aus minder ausgedehnten
Muskelpartien zu einem mächtigen Gebilde angewachsen ist, so
Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen. 103

zeichnen sich auch die es versorgenden Nerven durch eine sehr bedeutende Dicke aus 1).

Nervus facialis (VII) 2).

Aus dem Ursprungsgebiete des N. facialis entstammen zunächst die beiden dorsalen Nn. ophthalmicus superficialis facialis und buccalis 3), welche der übrigen Masse der Facialis gegenüber eine große Selbständigkeit zeigen, mehr oder minder innig dem N. trigeminus sich beigesellen und die Schleimkanäle des Vorderkopfes versorgen.

Nach Abgabe dieser Äste tritt der N. facialis durch das Foramen n. facialis aus dem Schädel und gibt gleich darauf den nach vorn gehenden N. palatinus 4) und N. praespiracularis 5) ab;

2) Nur die auf die viscerale Muskulatur bezüglichen Verzweigungen des N. facialis sind in der obigen Beschreibung genauer berücksichtigt.

4) N. palatinus: Stannius (S. 60), Gegenbaur (S. 514), Jackson and Clarke (S. 87), Marshall and Spencer (S. 491), Ewart (S. 531).

beide Nerven verzweigen sich an der Schleimhaut des Mundes und der vorderen Umrandung des Spritzloches und entsprechen einem Ramus anterior s. praetrematicus der Kiemenerven.

Der einem Ramus posterior s. posttrematicus vergleichbare Hauptstamm des N. facialis, Truncus hyoideo-mandibularis der Autoren ¹), wendet sich hinter dem Spritzloche schräg nach hinten und außen und folgt in seinem Verlaufe zunächst dem Hinterrande des Hyomandibulare. Die hier zuerst von ihm abgegebenen Zweige versorgen die Mm. levator rostri ²) und levator hyomandibularis ³). Weiterhin teilt er sich in seine beiden Endäste, den vorderen sensibeln R. mandibularis*), welcher im Bereiche der Mandibula verlaufend die hier befindliche Haut und Schleimhaut mit Nervenzweigen versieht, und den hinteren gemischten R. hyoideus ⁵), welcher dem Hyoid angeschlossen bleibt, von hier aus die Mm. constrictor superficialis (dorsalis und ventralis) II. ⁶), depressor mandibularis und hyomandibularis ⁷), sowie depressor rostri ⁸) mit zahlreichen Zweigen innerviert und ferner die im hyoidalen Bereich gelegene Haut versorgt.

Bei den Rochen erfolgt die Teilung des Truncus hyoideo-mandibularis in seine Äste früher als bei den Haien, auch heben sich die Rr. musculares für die Mm. levator rostri, levator hyomandibularis und depressor rostri selbständiger und ansehnlicher hervor. Insbesondere entspringen die Zweige für die beiden genannten Levatares aus einem besonderen, sehr früh vom N. facialis abgehenden Nervenstämmchen, welches zunächst den M. levator hyomandibularis versorgt, von diesem Muskel bedeckt weiter verläuft und danach an seinem hinteren Rande nach oben umbiegend an den M. levator rostri tritt. Entsprechend der

2) Schon von Stannius (S. 62) erwähnt.
7) Cf. Stannius (S. 65).
8) Vergl. Stannius (S. 62 und 65).
Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen. 105

kräftigen Ausbildung der Mm. depressores bei den Rochen ist auch der R. hyoideus, speciell dessen motorische Abteilung relativ stärker als bei den Haien entwickelt und übertrifft den R. mandibularis wesentlich an Dicke.

III. Muskelgruppe des Nervus glossopharyngeus.

1) M. constrictor superficialis dorsalis und ventralis III.
2) M. interbranchialis arcus branchialis primi.
3) Mm. interarcuales arcus branchialis primi.
4) M. adductor arcus branchialis primi.

1) M. constrictor superficialis III. (cs₃₁).

Der M. constrictor superficialis III. verhält sich mit seiner dorsalen und ventralen Abteilung im wesentlichen wie der vom N. facialis versorgte M. constrictor superficialis II. (S. 99 u. S. 101); nur ist er weniger stark ausgebildet und etwas einfacher gebaut.

A. M. constrictor superficialis dorsalis III. (cs₃₃).

Bei Torpedo (Fig. 14), Raja (Fig. 13) und Rhinobatus (Fig. 15) entspringt der Muskel von der zwischen M. constrictor superficialis dorsalis III. und IV. befindlichen Zwischensehne und verläuft zunächst nach vorn; weiter außen und unten geht die Richtung der Fasern in eine horizontale und dann in eine schräg nach vorn und oben ansteigende Richtung über. Schließlich inserieren sich die Fasern an der vorhergehenden, zwischen M. constrictor super. dors. II. und III. befindlichen Zwischensehne.

Eine tiefere Schichte ist nur in den unteren seitlichen Teilen

Berthold Tiesing,

Innerviert von feinen Seitenästen des N. glossopharyngeus.

B. M. constrictor superficialis ventralis III. (esv3).

Bei den untersuchten Rochen zerfällt der Muskel in eine mediale und eine laterale Portion (vergl. auch S. 101 ff.).

1) Die mediale Portion entspringt bei Raja (Fig. 11), Torpedo (Fig. 10) und Rhinobatus (Fig. 12) von der zwischen M. constrictor superf. ventr. III. und IV. befindlichen Sehne und inseriert mit nach vorn verlaufenden Muskelfasern an der vorhergehenden Sehne.

Außer diesen eben beschriebenen Muskelfasern kommen der ventralen Portion noch einige andere kleinere Muskeln zu:

Dieser Muskel (esv3, Fig. 11) muß als ein Rest eines bei Heptanbuch in allen Kiemensegmenten stärker ausgebildeten Muskels angesehen werden, welcher von Vetter als die tiefe Schichte des M. constrictor superf. ventralis beschrieben worden ist.

Bei Raja und Torpedo findet sich dieser Muskel in drei Segmenten, welche dem 1., 2. und 3. Kiemenbogen (3.—5. Vischeralbogen) entsprechen; bei Rhinobatus nur in einem, in dem des 1.
Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen. 107

Kiemenbogens. Nur der in dem Segmente des 1. Kiemenbogens (3. Visceralbogens) gelegene Muskel \((csv_p_3) \) gehört zur Glossopharyngeusgruppe, die beiden anderen \((csv_p_4 \text{ und } csv_p_5) \) zur Vagusgruppe.

Außerdem findet sich bei Torpedo in drei Segmenten, in dem des 1., 2. und 3. Kiemenbogens, ein kleiner Muskel, welcher mit dem eben besprochenen zusammen von der Fascie des M. coracomandibularis entspringt, nach außen verläuft und viel oberflächlicher als die eben genannte tiefe Schichte an der nächstvorderen transversalen Zwischensehne inseriert (Fig. 10 \(csv'_3 \)).

Diese Fasern \((csv'_3-5) \) gehören ebenfalls zum M. constrictor superficialis ventralis; \(csv'_3 \) wird vom N. glossopharyngeus, \(csv'_4 \) und \(csv'_5 \) vom N. vagus innerviert.

Die Richtung dieser Fasern ist eine etwas andere als die des medialen Teils; sie verlaufen nach außen und oben, also descendent, und inserieren an dem horizontalen Sehnenstreifen.

Hierher gehört auch der zweite von dem R. electricus nervi glossopharyngei versorgte Abschnitt des elektrischen Organes von Torpedo (vergl. auch S. 102, 103).

2) \textit{M. interbranchialis arcus branchialis primi}\).

Von den Mm. interbranchiales gehört der erste zum System des N. glossopharyngeus, die anderen zu dem des Vagus. Alle liegen bei Mustelus, Raja, Torpedo und Rhinobatus der vorderen resp. lateralen Fläche der Radien der entsprechenden Kiemenbogen direkt auf.

Bei Mustelus ist das Verhalten in der Hauptsache das gleiche wie nach Vetter’s Beschreibung bei Acanthias. Ihre oberflächlichen (den Enden der Kiemenradien entsprechenden) Fasern erstrecken sich von dem dorsalen zum ventralen Bereiche der Kiemenscheidewände, die tieferen (den Basen der Kiemenradien

anliegenden) erleiden durch basale Insertionen eine Verkürzung ihres Verlaufes.

Bei Raja, Rhinobatus und Torpedo entspringen diese Muskeln von den transversalen Sehnen, laufen nach unten und setzen sich zum Teil an die obere Kante des oberen Mittelstückes an, zum Teil an das zwischen dem dorsalen und ventralen Constrictor eingeschobene Schenkelblatt. Die ventralen Abschnitte zeigen das entsprechende Verhalten wie die dorsalen, wobei selbstverständlich der Verlauf der gerade umgekehrte ist.

Wie bereits erwähnt, gehört zum Glossopharyngeusgebiet nur der M. interbranchialis arcus visceralis primi.

3) Mm. interarcuales arcus branchialis primi 1).

Zwischen den oberen Enden der Kiemenbogen befinden sich kleine Muskeln, welche entweder das oberste Glied (Basale) und das dorsale Mittelstück desselben Kiemenbogens oder die oberen Gliedstücken zweier aufeinander folgenden Kiemenbogen miteinander verbinden.

Vetter hat dieselben genau bei Heptanchus, Acanthias und Scymnus untersucht und unterscheidet für jedes Branchiomer 3 Abteilungen, die er als Interarcuales I., II. und III. bezeichnet. Nach ihm werden sämtliche Interarcuales vom N. vagus versorgt, während ich hiervon die zu dem ersten Kiemenbogen gehenden (Mm. interarcuales arcus branchialis primi), als vom N. glossopharyngeus versorgt, ausnahme.

Die Muskeln der ersten Abteilung (Vetter's Interarcuales I.) verbinden in longitudinalen Verlaufe die dorsalen Endstücke (Ba-

Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen.

4) M. adductor arcus visceralis primi 1).

2) Schon Gegenbaur (1872, S. 150) weist darauf hin, daß Mustelus unter allen Haien die relativ größten Vertiefungen besitzt, und daß auch die Rochen recht mächtige, breite und tiefe Muskelgruben zeigen.
gehört nur der von dem N. glossopharyngeus versorgte Adductor arcus visceralis primi, während die entsprechenden Muskeln der folgenden Kiemenbogen von dem N. vagus innerviert werden.

Inneriert von einem feinem Ästchen, welches von dem Stamm des N. glossopharyngeus, kurz bevor er den Muskel erreicht, abgegeben wird.

Nervus glossopharyngeus (IX).

Bei Torpedo besteht der N. glossopharyngeus aus einer größeren hinteren und einer kleineren vorderen Portion; die kleinere giebt den R. pharyngeus ab und zerfällt dann in einen vorderen und einen hinteren Ast, welche zur vorderen und hinteren Wand der ersten Kiemenspalte verlaufen und dieselbe mit sensiblen Fasern versehen. Auch bei Mustelus, Raja und Rhinobatus versorgt der R. anterior die vordere Wand der ersten Kiemenspalte mit sensiblen Fasern.

Die größere hintere Portion bei Torpedo resp. der Stamm (Ramus arcus branchialis primi) bei Mustelus, Raja und Rhinobatus

1) Auch hier beschränkt sich die Darstellung in der Hauptsache auf diejenigen Äste, welche zu der beschriebenen visceralen Muskulatur in Beziehung stehen.

4) Zweig zum Pharynx, Ramus pharyngeus, Pharyngeal branch: Gegenbaur (S. 517); Jackson and Clarke (S. 91); van Wijhe (S. 29); Ewart (S. 532).
verläuft nach außen und hinten und giebt bei allen untersuchten Fischen zuerst einen kleinen Zweig ab, welcher in der Nähe des 1. Radius nach hinten biegt und bei Mustelus, Raja und Rhinobatus den M. interarcualis arcus visceralis primi, bei Torpedo die Mm. interarcuales arcus visceralis primi II. und III. versorgt.

Den Nerven, welcher den M. interarcualis arcus visceralis primi I. bei Mustelus innerviert, habe ich nicht auffinden können; aber es ist wohl anzunehmen, daß auch er ein kleines Ästchen vom Nervus glossopharyngeus erhält 1).

Weiterhin verläuft der Stamm des Ramus arcus branchialis primi an der vorderen Kante des Kiemenbogens nach außen und unten und giebt Äste für den dorsalen Teil des M. constrictor superf. III. und M. interbranchialis arcus visceralis primi und im unteren Drittel des dorsalen Mittelstückes ein kleines Ästchen ab, welches, den Knorpel des darunter liegenden Kiemenbogens durchbohrend, zum M. adductor arcus visceralis primi gelangt. Im ferneren Verlaufe gelangt der Nerv weiter nach außen und unten und versorgt den ventralen Teil des M. constrictor superfic. III. 2).

IV. Muskelgruppe des Nervus vagus.

1) M. constrictor superficialis dorsalis und ventralis

IV.—VII.

2) M. trapezius.

3) Mm. interbranchiales arcus branchialis secundi, tertii et quarti.

4) Mm. interarcuales arcus branchialis secundi, tertii et quarti.

5) Mm. adductores arcus branchialis secundi, tertii, quarti et quinti.

1) M. constrictor superficialis IV.—VII. (cs4-7).

Hinsichtlich der von dem N. vagus versorgten Fascikel der tieferen Schicht des M. constrictor superficialis ventralis bei Raja und Torpedo (csv4 und csv5), sowie der gleicherweise vom N. vagus innervierten besonderen Bündel csv'4 und csv'5 bei Torpedo sei auf die Beschreibung des M. constrictor superficialis ventralis III. (S. 106, 107) verwiesen.

Innerviert von Zweigen der vier Rr. branchiales (hintere Äste) des N. vagus.

Hierher gehören auch die beiden letzten von den starken Zweigen der Rr. posteriores der beiden ersten Kiemenäste des Vagus innervierten Abschnitte des elektrischen Organe von Torpedo (vergl. auch S. 102 ff. und S. 107).

2) M. trapezius 1).

Wie Vetter bei den von ihm untersuchten Haiischen nachgewiesen, hat sich der M. trapezius aus dem hinteren dorsalen Teile des M. constrictor superficialis dorsalis herausdifferenziert und steht sowohl zu dem Schultergürtel als zu dem letzten Kiemenbogen in direkter Beziehung.

Der Muskel von Mustelus zeigt eine ziemlich große Übereinstimmung mit dem von Acanthias. Wie dort entspringt er von der die dorsale Rumpfmuskulatur deckenden Fascie im Bereiche

1) Trapezius: Vetter (S. 411, 421 und 428).
Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen. 113
der vier hinteren Kiemenbogen und geht mit descendenten und
ein en konvergierenden Fasern nach unten und hinten. Der In-
sertionsteil sondert sich in zwei platten Fascikel, von denen das
kleinere vordere an dem oberen Mittelstück des reduzierten 5.
Kiemenbogens inseriert, während das größere hintere ziemlich
breit sich an die Scapula anheftet.

Bei Torpedo, Raja und Rhinobatus wurde vergeblich
nach einem M. trapezius gesucht. Der hintere, mit der Scapula
verbundene Teil des M. constrictor superficialis dorsalis unter-
scheidet sich nicht von der übrigen Masse dieses Muskels. War-
scheinlich ist er hier infolge der Fixierung des Schultergürtels an
die Wirbelsäule verkümmert.

Innerviert von mehreren Zweigen des N. vagus.

3) Mm. interbranchiales arcus branchialis secundi, tertii et quarti ¹).

Kiemenbogen gehörigen Septen der Vorderfläche der Kiemenradien
auf und verhalten sich in allem Wesentlichen ganz wie der oben
beschriebene M. interbranchialis arcus branchialis primi (S. 107).

Innerviert durch verschiedene feine Zweige der 3 ersten
Rr. branchiales n. vagi.

4) Mm. interarcuales arcus branchialis secundi, tertii et quarti ²).

Auch für die Mm. interarcuales des 2., 3. und 4. Kiemen-
bogens gelten die oben (S. 108) dargestellten Verhältnisse der
gleichnamigen Muskeln des ersten Kiemenbogens.

Die Muskeln der ersten Abteilung (Vetter’s Interarcuales i.)
finden sich bei Mustelus in Gestalt von drei platten und dünnen
Muskelbändern, welche sich mit longitudinalen Fasern zwischen
Kiemenbogens erstrecken; sie fehlen bei den untersuchten Rochen.

Die Muskeln der zweiten Abteilung (Vettes’s Interarcuales ii.) verbinden die Basalia des 2., 3. und 4. Kiemenbogens mit

¹) Muskulöses Diaphragma zwischen den Kiemenblattreihen:
Stannius (S. 89). — Mm. interbranchiales: Vetter (S. 418 und 426).
²) Muscles supérieurs et protracteurs des arecaux et Interarti-
culaires: Cuvier-Duméril (1840, III, S. 272). — Interarcuales:
Vetter (S. 441).
Bd. XXX. N. F. XXIII.

8
den entsprechenden oberen Enden der dorsalen Mittelstücke der selben Bogen und wurden bei Mustelus und den untersuchten Rochen gefunden.

Innerviert durch ganz früh abgegebene feine Zweige der drei ersten Branchialäste des N. vagus.

5) Mm. adductores arcus branchialis secundi, tertii, quarti et quinti 1).

Innerviert von feinen Ästchen, welche von den 4 Rr. branchiales des N. vagus abgegeben werden.

Nervus vagus (X) 3).

Der mit zahlreichen dorsalen und dorso-lateralen, eine lange Reihe bildenden Wurzeln von der Medulla oblongata entspringende N. vagus verläuft den Schädel in der Occipitalregion durch das Foramen nervi vagi, wobei die einzelnen Wurzelfäden sich zu einem mehr oder minder kompakten sehr kräftigen Nerven zusammenschließen, welcher nach dem Austritt aus dem Kranium

2) Vergleiche hierüber auch Gegenbaur's Angaben (1872, S. 150).

Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen. 115

und nach Abgabe seiner dorsalen sensibeln Äste (inkl. Rr. laterales) als ventraler Hauptstamm oder N. branchio-intestinalis über dem Kiemenskelet nach hinten verläuft.

Auf diesem Wege giebt er an die einzelnen Kiemenbogen und Kienspalten, von der zweiten an gerechnet, successive eine Anzahl Nn. branchiales ab, wodurch der Stamm sich zuschends verdünnt, und tritt dann am Ende des Kiemenkorbes als N. intestinalis unter dem Schultergurtel in die Brustbauchhöhle.

Die für die Muskulatur allein in Betracht kommenden Rami posteriores (Stämme) der Kiemenäste des N. vagus geben zuerst keine Zweige an die interarcualen Muskeln⁵) ab, verlaufen dann längs der ihnen entsprechenden Kiemenbogen, wobei sie zahlreiche Fäden an die zugehörigen Mm. constrictores superficiales

1) Kiemenbogenäste, Kiemenäste, Rr. branchiales, Branchial nerves: Stannius (S. 89 ff.); Gegenbaur (1871, S. 525); Jackson and Clarke (S. 95); Ewart (S. 534). — Rr. arcus branchialis II.—V.: Bonsdorff (S. 217—219).
4) Rami pharyngei, Pharyngeal nerves, Pharyngeal branches: Stannius (S. 89, 90); Bonsdorff (S. 219); Gegenbaur (S. 524); Jackson and Clarke (S. 96); van Wijhe (S. 33); Ewart (S. 534).
5) Vergleiche Vetter, S. 443.
Berthold Tiesing,
dorsales und ventrales \(^1\)) und die Mm. interbranchiales \(^2\)), sowie je ein feines Ästchen an die Mm. adductores arcuum branchialium II.—VI. \(^3\)) abenden, hierbei durchweg dieselben Verhältnisse wie der Ramus posterior (Stamm) des N. glossopharyngeus darbietend; doch zeigt sich an dem letzten Kiemenbogen eine mehr oder minder weitgehende Reduktion der betreffenden Muskelbildungen (siehe oben) und dementsprechend auch der sie versorgenden Nerven.

Während des Abganges der Nn. branchiales giebt der Stamm (N. branchio-intestinalis) des Vagus bei Mustelus in wechselnder Weise 1—2 Muskeläste an den M. trapezius ab \(^4\).

Der N. intestinalis vagi zeigt keine Beziehungen zur Muskulatur des Visceralskelettes.

Zusammenfassung und allgemeinere Resultate.

Die im Obigen gegebene Darstellung der Augenmuskeln und ihrer Nerven ergibt keine neuen Gesichtspunkte für die Beurteilung dieser Muskelgruppe, sondern schließt sich in der Hauptsache den Befunden früherer Untersucher an. Auszunehmen ist die Nickhautmuskulatur der Haie, die von den darüber handelnden Autoren hierher gerechnet wurde, jedoch auf Grund der Innervation und des sonstigen Verhaltens von den Augenmuskeln gänzlich abzutrennen und zur Trigeminusgruppe der

\(^1\) Vergleiche Vetter, S. 411 und 426.

\(^3\) Vergleiche Vetter, S. 445.

visceralen Muskulatur zu verweisen ist; sie repräsentiert eine einseitige Differenzierung aus dem M. constrictor superficialis dorsalis I.

Die Untersuchung der von den Nn. trigeminus, facialis, glossopharyngeus und vagus versorgten visceralen Muskeln schloß an Vetter's vortreffliche Untersuchungen bei Haien an und konnte dieselben in der Hauptsache bestätigen. Mustelus reiht sich hierbei an die von Vetter behandelten Haie und steht von diesen Acanthias am nächsten. Beträchtlicher weichen, wie zu erwarten, die untersuchten Rochen (Torpedo, Rhinobatus, Raja) davon ab und zeigen zahlreiche Besonderheiten, die aber sämtlich auf die Verhältnisse bei den Haien zurückgeführt werden können; nirgends ergab sich bei hinreichender Berücksichtigung der Innervation eine tiefergehende Schwierigkeit in der Identifizierung der Muskulatur.

Die Muskulatur des Trigeminusgebietes setzt sich zusammen aus den Mm. constrictor superficialis dorsalis I., levator labii superioris, levator maxillae superioris, welche drei auf das dorsale Constrictorsystem zu beziehen sind, und auf den M. adductor mandibulae, welcher ein seriäres Homologon der Mm. adductores arcuum branchialium darstellt. Wie die Innervation und sonstige Anordnung lehrt, bildet der M. levator maxillae superioris zusammen mit dem auf die präspiraculare Gegend beschränkten Reste des M. constrictor superficialis dorsalis I. (welchem auch die Nickhautmuskulatur entstammt) den mehr dorsalen und hinteren (postorbitalen), der M. levator labii superioris den mehr ventralen und vorderen (präorbitalen) Teil des dorsalen Constrictor. Beide Levatores sind im Bereiche der Orbita durch eine muskelfreie Strecke getrennt, welcher Ausfall von Muskelelementen wohl mit der sekundären mächtigen Ausdehnung des mandibularen Visceralbogens in Zusammenhang stehen mag 1). Ob der Levator labii superioris lediglich als der vorderste Teil des vom N. trigeminus versorgten Constrictor aufzufassen sei oder ob ihm außerdem noch die tiefere Bedeutung eines imitatorischen Homodynamics (nach Führinger's Bezeichnung) an Stelle eines älteren Constrictor, der dereinst von einem prätrigeminalen, jetzt aber verkümmerten Nerven versorgt wurde und primitivere Beziehungen zu den Lippenknorpeln dar-

1) Keinenfalls ist gestattet, aus der Sonderung der beiden Levatores auf die einstmalige Existenz von zwei Visceralbogen in mandibularem Gebiete zu schließen.
bot, innewohnt, kann zunächst nur als Frage aufgeworfen werden. Gegenüber den Haien zeigen die Rochen eine höhere Differenzierung und weitergehende Sonderung der genannten Levatores; die einfachere Bildung bei ersteren dient als Ausgangspunkt für die komplizierteren Verhältnisse bei letzteren. Der Adductor mandibulae steht im Zusammenhange mit dem kräftigen Wachstum des mandibularen Bogens die mächtige Entwicklung eines ursprünglichen kleinen und mehr auf die Innenseite des Bogens beschränkten Adductor dar (cf. Gegenbaur); entsprechend seinem nach außen drängenden Wachstum ist er auch zu dem M. levator labii superioris in innigeren Connex getreten; ihn jedoch nur aus dem Systeme der Levatores resp. Constrictores abzuleiten (Dohrn), wird durch keinen Befund meiner Untersuchung gestützt. Auch hier zeigen die Rochen eine viel weitergehende Gliederung und sekundäre Ausbildung (schlingenförmiges Umwachsen der Kiefer) als die Haie mit ihrem einfacheren, primitiveren Verhalten.

Die vom Facialis versorgten viseralen Muskeln dürften sämtlich Abkömmlinge des Systemes des Constrictor superficialis sein. Zweifellos ist dies bei den von Vetter und mir untersuchten Haien, bei welchen der ganze M. constrictor superficialis dorsalis II. und ventralis II. ziemlich einfache und gleichmäßige Verhältnisse zeigt und wo nur im dorsalen Gebiete ein etwas kräftigerer M. levator hyomandibularis eben beginnt, sich aus der einheitlichen Masse herauszubilden. Bei den Rochen ist dieser Differenzierungsprozeß erheblich fortgeschritten und hat im dorsalen Bereich zu der Ausbildung der Mm. levatores hyomandibularis und rostri, im ventralen zu derjenigen der Mm. depressores hyomandibularis, mandibulares und rostri geführt, während der übrig gebliebene indifferentere Teil des M. constrictor superficialis einfachere Verhältnisse darbietet. Die zum Rostrum gehenden Muskeln sind die oberflächlichsten und vielleicht auch ältesten Differenzierungen und zeigen eine besondere Entfaltung, welche das hyoidale Gebiet nach vorn und nach hinten weit überschritten hat und ohne Kenntnis der Innervation ihre Ursprungsstätte kaum vermuten ließe. Es ist nicht zweifelhaft, daß die gesamte Facialis-Muskelgruppe bei den Rochen eine durchaus sekundäre und einseitige Ausbildung zeigt, die von den primitiveren Gebilden bei den Haien abgeleitet werden kann, wenn auch vermittelnde Übergänge noch nicht bekannt sind; der Versuch einer Ableitung der Verhältnisse bei den Haie von denjenigen bei den Rochen stößt hingegen auf unüberwindliche Schwierigkeiten. — Weder die Mus-
kulatur noch der Nervus facialis geben irgend welche Stütze für die von einigen Autoren ausgesprochene Ansicht, daß diesem Be-
reiche einstmals zwei bis drei viscerale Bogen zugekommen seien; alle Verhältnisse sprechen für eine ursprüngliche Einheitlichkeit des hyoidalen Viscerabogens und des Nervus facialis.

In den Gebieten des Glossopharyngeus und Vagus ist der M. constrictor superficialis (inkl. Mm. interbranchnales) einfacher ausgebildet als in den vom Trigeminus und Facialis versorgten Bereichen, ein Verhalten, das aus der minder komplizierten Funktion dieser Bogen leicht erklärlich wird. Die Rochen zeigen hierbei im ganzen einfachere Verhältnisse als die Haie. Doch dürfen dieselben keineswegs als der Ausdruck primitiverer Beziehungen aufgefaßt werden; vielmehr handelt es sich hierbei um mannigfache Reduktionen (wozu u. a. auch die Rückbildung des M. trapezius gehört) in Korrelation zu der Fixierung und mächtigen Ausbildung des Schultergürtels und der Brustflosse, welche dieses viscerale Gebiet derart einschließt und einengt, daß ausgiebige und weitergreifende Muskelwirkungen gar nicht zur Entfaltung kommen können. Hinsichtlich der Mm. interarcuales können auch bei den Rochen gegenüber den Haien teilweise Verkümmern konstatiert werden. Die Mm. adductores arcuum visceralium verhalten sich bei beiden Abteilungen ziemlich gleichmäßig.

Daß bei Torpedo im dorso-lateralen Bereiche des M. constrictor superficialis II., III., IV. et V. die Differenzierung eines kräftigen elektrischen Organs statt hatte, mit welcher die Ausbildung mächtiger elektrischer Nervenäste im Gebiete der Facialis, Glossopharyngeus und der beiden ersten Branchialzweige des Vagus Hand in Hand ging, ist bereits durch die Untersuchungen früherer Autoren zur Genüge nachgewiesen.

Alle Instanzen lassen mit hinreichender Deutlichkeit erkennen, daß in der Ausbildung des visceralen Apparates mit seinen Knorpeln, Muskeln und Nerven die Haie die mehr primitiven Beziehungen, die Rochen (Torpedo, noch mehr Rhinobatus und Raja) die mehr sekundären Differenzierungen aufweisen. Letztere sind von ersteren abzuleiten, aber nicht umgekehrt.
Erklärung der Abbildungen
zu Tafel V—VII.

Für sämtliche Tafeln gültige Bezeichnungen:

am M. adductor mandibulae.

aml M. adductor mandibulae lateralis (Torpedo).

aml₁ " " " " I. (Raja, Rhinobatus).

aml₂ " " " " II. (Raja, Rhinobatus).

amm " " " " medialis (Raja, Rhinobatus).

amm₁ " " " " I. (Torpedo).

amm₂ " " " " II. (Torpedo).

Br₁—Br₅ Erste bis fünfte Branchialöffnung (Kiemenöffnung).

cm M. coraco-mandibularis.

csd M. constrictor superficialis dorsalis.

csd₁—csd₇ M. constr. spf. dorsalis I.—VII.

csd₁₂ M. constr. spf. dors. I. α (M. levator palpebrae nictitantis, Nickhautmuskeln bei Mustelus).

csd₁β " " " " I. β (M. retractor palpebrae superioris bei Mustelus).

csd₁γ " " " " I. γ (Mustelus).

csv M. constrictor superficialis ventralis.

csv₂—csv₇ M. constr. spf. ventralis II.—VII.

csv₃—csv₅ Besondere Fascikel des M. constr. spf. ventr. III.—V (Torpedo).

csv₅—csv₇ Tiefe Schichte des M. constr. spf. ventr. III.—V (Raja, Rhinobatus, Torpedo).

dhm M. depressor hyomandibularis.

dm " " mandibularis.

dr " " rostri.

F.II Foramen nervi optici.

F.III " " oculomotorii.

F.IV " " trochlearis.

F.V " " trigemini.

F.VII " " facialis.

F.IX " " glosopharyngei.

F.X " " vagi.
Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen. 121

lm M. levator hyomandibularis.

ls M. levator labii superioris.

lsl M. levator labii superioris lateralis (Torpedo).

Usm " " " " medialis (Torpedo).

ls₃—ls₅ " " " " I.—V. (Raja, Rhinobatus).

lm M. levator maxillae superioris.

lmi Ventraler Kopf des M. levator max. sup. (Raja).

lms Dorsaler Kopf des M. levator max. sup. (Raja).

Mld Dorsaler Seitenrumpfmuskel.

N Nasenöffnung.

Ncsd₁ Nerv für den M. constr. superf. dors. I. (Mustelus).

Nlm " " " " levator maxillae sup. (Mustelus).

Noi " " " " obliquus inferior.

N.oph.pr N. ophthalmicus profundus.

N.oph.sp " " superficialis.

N.ri Nerv für den M. rectus inferior.

N.rm " " " " medialis (internus).

N.rs " " " " superior.

Oc Oculus, Auge.

oi M. obliquus inferior.

os " " superior.

Os Os, Mundöffnung.

Pdo Pedunculus oculi, knorpeliger Augenstiel.

P.if Palpebra inferior, unteres Augenlid.

P.ni " nictitans, Nickhaut.

P.sp " superior, oberes Augenlid.

ri M. rectus inferior.

rl " " lateralis (externus).

rm " " medialis (internus).

rs " " superior.

Sp Spiraculare, Spritzloch.

II Nervus opticus.

III N. oculomotorius.

IV N. trochlearis.

V N. trigeminus.

V₁ R. ophthalmicus n. trigemini.

V₂ R. maxillaris (supramaxillaris) n. trigemini.

V₃ R. mandibularis (inframandibularis) n. trigemini.

VI N. abducens.

VII N. facialis.

IX N. glossopharyngeus.

X N. vagus.

X₁ R. branchialis I. (1. Kiemenast) n. vagi.

X₂ R. branchialis II. (2. Kiemenast) n. vagi.
Tafel V.

Fig. 1. Linke Schädelhälfte von Mis[telus laevis, von der Seite und ein wenig von unten gesehen, mit den Ursprungsstellen der Augenmuskeln und den Verzweigungen der Augenmuskelnerven, sowie der in der Orbita verlaufenden Teile des N. trigeminus.

Fig. 2. Schädel von Torpedo ocellata, linke Seite, Lateralansicht, unter Benutzung der von Gegenbaur gegebenen Abbildung, mit eingezeichneten Ursprüngen der Augenmuskeln und eines Teiles der Trigeminus-Verzweigungen.

Fig. 3. Schädel von Raja batis, linke Seitenansicht, ebenfalls unter Benutzung der von Gegenbaur gegebenen Abbildung, mit eingezeichneten Ursprüngen der Augenmuskeln und orbitalen Trigeminusästen.

Fig. 4. Schädel von Rhynchobatus laevis, linke Lateralansicht, unter Benutzung der Gegenbaur'schen Abbildung, mit den Ursprüngen der Augenmuskeln und einem Teil des Trigeminus.

Fig. 5. Seitenansicht der linken Orbita von Mustelus laevis nach Entfernung des Bulbus. Am unteren Rande ist die Haut abpräpariert.

Fig. 6. Rechtes Auge von Torpedo ocellata mit seinen Muskeln und Nerven, von oben gesehen, nach Wegnahme der dorsal en deckenden Teile. Unterhalb des Auges sind das Spritzloch, linkerseits die Schädeldumriss angedeutet.

Fig. 7. Linkes Auge von Rhinobatus annulatus mit Muskeln, von oben gesehen. Ein Teil des dorsalen Orbitaldaches ist weggenommen; unterhalb findet sich das ansehnliche Spritzloch.

Tafel VI.

Fig. 8. Linke Lateralansicht des Kopfes von Mustelus laevis zur Demonstration der hinter dem Auge gelegenen Muskeln. Im postorbitalen Bereiche ist die Haut entfernt.

Fig. 9. Linke Kopfhälfte von Mustelus laevis, Ventralansicht, zur Demonstration der Mm. levator labii superioris und adductor mandibulae.

Fig. 10. Linke Kopfhälfte von Torpedo ocellata, Ventralansicht. Der Ursprungsteil des M. depressor rostri ist entfernt.

Fig. 11. Linke Kiefer- und Kiemenkinn von Raja clavata, Ventralansicht. Die Kiefermuskulatur, insbesondere der M. adductor mandibulae lateralis, ist etwas nach der Seite gezogen, der M. depressor rostri ist durchsichtig gezeichnet.

Fig. 12. Linke Kiefer- und Kiemenkinn von Rhinobatus annulatus, Ventralansicht. Vom M. depressor rostri ist nur der Ursprungsteil gelassen, alles andere weggenommen; ebenso ist ein Teil des knorpeligen Skeletes über dem M. adductor mandibulae abgetragen.
Augen-, Kiefer- und Kiemenmuskeln der Haie und Rochen. 123

Tafel VII.

Fig. 14. Rechte Kiefer- und Kiemengegend von Torpedo ocellata, Dorsalansicht. Das Auge ist etwas medialwärts gezogen, um die darunter gelegenen Teile des M. levator labii superioris sichtbar zu machen. Der M. levator rostri ist entfernt.

Fig. 15. Rechte Kiefer- und Kiemengegend von Rhinobatus annulatus, Dorsalansicht. Nach Wegnahme des Auges, eines Teiles des Kranium und der Sehne des M. levator rostri.

Fig. 16. Linke Lateralsicht der Kiemengegend von Raja clavata nach Abtragung der dieselbe deckenden seitlichen Muskeln und Skeletteile der Brustflosse.
Litteratur-Verzeichnis.

14) — Die elektrischen Fische nach neuen Untersuchungen anatomisch-zoologisch dargestellt. II. Die Torpedinen. Leipzig 1890.

Ueber die mit dem Visceralskelet verbundenen spinalen Muskeln bei Selachier.

Von

Max Fürbringer.

1) oberflächliche Ringmuskulatur (mit Constrictor superficialis dorsalis et ventralis, Levator labii superioris, Levator maxillae superioris, Interbranchiales, Trapezius),
2) obere Zwischenbogenmuskeln (Interarcuales I, II und III),
3) mittlere Beuger der Bogen (Adductores arcuum viscerallium und Adductor mandibulae) und
4) ventrale Längsmuskeln (Coraco-arcuales mit Coraco-bran-chiales, Coraco-hyoideus und Coraco-mandibularis)

unterschieden, von denen die 3 ersteren durch Kopfnerven (Trigeminus, Facialis, Glossopharyngeus und Vagus), die letzte durch die beiden ersten Spinalnerven versorgt werden.

Man kann somit die drei ersten Systeme als kraniale oder cerebrale Muskeln des Visceralskeletes dem vierten Systeme, dem der spinalen Visceralskeletmuskeln, gegenüberstellen.

Auch thut Vetter, im Anschlusses an die Mm. interarcuales, des M. subspinalis Erwähnung (a. a. O. S. 444), ohne aber hier etwas über seine Innervation aussagen zu können, giebt aber im
2. Teile seiner Untersuchungen (Jenaische Zeitschr., XII, 1878, S. 431) an, daß der gleiche Muskel bei Chimaera (M. protractor arcuum branchialium) vom Ramus branchialis III. nervi vagi versorgt werde. Danach würde also auch der Subspinalis zu den cerebralen Muskeln des Visceralskeletes gehören.

Vetter's Untersuchungen bilden den wirklichen Ausgang für die genauere Kenntnis dieses Gebietes und dürfen in den meisten ihrer Resultate als gesicherte gelten; es soll ihr Wert darum nicht angerührt werden, wenn ich hier einige — teils durch Anderer, teils durch eigene Untersuchungen gewonnene — Befunde anführe, welche das Vetter'sche Schema etwas modifizieren.

Im folgenden sollen nur die Verhältnisse der ventralen Längsmuskeln, des M. subspinalis und der Mm. interarcuales behandelt werden.

1. Ventralkere Längsmuskulatur (Mm. coraco-arcuables).

Außer den spino-occipitalen und spinalen Nerven sind aber von einigen Autoren auch noch echte Vaguszweige als Motoren eines Teiles der ventralen Längsmuskulatur angegeben worden. Stannius (a. a. O., S. 89) erwähnt eine Verteilung der Rami branchiales nervi vagi an die kleineren Muskeln der Kiemenbogen- copulae, worin wohl auch die Mm. coraco-branchiales einbegriffen sein mögen. Die weitgreifendste Beteiligung des N. vagus an der Versorgung der ventralen Längsmuskulatur wird aber von van

84, XXX, S. F. XXIII.
Max Fürbringer,

Die Mm. coraco-branchiales, coraco-hyoideus und coraco-mandibularis bilden somit, in Bekräftigung von Vetter's richtigen Angaben, eine einheitliche spinale Muskelgruppe.

2. M. subspinalis.

Wie oben erwähnt, hat Vetter angegeben, daß der Subspinalis bei Chimaera und darum wohl auch bei Haien (bei denen ihm der direkte Nachweis nicht gelang) vom N. vagus versorgt werde. Außer ihm handelt nur noch Dohrn über den
Max Fürbringer,

Muskeln 1), und zwar teilt er mit, daß derselbe etwa wie die Mm. coraco-hyoides und coraco-mandibularis vielleicht nach vorn gewandert sei (Studie IV, 1884, a. a. O., S. 17), daß er aus den vordersten, sehr rudimentären Urvirbeln (van Wijhe’s 6. bis 9. Kopfsegmente) seinen Ursprung nehme (Studie X, 1885, S. 446), und daß oralwärts vor ihm keine Urvirbelmuskulatur am Kopfe gefunden werde (ibidem, S. 465), ferner, daß er die vordersten Hypoglossus-Myotome repräsentiere, daß aber nicht festzustellen sein werde, ob er nicht auch seinerseits Material der hintersten Vagus-Myotome in sich schließe (Studie XV, 1890, S. 355).

Der Subspinalis ist danach ein spinales hypaxonischer Muskel, der, wie die Notidaniden wahrscheinlich machen, erst sekundär mit dem Kiemen skelet in Verbindung getreten ist.

3. Mm. interarcuales.

Vetter unterscheidet bekanntlich an jedem Kiemenbogen dreierlei Mm. interarcuales (a. a. O., XII, 1874, S. 441 ff.): 1) Mm. interarcuales I, welche longitudinal verlaufend, die Basalia der benachbarten aufeinander folgenden Kiemenbogen verbinden.

2) Mm. interarcuales II, welche in transversaler Richtung von den Basalia nach den oberen Mittelstücken derselben Bogen gehen, und

Die Interarcuales II + III gehören sonach zur cerebralen, die Interarcuales I gleich dem Subspinalis und den ventralen Coraco-arcuales zur spinalen Visceralmuskulatur. Ähnlich wie bei den Coraco-arcuales zeigt auch die Zahl der einzelnen Interarcuales I und der sie versorgenden Nervenwurzeln eine unverkennbare Inkongruenz; in der Regel sind mehr Interarcuales als Nerven-
Max Fürbringer,

wurzeln vorhanden. Für die gegenseitige Unabhängigkeit beider Gruppen spricht auch der erwähnte Umstand, daß die Interarcuales II und III bei allen untersuchten Haien und Rochen vorkommen, die Interarcuales I dagegen bald gut ausgebildet, bald partiell verkümmerd, bald total reduziert sind. Andererseits aber zeigen sich gewisse metamere Beziehungen zwischen Interarcuales I und Subspinalis.

Auf Grund dieser Befunde ist die VETTER'sche Gruppe der Interarcuales aufzulösen, und es erscheint zweckmäßig, unter völliger Beseitigung des Terminus Interarcuales, die spinalen Interarcuales I als Interbasales, die cerebralen Interarcuales II + III (von denen die Interarcuales II überdies gar keine Interarcuales sind) als Arcuales dorsales zu benennen.

Es stellen sich somit den echten primordialen cerebralen Visceralmuskeln der Selachier als neue spinale resp. ursprünglich spinale Komponenten derselben die ventralen Längsmuskeln, der M. subspinalis und die Mm. interbasales gegenüber. Nach ihrer Lage können die ventralen Längsmuskeln auch hypobranchiale 1) spinale Visceralmuskeln, die dorsalen Mm. subspinalis und interbasales als epibranchiale 1) spinale Visceralmuskeln benannt werden.

An Stelle des VETTER'schen Systemes der Muskulatur des Visceral skeletes tritt sonach (unter gleichzeitiger Benutzung von TIESING's Befunden an Rochen, a. a. O., 1895, S. 75 ff.) das folgende:

A. Kraniâle oder cerebrale Muskeln, ursprüngliche Quer- oder Ringmuskeln, Innervation durch die cerebralen Nn. trigeminus (V), facialis (VII), glossopharyngeus (IX) und vagus (X).

1) Constrictor arcuum visceralium inkl. Constrictor superficialis dorsalis et ventralis (V—X), Levator labii superioris (V) 2), Levator maxillae superioris (V) 2), Le-

1) Beide Bezeichnungen verdanke ich GEGENBAUR, der, als ich ihm vor mehreren Jahren von den hier angeführten Untersuchungen Mitteilung machte, die Termini epibranchial und hypobranchial für die dorsalen und ventralen spinalen Elemente der Muskulatur des Visceralskeletes gebraucht.

vator palpebrae nictitantis (V), Levator rostri (VII), Le-
vator hyomandibularis (VII), Depressor rostri (VII), De-
pressor mandibularis und hyomandibularis (VII), Inter-
branchiales (IX, X) und Trapezius (X).
2) Arcuales dorsales (IX, X).
3) Adductores inkl. Adductor mandibulae (V) und Addu-
ctores arcuum branchialium (IX, X).

B. Spinale Muskeln, ursprüngliche Längsmuskeln, Innerva-
tion durch Nn. spino-occipitales und spinales.
 a) Epibranchiale spinale Muskeln, im dorsalen
 Bereich des Visceralskeletes.
 4) Subspinalis (Nn. spino-occipitales).
 5) Interbasales (Nn. spino-occipitales und mitunter
 N. spinalis I).
 b) Hypobranchiale spinale Muskeln, im ventralen
 Bereich des Visceralskeletes.
 6) Coraco-arcuales inkl. Coraco-branchiales, Coraco-
 hyoideus und Coraco-mandibulares (Nn. spinales und
 z. T. letzter oder letzte Nn. spino-occipitales).

Die ausführliche Darstellung der sub B angeführten spinalen
Muskeln des Visceralskeletes und ihrer Nerven, sowie die ver-
gleichende Anatomie derselben soll an anderer Stelle gegeben werden.
Neue Polycladen,
gesammelt von Herrn Kapitän Chierchia bei der Erdumseffnung
der Korvette Vettor Pisani, von Herrn Prof. Dr. Kükenthal im
nördlichen Eismeer und von Herrn Prof. Dr. Semon in Java.

Von

Dr. phil. Marianne Plehn,
Assistentin am zoologischen Laboratorium beider Hochschulen, Zürich.

Mit Tafel VIII — XIII.

Das schöne Material, das dieser Arbeit zu Grunde liegt, stammt großenteils von der Erdumseffnung der italienischen Korvette Vettor Pisani unter Herrn Kapitän G. Chierchia in den Jahren 1882 — 1885; es sind auch zwei nordische Polycladen aus der Gegend von Spitzbergen untersucht worden, die Herr Prof. Dr. Kükenthal von seiner im Jahre 1889 unternommenen Reise mitgebracht hatte, und endlich drei javanische Polycladen, die von Herrn Prof. Dr. R. Semon gesammelt und konserviert wurden.

Herr Professor Lang, dem die genannten Forscher ihre Polycladenausbeute übersandten, hatte die große Güte, mir das wertvolle Material zur Bearbeitung zu übergeben. Hierfür, sowie für seine Unterstützung bei meiner Arbeit spreche ich meinem hochverehrten Lehrer meinen wärmsten Dank aus.

Von vielen Species hat mir zur Untersuchung nur ein Exemplar vorgelegen, und dieser Umstand möge mir zur Entschuldigung dienen, wenn meine Beschreibung nicht immer so eingehend, wie es wünschenswert wäre, ausgefallen ist. Zu einer vollständigen Beschreibung gehört nicht nur die gründliche äußere Untersuchung einer Anzahl von Individuen, sondern auch Schnittserien in zwei, womöglich in drei Richtungen. Die äußere Untersuchung

10
Marianne Plehn,
giebt sichere Resultate nur, wenn es gelungen war, das Tier ganz flach ausgestreckt zu konservieren, was natürlich nur selten der Fall ist. Es kommt ja so häufig vor, daß das Tier sich bei der Konservierung stark kontrahiert und sich in große Falten legt, die die äußeren Öffnungen verdecken oder die Form unkenntlich machen. Verfügt man nur über ein Exemplar, so kann in diesem Falle von äußerer Untersuchung nicht viel die Rede sein, denn das Auseinanderlegen der Falten kann nicht geschehen, ohne daß innere Zerreißungen stattfinden, gewöhnlich brechen die überaus zarten Tiere sogar ganz dabei entzwei. Häufig habe ich mich also fast ganz auf die Untersuchung von Schnittserien beschränken müssen. In erster Linie wurden dann immer Serien von Längsschnitten hergestellt, die das übersichtlichste Bild der Anatomie geben. Wenn ein Tier stark gefaltet und nicht sehr gut konserviert war, war es nicht immer möglich, aus den Schnitten die Anatomie sicher zu rekonstruieren.

In jedem Falle wird man die Beschreibung des lebenden Tieres vermissen. Gerade die Polycladen sind ja größtenteils so charakteristisch gefärbte, in ihrer Gestalt so wechselnde Tiere, und bei der Konservierung geht die Farbe zum Teil verloren und wird zum anderen Teil gewöhnlich ganz verändert; auch die ursprüngliche Gestalt wird oft völlig unkenntlich.

Das lebende Tier nach einer Beschreibung des konservierten sicher zu erkennen, wird meistens ganz unmöglich sein, und um eine der hier beschriebenen Species zu identifizieren, wird man sich immer zur Herstellung von Schnittserien entschließen müssen.

— Meine Arbeit leidet also an dem entgegengesetzten Fehler wie so viele andere Polycladenarbeiten, deren Verfasser sich ausschließlich auf die Beschreibung der äußeren Merkmale des lebenden Tieres beschränkt haben und dadurch ein unentwirrbares Chaos von Namen und Diagnosen geliefert haben, die kaum je ihren rechtmäßigen Eigentümer wiederfinden können.

Die hier behandelten Polycladen waren äußerlich im großen und ganzen ziemlich gut erhalten; bei manchen war auch der Zustand der Gewebe zum Teil befriedigend; die meisten aber genügten nur noch zur Konstatierung der größeren anatomischen Verhältnisse, und manche waren so stark beschädigt, daß auch die nicht mehr möglich war. Mit einer Ausnahme (allgemeine Resultate, 9) wird nur von solchen Formen die Rede sein, die man, wie ich glaube, nach meiner Beschreibung mit Sicherheit wird wiedererkennen können, wenn man die Schnittmethode anwendet;
die anderen lasse ich beiseite, um den lästigen Ballast schlecht beschriebener Polycladen nicht noch schwerer zu machen.

Daß eine Durchmusterung einer Anzahl von Polycladen aus den verschiedensten Weltgegenden interessante Resultate ergeben müßte, zu mindesten was die Verbreitung dieser Tiere anbetrifft, war von vornherein sicher; daß neue Formen dabei zum Vorschein kommen würden, war sehr wahrscheinlich; sind doch mit Ausnahme des Mittelmeeres nur sehr wenige Gegenden auch nur einigermassen gründlich durchgesucht. Doch war es erstaunlich, daß von den 18 hier behandelten Species nur 6 bekannt, zwei Drittel also neu sind. Das läßt darauf schließen, welche Mannigfaltigkeit von unbekannten Formen der Ocean noch bergen mag, und eine wie verhältnismäßig geringe Zahl bisher gründlich untersucht worden ist. Da ist es nun nicht zu verwundern, daß sich einige der neuen Formen in das System in seiner jetzigen Fassung nicht einreihen lassen. Lang hat schon in seiner großen Monographie sehr nachdrücklich hervorgehoben, daß das System nur einen provisorischen Charakter haben könne und mit dem Bekanntwerden neuer Arten modifiziert und erweitert werden müsse.

Die Erweiterungen, die ich vorzuschlagen habe, beziehen sich freilich nur auf einige Familien- und Gattungsdiagnosen — wo der Familie eine neue Gattung eingereiht werden soll — und eine Gattungsdiagnose, wo einige neue Species dazukommen. Ferner muß für eine Form, die in wesentlichen Punkten von jeder der bisherigen Familien abweicht, eine neue Familie aufgestellt werden, diejenige der Diplopharyngetidae.

Allgemeine Resultate.

1) Es giebt eine Polyclade, die gar keine Augen besitzt: Acelis arctica.

2) Mit Ausnahme von Stylochus neapolitanus, bei welcher Art die Ovarien aus ihrer ursprünglich dorsalen Lage während des Reifens ventralwärts wandern, liegen bei allen bisher beschriebenen Polycladen die Hoden in einer ventralen, die Ovarien in einer dorsalen Schicht, und diese Schichten sind durch die Darmäste gewöhnlich ziemlich scharf voneinander geschieden. Bei nicht weniger als fünf der hier behandelten Species ist das anders. Bei vier (Alloioplana delicata, Semonia maculata, Latocestus atlanticus, Diplopharyngeata filiformis) finden sich in einer dorsalen Schicht männliche und weibliche Keimdrüsen regellos durcheinander, während die ventrale Hälfte gar keine enthält; bei einer fünften (Plagiotata promiscua) treffen wir Keimdrüsen sowohl dorsal als ventral an, aber beide Schichten enthalten sowohl Ovarien als auch Hoden.

3) Außer Anonymus und Planocera inquilina (Wheeler) zeichnen sich noch andere Polycladen durch das Fehlen einer Körnerdrüse aus. Es sind das: Leptoplana pacificola, Semonia maculata, Diplopharyngeata filiformis. Bei allen dreien läßt sich aber nachweisen, daß Abschnitte der Samenleiter drüsig modifiziert sind, also jedenfalls die Körnerdrüse zu ersetzen haben.

4) Bei einer Art, Latocestus atlanticus, finden sich in der wohlentwickelten accessorischen Blase des weiblichen Geschlechtsapparates zahlreiche Eier in Spermamassen eingeschlossen. Die Blase ist also hier jedenfalls der Ort, wo die Befruchtung stattfindet. Als Receptaculum seminis dient sie in den meisten, wo nicht in allen Fällen. Ich habe fast immer, wo sie vorhanden war, Sperma darin gefunden, wenn es sich um ein geschlechtsreifes Tier handelte.

5) Die Kernteilungsfiguren in den Uteruseiern, die bisher bei Thysanozoon bekannt waren und neuerdings durch Wheeler bei Planocera inquilina beobachtet wurden, haben sich auch bei drei anderen Familien (Leptoplaniden, Euryleptiden, Diplopharyngeatiden) nachweisen lassen. Man wird annehmen dürfen, daß sie ganz allgemein vorkommen. Daß sie auf meinen Präparaten so deutlich sichtbar sind, während man sie bisher nur ausnahmsweise konstatierte, wird daran liegen, daß ich als Farbstoff meist Hämalaun anwandte, das für diesen Zweck geeigneter zu sein scheint als viele

6) Bei der neuen Pseudoceridengattung Thysanoplana unterscheidet sich die Art der Verzweigung des Hauptdarmes von der allen übrigen Polycladen gemeinsamen. Es entspringen nämlich auf einem Querschnitt des Hauptdarmes nicht nur jederseits ein Darmast, sondern deren mehrere — häufig 3 oder 4 — übereinander. In den zarten Seitenfeldern lagern sich die Darmäste wieder in eine horizontale Schicht.

8) Bei Diphopharyngeata filiformis finden sich zwei Pharynges von sehr verschiedenem Bau, sowohl was die Gestalt der Pharyngealtsachen, als die Struktur der Pharyngealfalte selbst betrifft. Sie liegen hintereinander, kommunizieren miteinander und besitzen eine gemeinsame Mundöffnung.

9) Bei einem nicht genau bestimmmbaren Exemplar, das aber nach dem Besitz von Nackententakeln und dem Bau der Geschlechtsorgane in die Nähe der Planoceriden zu gehören scheint, öffnen sich die Darmäste mit großen Poren nach außen. Die Poren (Taf. IX, Fig. 1) liegen in einer Reihe rings um den ganzen Körperrand und sind mit bloßem Auge zu erkennen. Ihre Anordnung erinnert also an die von Cycloporus, von denen sie sich aber im Bau bedeutend unterscheiden. Es kommt nicht zur Bildung einer besonders differenzierten, muskulös en Endblase wie bei Cycloporus. Die letzte Aufreibung des perlschnurartigen Darmastes ist mit genau dem gleichen Epithel aus langen, fadenartig dünnen Zellen ausgekleidet wie die vorhergehenden, der Kern sitzt, gerade wie bei diesen, an der Basis der Zellen; von Muskulatur ist nichts zu bemerken, mit Ausnahme eines schwachen, undeutlichen Sphinctermuskels, der die letzte Blase von der vorletzten trennt, der aber zwischen allen übrigen Blasen ebenso entwickelt ist wie hier. Am
Körperrand verschwinden Basalmembran und Körperepithel, sowie auch die Muskelschicht; die Kommunikation der Darmäste mit der Außenwelt scheint eine dauernde zu sein, nicht wie bei Cycloporus nur eine vorübergehende, durch Muskelkontraktion hervorgerufene.

Speciesbeschreibung.

Fam. Planoceridae.

Alloicplana delicata n. g. n. sp.

Taf. IX, Fig. 3, 4, 5, und Taf. XIII, Fig. 1.

Es ist nur ein Exemplar vorhanden; ein sehr zartes, ganz flach ausgestrecktes Tier; im Dezember 1883 von Chierchia an der peruanischen Küste bei Payta unter Steinen gefunden. Die Länge beträgt 6,5 mm, die Breite 2,5 mm. Die Farbe ist gleichmäßig weißlich. Das Tier besitzt Nackententakel, die zu beiden Seiten des Gehirns, am Anfang des zweiten Körpersechstels sitzen. Sie sind, obwohl ganz eingezogen, schon bei Lupenbetrachtung als kleine, dunkle Flecke sichtbar. Ihre dunkle Färbung rührt daher, daß sie je ca. 25 Augen enthalten, die, wenn die Tentakel wie hier eingezogen sind, ganz dicht nebeneinander liegen (Fig. 5, Taf. IX). Auch die Gruppen der Gehirnhofaugen lassen sich bei äußerer Betrachtung erkennen; sie sind langgestreckt, liegen über dem seitlichen Rand des Gehirns, ragen aber nach vorn und nach hinten weit über dasselbe hinaus. Man sieht ferner noch den dunkel hervortretenden, prall gefüllten Uterus, der den Pharynx umfaßt. Im hinteren Ende des Körpers schwillt er besonders mächtig an; seine beiden Äste liegen einander hier so nahe, daß man nur eine anscheinend zusammenhängende, dunkle Masse erkennt; dieselbe geht, den Ausführungsgängen der Uteri entsprechend, nach hinten zu in zwei engere Kanäle aus. Zwischen denselben tritt, ebenfalls dunkel gefärbt, die Schalendrüse hervor. Die Lage der Öffnungen erkennt man erst an Schnittpräparaten (Fig. 3, Taf. IX).

Der Mund liegt etwas vor der Mitte des Körpers, aber dieser sehr nahe. Seine Ränder sind so stark nach innen eingestülpt, daß ein deutliches Mundrohr zustande kommt (Fig. 4, Taf. IX). Dasselbe wird von einem lange Wimpern tragenden Epithel aus-
Neue Polyeladen.

143

Die Geschlechtsöffnungen liegen dicht hintereinander, ganz nahe dem hintersten Körperende.

Der weibliche Apparat (Fig. 1, Taf. XIII) ist, wie die Figuren zeigen, außerordentlich einfach gebaut. Eine besondere Bursa copulatrix ist nicht entwickelt, eine accessorische Blase fehlt; dagegen sind die Schalendrüsenzellen auffallend oft verbreitet.

Der männliche Apparat besitzt eine muskulöse Samenblase, die sich nach hinten in eine lange, schlängelförmi ge Körner- drüse fortsetzt. Aus dieser tritt der Ductus ejaculatorius in den mit einem langen, spitzen Stilett bewaffneten Penis.

Alloioplana ist ein Planocerid mit zartem Körper von elliptischem Umriß, mit kontraktilem, ganz von Augen erfüllten Nackentakeln; Augen außerdem nur im doppelten Gehirnhof. Weiblicher Apparat ohne accessorische Blase. Männlicher mit
Marianne Plehn,

Plagiotata promiscua n. g. n. sp.
Taf. IX, Fig. 6, 7, 9, und Taf. XIII, Fig. 2.

Ein Exemplar, im November 1884 an der Küste bei Hongkong von Chierchia gefunden.

Die äußere Untersuchung ist ziemlich ergebnislos; doch erkennt man, etwa 4 mm vom einen Ende, zwei kleine, kreisförmige Einfaltungen (Taf. IX, Fig. 7): die eingezogenen Nackententakel; sie sind nicht ganz 1 mm voneinander entfernt. Bei der mikroskopischen Untersuchung zeigt sich, daß die Tentakel an ihrer Basis Augen tragen und daß sie außerdem ganz von großen, wohlentwickelten Augen erfüllt sind. Es finden sich ferner viel kleinere Augen über das ganze vordere Viertel des Körpers, aber nicht am Rande, zerstreut; sie sind nicht zu Gehirnhofgruppen zusammengedrängt. Das Gehirn ist recht groß; es liegt etwa 1 mm hinter den Tentakeln, ein darüber hinwegziehender medianer Darmast läßt sich nicht mit Sicherheit konstatieren.

Sehr merkwürdig ist der Pharyngealapparat. Er ist in der Querachse des Tieres viel stärker entwickelt als in der Längsrichtung, kommt an beiden Seiten dem Körperrande bis auf 3 mm nahe, erreicht also eine Breite von fast 10 mm, während er in der Mittellinie wenig über 2 mm lang ist, in seinen längeren Seiten-
teilen nur 5 mm mißt. Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion. Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zur Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.

Zum Teil ist das vielleicht eine Folge der starken Kontraktion, doch, scheint mir, kann die nur zum kleineren Teil die Ursache sein. Auffallend ist ferner die Bildung des äußeren M undes, der sich zu einem langen Rohr, das man als Ösophagus bezeichnen kann, entwickelt. Das Rohr entspringt aus dem vorderen Teil der Tasche, es ist zweimal gebogen — vielleicht auch eine Folge der Kontraktion.
Rückenseite sehr zahlreiche Hoden, auf der Bauchseite nicht ganz so oft, aber doch auch nicht gerade selten, Ovarien an.

Das Tier ist in die Familie der Planoceriden zu stellen. In der Lage der Nackententakel und der Geschlechtsöffnungen zeigt es Verwandtschaft zum Genus Planocera, unterscheidet sich aber durch so wichtige Merkmale, daß man es nicht in dies Genus wird einreihen können. Die Augenstellung, der merkwürdige Bau des Pharyngealapparates und die Verteilung der Keimdrüsen nötigen zur Aufstellung eines neuen Genus, das ich Plagiotata zu nennen vorschlage. Es wäre folgendermaßen zu charakterisieren:

Fam. Leptoplanidae.

Acelis arctica n. g. n. sp.

Taf. IX, Fig. 2—8, und Taf. XIII, Fig. 4, 5.

Es waren davon drei, äußerlich sowohl histologisch recht wohl erhaltene Exemplare vorhanden; sie waren von annähernd gleicher Größe und auffallend kompakt. Die Länge beträgt im Durchschnitt 6 cm, die Breite 4 cm, die Dicke im Mittelfelde 3 mm; die Seitenränder sind dorsal emporgebogen, das vordere und das hintere Ende nach der Bauchseite gekrümmt; der Rand ist nicht gefaltet. Die Farbe ist ein gelbliches Weiß, ohne farbige Zeichnung; auf dem Rücken schimmern die Ovarien schwach schwärzlich durch. Bei der äußeren Untersuchung läßt sich außer den drei Öffnungen, die in einer medianen Furche liegen, nichts erkennen.

Der Mund liegt gerade in der Mitte; er stellt sich als ein kleiner Querschlitz von 1 mm Länge dar; 7—8 mm dahinter liegt
die männliche Geschlechtsöffnung, von einem kleinen Wulst umgeben; wieder 7—8 mm hinter der männlichen befindet sich die weibliche Öffnung. Bei einem der Exemplare wird sie von drei haarscharfen, aber flachen, konzentrischen Furchen von linsenförmer Gestalt umgeben, die untereinander einen Abstand von \(\frac{1}{2}\) mm haben. Die beiden anderen Tiere zeigen auch solche Furchen, sie sind aber weniger scharf und regelmäßig. Die weibliche Geschlechtsöffnung liegt 15 mm vom hinteren Körperende, also auf der Grenze des dritten und des letzten Körperviertels.

Das Gehirn — es liegt 7 mm vom vorderen Ende, also am Ende des ersten Körperachtels — ist ein typisches, zweiteiliges Leptoplanidengehirn. Die Kernanhäufungen an den Austrittsstellen der Sinnesnerven sind trotz des Fehlens der Augen außerordentlich stark entwickelt.

Die Pharyngealtasche, deren Länge etwa ein Fünftel der Körperlänge beträgt, besitzt keine Seitentaschen; der krassenförmige Pharynx ist sehr stark gefaltet; der Darmmund liegt genau über der äußeren Mundöffnung. Der Hauptdarm ragt hinten und vorn ein wenig über die Pharyngealtasche hinaus. Die Zahl der Darmastwurzeln ist nicht ganz konstant, ihre Anordnung auf beiden Seiten nicht ganz symmetrisch. Bei einem der untersuchten Exemplare fanden sich auf der einen Seite 6, auf der anderen 8 Darmastwurzeln.

Die Ovarien sind auf die dorsale Körperrhälft über der Schicht der Darmäste beschränkt; dort stehen sie dicht gedrängt, nur das Mittelfeld freilassend. Nach vorn finden sie sich, im Gegensatz zu den Hoden, noch weit über das Gehirn hinaus. Das Keimlager liegt durchweg am dorsalen Ende des Ovariums; dementsprechend setzt der Eileiter am ventralen Ende an. Die vorliegenden Exemplare befinden sich in voller Geschlechtsstätigkeit, die Eileiter sind daher — wenigstens an den meisten Stellen — ungemün deutlich zu erkennen. Sie bilden auf der dorsalen Hälfte ein Netz von anastomosierenden Kanälen und vereinigen sich jederseits zu drei oder vier Sammelgängen, die in die vorderen Enden der Uteri münden. Genau ließ sich die Zahl der Sammelgänge nicht fest-
Marianne Plehn,

stellen; sie sind, ebenso wie der Uterus, mit Eiern prall gefüllt; das erschwert das Schneiden, es entstehen oft Risse im Körperparenchym, in die dann Eier aus dem Uterus treten, und solche Risse sind von stark gedehnten Eileitern nicht immer sicher zu unterscheiden.

Der weibliche Begattungsapparat (Fig. 4, Taf. XIII) nimmt einen ganz auffallend großen Raum ein. Schalendrüse, Eiergang und accessorische Blase haben zusammen eine Länge von 12 mm; das ist ein Fünftel der gesamten Körperlänge.

Im Gegensatz zum weiblichen Apparat beansprucht der männliche (Fig. 4, 5, Taf. XIII) nur sehr wenig Raum. Die Hoden liegen übereinander geschichtet unter den Darmstäben. Die Samen-gänge bestehen aus einem weiten, sehr stark gewundenen Kanal, der der Pharyngealtasche ziemlich dicht anliegt, sich nach vorn etwas über die Mundgegend hinausstreckt, nach hinten in den Begattungsapparat übergeht, und einem engeren, längeren, weniger stark gewundenen, der vorn in den weiten Kanal übergeht, sich etwas weiter seitlich wie dieser, aber noch teilweise unter demselben liegend, bedeutend weiter nach hinten zieht. Die weiten Kanäle schwellen, nachdem sie sich im Vas deferens stark verjüngt hatten, jeder für sich zu einer kleinen Samenblase mit sehr starker, muskulöser Wandung an. Die Ausführungsgänge der beiden Samenblasen münden mit der gesonderten, dorsalen Körnerdrüse zusammen in den kleinen, unbewaffneten, nach hinten gerichteten Penis. Die ziemlich kleine Körnerdrüse hat die Form eines mit dem spitzen Ende nach hinten und unten gerichteten Eies; zahlreiche, zarte Drüsenlamellen ragen in ihr Lumen hinein und füllen es fast ganz aus.

Das Genus ist, wie folgt, zu charakterisieren:

Leptoplana Kükenthalii n. sp.
Taf. X, Fig. 1, 2, 6, und Taf. XIII, Fig. 6.

Die zweite Art stammt aus der gleichen Gegend, östlich von Spitzbergen; der Fundort liegt etwas südwestlich von dem der vorigen Art; sie ist im August gesammelt. Es liegen fünf Exemplare vor, die, mit Ausnahme eines noch nicht geschlechtsreifen Tieres, alle mehr oder weniger beschädigt und stark zusammengekrümmt sind. Auch die Erhaltung der Gewebe ist recht mangelhaft.

Die Tiere sind zart; die Länge beträgt durchschnittlich 28 mm, die Breite 16 mm; die Form ist elliptisch; Tentakel und Saugnapf fehlen. Von Pigmentierung ist nichts wahrzunehmen; die schwärzlichen Punkte, die auf der Rückenseite durchscheinend, sind die Ovarien. Im übrigen hat das Tier eine gleichmäßige, schmutzig-weißliche Färbung.

Die Augen (Fig. 6, Taf. X) sind schon mit unbewaffnetem Auge deutlich zu erkennen. Die Tentakelhöfe erscheinen als zwei runde, dunkle Punkte, sie liegen am Ende des ersten Körperviertels, 2 mm voneinander entfernt; zwischen ihnen befindet sich das Gehirn. Von seinem vorderen Rande aus erstrecken sich die blasser erscheinenden, länglichen Gruppen der Gehirnhöfen nach vorn. Jede der vier Gruppen enthält ungefähr dreißig Augen; die der Tentakelhöfe sind größer als die Gehirnhöfen, auch stehen sie etwas dichter beisammen. Das Totalpräparat läßt auch
Marianne Plehn,

die Pharyngealtasche mit ihren sechs Paar Seitentaschen sehen. Sie liegt dem Vorderende etwas näher als dem Hinterende, ebenso der Mund, der sich in ihrer Mitte befindet; ihre Länge beträgt ca. ein Viertel der ganzen Körperlänge.

Die Geschlechtsöffnungen liegen etwa 2 mm voneinander; die männliche etwas vor, die weibliche etwas hinter dem Ende des zweiten Körperrdrittels.

Beim männlichen Apparat (Fig. 6, Taf. XIII) zeigt sich eine sehr weitgehende Übereinstimmung mit Leptoplana vitrea. Der muskulöse, mit einem langen, hornigen Stilett bewaffnete Penis, die Lage der Körnerdrüse, die zwischen Penis und Samenblase eingeschaltet ist, die Samenblase selbst mit ihrer eigentümlichen Knickung in der Ruhelage und endlich die Größenverhältnisse dieser Organe untereinander, alles verhält sich genau wie bei L. vitrea. Der Bau der Körnerdrüse weicht freilich ab. Bei L. vitrea, wie auch bei L. Alcinoi und der eben beschriebenen Plagiotata promiscua haben wir einen centralen Samenkanal und fünf bis sechs ihm parallele Drüsenkanäle, die alle im distalen Ende der Blase sich vereinigen; hier haben wir auch einen Centralkanal und Drüsenkanäle, die ihn umgeben. Diese sind ihm aber nicht parallel gerichtet, sondern sie laufen ungefähr in den Radien der Körnerdrüse und münden an verschiedenen Stellen in den Centralkanal, der seinerseits die ganze Drüse durchzieht und direkt in den Ductus ejaculatorius übergeht. Auch ist die Zahl der Drüsenkanäle eine viel beträchtlichere; auf einem Längsschnitt nahe der Mittellinie trifft man bis zu dreißig solcher Kanäle; es mögen ihrer also im ganzen sechzig bis achtzig sein.

Der weibliche Apparat zeigt auch nicht unerhebliche Verschiedenheiten. Während bei L. vitrea die accessorische Blase klein ist — sie erreicht nur gerade die Gegend der Geschlechtsöffnung — ist sie bei dieser Form sehr stark entwickelt. Außer der accessorischen Blase liefert auch der Uterus selbst ein Sekret, das den ungewöhnlich großen Eiern beigemengt wird, und zwar ist er zu diesem Zweck auf eine ganz besondere Art modifiziert (Fig. 1, Taf. X). Er bildet, wie bei den meisten Leptoplaniden, einen den Pharynx umfassenden Ring; dieser Ring ist der Länge nach horizontal in zwei Teile geteilt, er besteht gewissermaßen aus zwei übereinander liegenden Röhren, einer weiten, die die Eier enthält (eiu), und einer engen, mit Drüsenepithel ausgekleideten (dru). Beide Röhren kommunizieren an zahlreichen Stellen, und durch die Verbindungsgänge tritt das Sekret des Drüsenrohres in den Eibehälter. Nur das
enge Drüsenrohr umfaßt den Pharynx vollständig; die Eibeinhälter erreichen beiderseits nur sein vorderes Ende, ohne sich zu ver- einigen. Nach hinten zu verengern sich die beiden Uterusäste und münden zusammen in den Eiergang. Ein Haftapparat zwischen der männlichen und der weiblichen Öffnung, wie er bei L. vitrea vorkommt, fehlt hier.

Leptoplana panamensis n. sp.

Taf. X, Fig. 3, 4, 5, 10, 11, und Taf. XIII, Fig. 11.

Von dieser Species liegen mehrere flach ausgestreckte und recht gut erhaltene Exemplare vor. Sie stammen von der Chierichaschen Expedition, von zwei verschiedenen Fundorten im Golf von Panama, unter Steinen resp. auf dem Sande an der Küste; Februar 1884. Der Körper scheint ziemlich resistent gewesen zu sein; die Dicke ist beträchtlich; wo die Körperwand durch die gefüllten Uteri hervorgewölbt wird, beträgt sie bis zu 1,5 mm. Bei einem Exemplar von mittleren Dimensionen ist die Länge 18 mm, die Breite 6 mm, wir haben also eine recht langgestreckte Form vor uns. Mehr oder weniger deutlich sieht man eine dunklere, braun-liche Zeichnung auf der schmutzig-graunlichen Rückenseite (Fig. 10, Taf. X). Sie besteht aus zwei nicht scharf begrenzten Streifen, die das Mittelfeld einfassen, über den Uteri verlaufend. Da die gefüllten Uteri auch dunkel erscheinen, tritt die Zeichnung bei noch nicht völlig geschlechtsreifen Tieren, wie Fig. 18 eines darstellt, besser hervor. Vorn und hinten, je 1—2 mm von den Körperenden, treffen beide Streifen, eine Spitze bildend, zusammen; sie umgrenzen also einen regelmäßig linsenförmigen Raum. Seitlich von diesen Streifen, parallel zu ihnen und zum Körperrande und in gleicher Entfernung von beiden, sieht man bei einigen Exemplaren noch einen zweiten, viel blässerem Streifen, der aber schon in größerer Entfernung von den Enden sich allmählich verläuft. Außerdem erkennt man schon bei Lupenbetrachtung die vier Augengruppen und das Gehirn (Fig. 3, Taf. X). Letzteres liegt am Ende des ersten Körpersechstels; es ist deutlich zweiteilig. Hinten und seitlich davon liegen die Tentakelaugen. Die Gehirn-
Marianne Plehn,
hofaugen ziehen über den Seitenrand des Gehirns und darüber hinaus nach vorn. Die Länge des Pharynx beträgt ein Viertel der Körperlänge; sein hinteres Ende erreicht gerade die Mitte des Körpers; der äußere Mund liegt am Ende des zweiten Drittels des Pharynx, der Darmmond etwas davor. Etwa zwölf Paar Seitenaschen sind vorhanden. — Hinter dem Pharynx sieht man in zwei helleren Höfen den männlichen und den weiblichen Genitalapparat. Letzterer wird von der weit ausgebreiteten Schalendrüse umfaßt. — Der Uterus umschließt den Pharynx; er ist bei den reifen Tieren ganz mit Eiern angefüllt, in welchen man mehr oder weniger deutliche Kernteilungsfiguren erkennen kann. Die Enden des Uterus vereinigen sich und treten gleich darauf in den Eiergang ein. Die Schalendrüse ist außerordentlich stark entwickelt; die Bursa copulatrix ist ein ziemlich langes, enges, stark muskulöses Rohr. Nach hinten setzt sich der Eiergang in eine ganz ungewöhnlich geräumige, accessorische Blase fort, die mit einem hohen Epithel ausgekleidet ist. Sie ist durch eine wechselnde Anzahl (10—15) nicht sehr tiefer Einschnürungen (Fig. 11, Taf. XIII) in hintereinander liegende Abteilungen geteilt. Die Einschnürungen beruhen auf der Anwesenheit von feinen Sphinktermuskeln, ähnlich wie bei den perlschnurartigen Darmilstern. Die Blase enthält reichlich Sperma. Obwohl die Tiere zur Fortpflanzungszeit konserviert wurden, sind die ganz gefüllten Samenkanales weder besonders lang, noch besonders weit; nach vorn erstrecken sie sich etwa bis zur Mitte des Pharynx; hintere Äste, die über den Eintritt in die Samenblase hinausgingen, fehlen völlig. Die Kanäle vereinigen sich etwas hinter dem Pharynx und öffnen sich in die kleine, muskulöse Samenblase. Aus dieser führt ein mit einer sehr dünnen Muskellage versehener Gang das Sperma in die Körnerdrüsensblase, die, wie man sich schon am Totalpräparat überzeugen kann, hier ganz auffallende Dimensionen besitzt. Die Länge beträgt volle 2 mm, der Querschnitt ist kreisrund, die Gestalt die eines sehr lang gezogenen Rotationsellipsoides (Fig. 4, Taf. X). Sie besitzt ein hohes Epithel, das, wohl infolge des nicht ganz vollkommenen Erhaltungszustandes, von Zellgrenzen durchaus nichts erkennen läßt. Die Kerne sind alle an der Basis gelegen; die ganze Epithelschicht hat ein feinkörniges Aussehen und ist stark lichtbrechend. Die feine Membran, der das Epithel aufsitzt, wird von einer mächtigen Ringmuskelschicht umgeben; dieser liegt außen eine viel dünnere Schicht von Längsmuskeln an. Beide Muskel-
schichten werden durchsetzt von den Ausführungsgängen sehr zahlreicher extrakapsulärer Drüsen, die ringsum bis weit ins Parenchym hinein verstreut liegen. Auch über den Bau dieser Drüsen kann ich nichts Näheres angeben, nur, daß sie mit dem Epithel der Drüse selbst genau übereinstimmen, was die körnige Beschaffenheit des Protoplasmas und dessen starkes Lichtbrechungsvermögen anbetrifft. Bei ihrem Durchtritt durch die Muskulatur drängen die Ausführungsgänge dieser Drüsen die einzelnen Muskelfasern ausseineinander, und so entstehen die kleinen, linsenförmigen Figuren, die in Fig. 5, Taf. X dargestellt sind. Ein Tangentialschnitt durch die dünne Längsmuskulatur zeigt die Längssachen der Linsen parallel zur Längsachse der Körnerdrüse gelegen, während sie in einem tiefer geführten Tangentialschnitt, der die äußeren Lagen der Ringmuskulatur trifft, natürlich anders gerichtet sind, nämlich senkrecht zur Achse der Körnerdrüse. Diese setzt sich in einen gewundenen Gang fort, der sich zunächst nach oben wendet, dann umbiegt und in den reichlich mit Muskulatur versehenen Penis eintritt. Der selbe enthält ein sehr langes, starkes, horniges Stilet.

Leptoplana pacificola n. sp.
Taf. X, Fig. 7, 8, 9, und Taf. XIII, Fig. 9.

Ein Exemplar, im Januar 1883 bei Valparaiso am Kiel des Schiffes haftend gefunden, und ein anderes von der peruanischen Küste, Dezember 1883, beide von CHIERCHIA's Expedition, gehören der gleichen Species an, zeigen aber doch geringe Abweichungen im Bau, so daß man sie als lokale Varietäten — chilensis und peruensis — wird auffassen müssen. Die chilenische Varietät (Fig. 9, Taf. X) wird durch ein äußerst zartes Tier von 15 mm Länge und 6 mm Breite vertreten, die peruanische (Fig. 8, Taf. X) durch ein viel resistereres, größeres; Länge 22 mm, Breite 9 mm.
Beide besitzen keinerlei farbige Zeichnung. Nur die erstere ist schön ausgestreckt und läßt die Lage der Augen und der Öffnungen bei Lupenbetrachtung erkennen. Die Tentakelauge befinden sich seitlich vom hinteren Rand des Gehirns, am Ende des ersten Körperechstels; es gibt etwa zwanzig Augen in jeder der beiden Gruppen. Die Gehirnhofaugen liegen in kleinen, länglichen Gruppen zu beiden Seiten des Gehirns und darüber hinaus ragend. Der Mund liegt ganz wenig vor der Mitte des Körpers, in der Mitte des Pharyngealraumes. Die weibliche Öffnung liegt an der Grenze des zweiten und des dritten Körperdrittels, die männliche in geringer Entfernung davor. Die Pharyngeal- tasche hat eine Länge von $3^{1/2}$ mm, d. i. ein Viertel der Körperlänge; sie besitzt zehn Paar Seitentaschen; der Pharynx ist fein gefaltet; der Darmmund liegt gerade in der Mitte der Tasche, über dem äußeren Munde; der Hauptdarm ragt weder nach vorn, noch nach hinten über die Tasche hinaus; vorn entsendet er den gewöhnlichen, medianen Darmast, der über dem Gehirn stark verengt ist, um sich nachher wieder zu erweitern. Bei var. peruanensis ist die Augenstellung die gleiche, das Gehirn liegt aber etwas weiter vorn. Die Seitentaschen des Pharynx sind viel flacher; der Darmmund liegt vor der Mitte des Pharynx und vor dem äußeren Munde — übrigens alles Unterschiede, die durch einen anderen Kontraktionszustand genügend erklärt werden würden.

Im Bau der Geschlechtsorgane (Fig. 9, Taf. XIII) weicht das Tier insofern von den anderen Leptoplaniden ab, als es keine Körnerdrüse besitzt. (Wie Anonymus, Planocera inquilina (Wheeler) und die nachher zu besprechenden Semonia maculata und Diplopharyngeata filiformis.) Die Spermamassen, welche in den Samengängen liegen, sind aber streckenweise mit einer körnigen, nicht färbbaren Masse umhüllt, so daß — wie von vornherein wahrscheinlich — anzunehmen ist, daß Teile der Samenkanäle drüsig entwickelt sind und die Funktion der Körnerdrüse übernommen haben. Nur bei der peruanischen Varietät ließ sich erkennen, wo das der Fall ist; nämlich im letzten Abschnitt der Kanäle, nahe an ihrem Eintritt in die Samenblase. Die Kanäle beider Seiten vereinigen sich in der kleinen, aber stark muskulösen Samenblase, aus welcher der Ductus ejaculatorius in den ziemlich großen, unbewaffneten Penis tritt; dieser ist mit einer kräftigen, inneren Längsmuskelschicht und einer äußeren Ringmuskelschicht versehen; übrigens finden sich einzelne Ringmuskeln auch zwischen der Längsmuskulatur. Nach Abgabe der Vasa deferentia erstrecken
sich bei var. chilensis die Samenkanäle noch weiter nach hinten und schließen hinter der weiblichen Geschlechtsöffnung, zwischen dieser und der accessorischen Blase, zusammen (Fig. 9, Taf. X, s). Der anderen Varietät fehlt eine solche Kommissur.

Der weibliche Apparat verhält sich ganz typisch; es findet sich eine recht große, accessorische Blase, die, ebenso wie die Ausleitungswege, viel Sperma enthält. Der ganz mit Eiern gefüllte Uterus umfasst bei var. chilensis als geschlossener Ring den Pharynx; bei var. pernensis erreichen seine beiden Enden nur den vorderen Teil des Pharynx, ohne ineinander überzugehen. Bei dieser Varietät liegen die Geschlechtsöffnungen einander noch beträchtlich näher als bei der chilenischen.

Die Uteruscie zeigen bei beiden Tieren in großer Anzahl sehr deutliche Kernteilungsfiguren, und zwar befinden sich nicht alle — wie man das sonst gewöhnlich findet — auf dem gleichen Stadium. Bei einigen sieht man das Keimblaschen noch scharf konturiert, aber ungleich größer und heller gefärbt, als in den reifsten Ovarialeiern, bei anderen kann man schon eine Schleifenbildung konstatieren; bei wieder anderen erkennt man die Centrosomen, die einander noch ganz nahe liegen, und als letztes deutliches Stadium endlich erscheint eines, bei welchem die Centrosomen der Peripherie zu weit auseinander gerückt sind, und auch die Chromosomen ihnen zu folgen beginnen. Auf diesem Stadium sieht man oft ein ganz intensiv gefärbtes Centalkorn im Centromer soma, das zuweilen von einem hellen Hof umgeben erscheint. Leider ist die Konservierung dieser Elemente nicht so gut, daß ein näheres Eingehen auf diese feinsten Verhältnisse Resultate ergeben könnte.

Das Fehlen einer Körnerdrüse scheint mir die Aufstellung einer neuen Species zu rechtfertigen, auch wenn die Übereinstimmung in den übrigen Teilen eine noch vollständigere wäre, als das hier der Fall ist.

Leptoplena Chierchiae n. sp.

Taf. XI, Fig. 1, 2, 3, 4, und Taf. XIII, Fig. 8.

Die zahlreichen, äußerlich recht wohl erhaltenen Exemplare stammen von der Chierchiaschen Expedition; sie sind teils bei Ancon, teils bei Callao im März 1883 gefunden worden. Der Zustand der Gewebe ist nur bei einzelnen befriedigend. Die Länge des Tieres beträgt durchschnittlich 10—12 mm; die Breite 5—6 mm,
die Dicke nur etwa \(\frac{1}{2} \) mm. Die Gestalt ist elliptisch, Tentakel und Saugnapf fehlen. Pigmentierung ist nicht vorhanden, doch erscheinen einige Tiere durch den Inhalt der Darmäste dunkel-bräunlich oder grünlich gefärbt.

Am aufgehellten Totalpräparat erkennt man bereits die Hauptzüge der Organisation.

Das deutlich zweiteilige Gehirn liegt an der Grenze des ersten Körperschestsels. Je dreißig bis vierzig Gehirnhäufungen (Fig. 2, Taf. XI) liegen seitlich davon, größtenteils etwas vor dem Gehirn, aber auch sich hinter dasselbe erstreckend. Die größeren, enger zusammengedrängten Tentakelaugen liegen zu beiden Seiten dieser Gruppen. Die Pharyngetalasche hat etwas über ein Drittel der Körperlänge, sie besitzt elf bis dreizehn Paar Seiten taschen; sie liegt, wie also auch der in ihrer Mitte befindliche Mund, fast central, doch dem Vorderende etwas näher. Der Pharynx wird von den vorn zusammenschließenden Uterusästen umfasset; nach hinten zu verschwinden diese in der großen, dunkel erscheinenden Schalendrüse. Die weibliche Öffnung liegt zwischen dem dritten und vierten Körperviertel; hinter ihr erkennt man hell durchschimmernd die große, accessorische Blase. Die männliche Öffnung liegt am Ende des zweiten Drittels; davor liegt die Körnerdrüse deren Fächerung bei manchen Exemplaren schon am Übersichts präparat sichtbar ist.

Die mikroskopische Untersuchung von Schnittserien zeigt, daß das Tier in keiner Hinsicht wesentlich von bekannten Leptoplana Species abweicht, doch wird es auch mit keiner zu identifizieren sein.

Der Pharyngealapparat bietet nichts Bemerkenswertes; der Pharynx ist krausenförmig und fein gefaltet. Der Hauptdarm erreicht nicht ganz das hintere Ende der Tasche, erstreckt sich nach vorn ein wenig über dieselbe hinaus, über jeder Seiten tasche liegt eine Darmastwurzel. An das hintere Ende der Pharyngetalasche grenzt unmittelbar die muskulöse Samenblase. In der Ruhe lage ist sie aufwärts gerichtet, kommt mit ihrem einen Ende häufig noch unter die Körnerdrüse zu liegen, in die sie sich fortsetzt. In dies Ende münden die Vasa deferentia, ohne sich vorher zu vereinigen. Die großen Samenkanale erreichen vorn die Gegend des Mundes, setzen sich nach Abgabe der Vasa deferentia noch weiter nach hinten fort, ohne doch ineinander überzugehen; sie enden blind in der Nähe der weiblichen Geschlechtsöffnung. Die Körner drüse ist genau so gebaut wie bei Leptoplana Alcinoi, vitrea und
bei Plagiotata promiscua; sie ist fünffächerig (Fig. 4, Taf. XI). Der nach hinten gerichtete Penis ist klein und unbewaffnet.

Die weibliche Öffnung liegt ziemlich weit hinter der männlichen. Die Bursa copulatrix ist von einer mäßig starken Muskelschicht umgeben; der Schalendrüsengang, in den sehr zahlreiche Drüsen münden, biegt nach hinten in den Eiergang um. In diesen tritt das kurze, gemeinsame Endstück der Uteri; nach hinten setzt er sich in eine große, accessorische Blase (Fig. 3, Taf. XI) fort, die in der Mitte eine leichte Einschnürung zeigt und von einem schönen, hohen Cylinderepithel ausgekleidet ist; sie enthält Sperma.

Bei einem Tier kann man in den Uteruseiern freilich nicht sehr deutliche Kernteilungsfiguren erkennen.

Von den hier beschriebenen Leptoplana-Arten ist das Tier, wie man sieht, recht verschieden. Von allen früher bekannten unterscheidet es sich durch die große, accessorische Blase; von einigen derselben außerdem durch den unbewaffneten Penis, von den übrigen durch den Bau der Körnerdrüse. Es wird also als neue Species zu betrachten sein.

Semonia maculata u. g. n. sp.
Taf. XI, Fig. 5, 12, und Taf. XIII, Fig. 3.

Unter dem Semon'schen Material aus Java befanden sich zwei Polycladen, die in der sehr charakteristischen Art der Zeichnung gut übereinstimmten. Von sonstiger Übereinstimmung ließ sich nur ein, allerdings wichtiger Punkt feststellen, nämlich daß bei beiden die Hoden dorsal liegen. Ich halte sie trotz des bedeutenden Größenunterschiedes — die Länge des einen beträgt etwa 8 cm, die des anderen Tieres etwa 3 cm — für der gleichen Species angehörig. Das eine sehr große, zarte und ganz zusammengekrümmte Tier war so stark beschädigt, daß man von der Anatomie nichts erkennen konnte. Es wurde nur auf die Lage der Keimdrüsen untersucht, war zu diesem Zweck aber wertvoll, da das besser erhaltene Tier trotz seiner schon ziemlich beträchtlichen Dimensionen — es hatte eine Breite von 18 mm, eine Länge von 30 mm — noch keine Anlage von Ovarien zeigte. Dies kleinere Exemplar war, wie erwähnt, in etwas besserem Zustande, aber auch zum Teil zerfetzt und so stark in Falten gelegt, daß man mit Sicherheit nur über einige Punkte der Anatomie ins klare
kommen konnte. Doch, scheint mir, müßte man es nach diesen Merkmalen wiederkennen können.

Tentakel und Saugnapf fehlen. Die Farbe der Bauchseite ist hellgelblich, die Rückenseite ist zierlich und regelmäßig gezeichnet. Auf bräunlich-grauem Grund sieht man gelbliche Flecken von verschiedener Größe, von elliptischer bis kreisförmiger Gestalt; bei dem großen Tier sind sie größer als bei dem kleineren, ihr Durchmesser schwankt von 1—3 mm; jeder Fleck besitzt einen feinen, scharfen, rotbraunen Kontur. Im ganzen ist die Färbung am Rande heller als im Mittelfelde, doch ist der Unterschied unbedeutend.

Der Pharyngealapparat nimmt etwa die Hälfte der Körperlänge ein und besitzt eine entsprechend bedeutende Breite. Der Mund liegt am Ende des zweiten Körperrdrittels, weit hinter der Mitte der Pharyngealtasche; der Pharynx ist überaus fein gefaltet. — Das große Gehirn befindet sich an der Grenze des ersten Fünftels. Darüber liegen ca. fünfzig zu einer Gruppe vereinigte Gehirnhofaugen. Das ganze Vorderende vor dem Gehirn trägt zerstreute Augen, die am Rande etwas, aber nicht viel dichter stehen als dahinter.

Wie gesagt, läßt das Tier trotz seiner Größe von Ovarien noch keine Spur erkennen, was um so mehr auffallen muß, als der weibliche Begattungsapparat (Fig. 3, Taf. XIII) ziemlich vollständig ausgebildet ist; gewöhnlich entwickelt er sich ja erst, wenn die Ovarialeier ihrer Reife nahe sind. Fehlen thut am ganzen Apparat nur die Schalendrüse; doch läßt sich eine Erweiterung im Antrum femininum, in der ihrer Form und Lage der Schalendrüse mehrerer Polycladen (Cestoplana, Eurylepta, Prothiostomum) entspricht, als Schalendrüsenanlage deuten. Die mit flimmerndem Epithel versehenen Uteri münden in den geräumigen Eiergang, der ebenfalls ganz mit Wimpern ausgekleidet ist. Eine accessorische Blase fehlt.

Die Geschlechtsöffnungen sind vereinigt; sie finden sich ungefähr 6 mm vom hinteren Körperende, also auf der Grenze des vierten und des letzten Körperfünftels.

Die männliche Öffnung führt in ein außerordentlich weites Antrum masculinum, in welchem der sehr voluminöse, aber ganz unbewaffnete, nach hinten gerichtete Penis liegt. Die Samenblase ist ziemlich groß; ihre Längsachse bildet in der Ruhelage mit der Richtung des Penis annähernd einen rechten Winkel. In das Ende der Samenblase münden die engen Vasa deferentia. Eine
Neue Polycladen.

Körnerdrüse fehlt; ihre Funktion haben offenbar Partien der Samenkanäle übernommen. Dieselben zeigen nämlich in der Gegend des Mundes und davor sechs bis acht hintereinander liegende, große, blasige Anschwellungen, die von Drüsenepithel ausgekleidet sind und die kaum einen anderen Zweck haben können, als die Absonderung eines dem Sperma beizumischenden Sekrets (Fig. 12, Taf. XI, dsb).

Das Tier läßt sich in die Familie der Leptoplaniden einreihen, wird aber in keiner der bekannten Gattungen unterzubringen sein.

Für die neu zu gründende Gattung schlage ich den Namen Semonia vor und nenne die Species Semonia maculata.

Fam. Cestoplanidae.

Latrocestus atlanticus n. g. n. sp.

Taf. XI, Fig. 6, 7, 8, 9, 10, und Taf. XIII, Fig. 7.

Die 3 Exemplare, über die ich verfügte, sind von Chierchia bei den Cap Verdischen Inseln am 12. Juni 1882 gefunden. Sie waren stark verkrümmt und zusammengerollt, innerlich auch vielfach zerrissen, so daß man nur einzelne Teile brauchen konnte. Es ist eine sehr langgestreckte Form; ihre Länge beträgt 3—4 cm, die Breite nur ein Fünftel davon, der Rand ist nur wenig gefaltet, die Farbe ist weißlich; farbige Zeichnung ist nicht vorhanden.

Die äußere Untersuchung ist ziemlich ergebnislos; nur bei einem Tier sieht man 4 mm vom Hinterende, also am Anfang des letzten Körperzehntels, den nach hinten gerichteten Penis vorragen.

Das Gehirn liegt sehr weit vorn, noch im ersten Fünfzehntel des Körpers; es ist groß und deutlich zweiteilig (Fig. 6, Taf. XI). Zwei Gruppen von zahlreichen, kleinen, unansehnlichen Augen erstrecken sich von den vorderen Enden des Gehirns bis zum Körperende, ohne den Seitenrändern sehr nahe zu kommen. In ihrem hinteren Teil sind die Gruppen nicht deutlich voneinander gesondert.
Die Pharyngealtasche (Fig. 9, Taf. XI) reicht von der Mitte des Körpers nach hinten und endet dicht vor dem männlichen Geschlechtsapparat; ihre Länge beträgt also ungefähr ein Drittel der ganzen Körperlänge. Der Pharynx ist sehr stark gefaltet; histologisch leider recht mangelhaft erhalten. Der äußere Mund liegt dem Hinterende der Pharyngealtasche sehr nahe; der Darmmund am Vorderende derselben. Der Hauptidearm erstreckt sich nach hinten nicht über die Tasche hinaus; in der vorderen Hälfte ist er viel geräumiger als über der Tasche; dort springt das Darmepithel in Längsfalten ins Lumen vor, so daß dieses im Querschnitt sternartig erscheint (Fig. 7, Taf. XI). Das Epithel trägt durchweg ein Flimmerkleid.

Auch bei diesem Tier finden wir die schon öfters konstatierte Abweichung in der Anordnung der Keimdrüsen. Ovarien und Hoden liegen dorsal, durcheinander in einer Schicht.

Die Vasa deferentia schwellen jedes für sich zu einer muskulösen Samenblase (Fig. 7, Taf. XIII) an, deren Ausführungsgänge sich vereinigen und unter den gesonderten, dorsalen Körnerdrüsenblase in den unbewaffneten, nach hinten gerichteten Penis eintreten (Fig. 8, Taf. XI). Die eiformige Körnerdrüse ist mit ihrem spitzen, offenen Ende nach hinten gerichtet. Von den Seiten und vom stumpfen Ende her ragt das Drüsenepithel in großen Zotten in die Blase. Dieselbe ist von einer mächtigen Muskelschicht umgeben, welche von den Ausführungsgängen extra-kapsulärer Drüsen durchbrochen wird, die in radialer Richtung durchtreten.

Etwa 1 mm hinter der männlichen liegt die weibliche Geschlechtsöffnung; sie führt durch das ziemlich enge Antrum in einen stark muskulösen Schalendrüsegang, an dessen Anfang das vereinigte Endstück der Uteri eintritt. Der Eiergang setzt sich in eine äußerst geräumige, accessorische Blase fort, die fast bis zum Hinterende des Körpers reicht und die eine Anzahl ziemlich unregelmäßig gestalteter Anschwellungen bildet. Diese Blase enthält Spermamassen und Eier in großer Anzahl (Fig. 10, Taf. XI); die Eier liegen ganz in das Sperma eingebettet; es kann also wohl kein Zweifel sein, daß in diesem Falle die accessorische Blase nicht nur als Samenbehälter dient, sondern daß in ihr auch die Befruchtung vollzogen wird. Es ist nicht unwahrscheinlich, daß das auch sonst zuweilen ihr Zweck ist.

Im August 1882 wurde unter Steinen bei Rio de Janeiro ebenfalls von Chierchia eine Polyclade gefunden, die trotz kleiner
Abweichungen offenbar derselben Art angehört (Fig. 9, Taf. XI). Das Tier ist verhältnismäßig breiter — Länge 20 mm, Breite 7 mm — der Darmmund befindet sich nicht am Vorderende der Pharyngealtasche, sondern wenig vor deren Mitte, am äußeren Munde kommt es zur Bildung eines kurzen Ösophagus. Diese geringfügigen Unterschiede, die sich zum Teil durch die Annahme eines anderen Kontraktionszustandes erklären lassen, würden höchstens die Aufstellung einer besonderen Varietät rechtfertigen. — Das Tier enthält, obwohl vollständig geschlechtsreif, keine reifen Eier; es ist also wohl bald nach der Eiablage, die im Juni stattzufinden scheint, fixiert worden.

In den größeren anatomischen Verhältnissen — in der Lage der Öffnungen — erinnert das Tier trotz seiner weniger lang gestreckten Gestalt an Cestoplana, weicht andererseits von den übrigen Familien so entschieden ab, daß man es mit Cestoplana in eine Familie wird stellen müssen. In derselben Gattung läßt es sich nicht unterbringen; die Augenstellung ist nicht die gleiche (Cestoplana besitzt mehr Augen, die viel weiter verbreitert sind), und die Geschlechtsapparate sind anders gebaut. Hier haben wir eine Penisscheide, eine gesonderte, dorsale Körnerdrüse, zwei Samenblasen und einen nach hinten gerichteten Penis, am weiblichen Apparat eine große, accessorische Blase — alles wichtige Unterscheidungsmerkmale von Cestoplana.

So lange man der Familie der Cestoplaniden nur die eine Gattung Cestoplana zuzählte, mußte man die Familiendiagnose aus den Gattungsmerkmalen ableiten; stellt man eine neue Gattung dazu, so wird man die Diagnose natürlich erweitern müssen, da sie in ihrer bisherigen Form nur auf das Genus Cestoplana paßt. Sie würde, um auch das Genus Latocestus zu umfassen, folgendermaßen lauten müssen:

Die Gattung Latocestus würde wie folgt zu charakterisieren sein:

Cestoplaniden mit mäßig langgestrecktem Körper. Keine Augen am Körperrande. Männlicher
Apparat mit zwei Samenblasen, dorsaler Körnerdrüse, unbewaffnetem, nach hinten gerichtetem Penis. Weiblicher Apparat mit accessorischer Blase.

Fam. Pseudoceridae.

Thysanoplana indica n. g. n. sp.

Taf. VIII, Fig. 3, 4, Taf. XI, Fig. 11, Taf. XII, Fig. 1, und Taf. XIII, Fig. 9.

Zwei der von Semon aus Java eingesandten Polycladen gehören der gleichen Art an. Eines der Tiere ist so schlecht erhalten, daß es nur zur Bestätigung einiger, durch die Untersuchung des zweiten gewonnene Resultate verwendet werden konnte. Der Körper dieses letzteren ist von breit-ovalem Umriß, vorn ganz unbedeutend breiter als hinten (Fig. 3, 4, Taf. VIII); die Länge beträgt 22 mm, die Breite 12 mm. Auf der Bauchseite ist das Tier gelblichgrau, auf der Rückenseite ist die Farbe ein belles, etwas ins Braunliche spielendes Grau, das gegen den Rand zu etwas dunkler wird. Der ganze Rücken ist, ähnlich wie bei Thysanozoon, mit Zotten besetzt; dieselben sind grau, an der Spitze etwas dunkler als an der Basis. Vorn liegen dicht nebeneinander zwei spitzoohrartige Randtentakel; sie sind dunkelgrau gefärbt, wie die Zottenspitzen. Ein deutlich markierter Rückenwulst erstreckt sich bis zum Ende des Körpers. Auf der Bauchseite läßt sich ohne weitere Präparation das Gehirn erkennen; es liegt ganz vorn, im ersten Fünfzehntel des Körpers; auch die fünf Paar seitlicher Hauptnerven sind deutlich sichtbar. Dicht hinter dem Gehirn beginnt die Pharyngealtasche, deren Länge ein Viertel der Körperlänge beträgt; aus dem Munde, in ihrer Mitte, quillt der in äußerst feine und zahlreiche Falten gelegte Pharynx. Die Tasche zeigt acht Paar Seiten- taschen, die in der hinteren Hälfte viel tiefer sind als in der vorderen. — Hinter dem Pharynx sieht man den halb vorgestülpften, mit seiner Spitze etwas zur Seite gewendeten Penis aus seiner Scheide vorragen; die männliche Öffnung liegt also etwas hinter dem Anfang des zweiten Drittels. Die weibliche Öffnung ist so eng, daß sie bei Lupenbetrachtung nicht sichtbar ist; sie liegt, wie die Schnitte zeigen, 1,5 mm hinter der männlichen. Ebenso weit hinter ihr liegt ein Saugnapf, ziemlich genau in der Mitte des Körpers. Auf der Bauchseite erkennt man ferner beiderseits in der Gegend der Geschlechtsöffnungen etwa 15 weiße, vortretende
Knötchen, die, wie die mikroskopische Untersuchung lehrt, Anschwellungen der Samenleiter sind. Dem Rückenwulst entsprechend ist auch auf dieser Seite das Mittelfeld durch den stark entwickelten Hauptdarm etwas vorgewölbt.

Das Vorhandensein von Seiten taschen am Pharyngealraum bildet einen der zahlreichen Unterschiede von Thysanozoon, welchem Genus unser Tier im äußeren Habitus recht ähnlich ist; auch ist der Pharynx viel stärker gefaltet und die einzelnen Falten sind viel feiner. Der äußere Mund (Fig. 1, Taf. XII) liegt, wie bereits erwähnt, ungefähr in der Mitte der Pharyngetasche, doch ihrem Vorderende etwas näher; der Darmmund nicht weit vom Hinterende der Tasche. Der Hauptdarm ist in dem über dem Pharynx gelegenen Teil eng, wird nach hinten zu aber außerordentlich geräumig. Er erreicht fast das hintere Körperrunde. Sehr merkwürdig ist die Art, wie die Darmäste aus dem Hauptdarm entspringen (Fig. 11, Taf. XI). Während sie bei den anderen Polycladen paarweise aus dem Hauptdarm abgehen und ziemlich genau in einer Horizontalebene liegen, so daß man auf einem Querschnitt jederseits nur eine Darmastwurzel antreffen kann, sendet hier der Hauptdarm seine Äste — außer in der Mediane — nach allen Richtungen, nach oben, nach den Seiten und hier und da auch nach unten, so daß man auf einem Querschnitt mehrere Darmastwurzeln auf jeder Seite antrifft. Er ist in seinen weiteren Teilen gleichsam siebartig durchbrochen, und jedes Loch des Siebes entspricht einer Darmastwurzel. Im vorderen Teil des Körpers, über dem Pharynx und den Geschlechtsorganen, ist der Raum zu beschränkt für eine solche Entfaltung des Darmsystems; dort findet sich nur die eine für alle Polycladen charakteristische Darmastreihe. Auch in den zarten Seitenfeldern der hinteren Körperrhälftte liegen die Darmäste wieder in einer Horizontalachse. Die Äste anastomosieren netzartig und entsenden einen Zweig in jede Zotte.
Mit der starken Entwicklung des Hauptdarms hängt es vielleicht zusammen, daß bei diesem Tier auch unverdaute Nahrung bis an sein Ende gelangen kann, während man die sonst nur im Pharynx findet, dessen Drüsen also eine Hauptarbeit bei der Verdauung zu verrichten haben müssen. Während man sonst nur Nahrungsbrei, dessen Ursprung sich nicht mehr bestimmen läßt, im Darme trifft (1, p. 161), ist derselbe hier ganz angefüllt mit Massen von Schwammspicula, die sich größtenteils als Esperia- Arten angehörig deutlich erkennen lassen.

Der männliche Apparat ist, im Gegensatz zu Thysanozoon, unpaar. Der nach vorn gerichtete, mit einem kurzen, spitzen Stilett bewaffnete Penis ist bei dem besser erhaltenen meiner Exemplare halb vorgestülpt; nach diesem sind auch die Figuren gezeichnet. Man sieht, daß die Körnerdrüsenblase auch mit vorgestreckt wird. Sie liegt gesondert, dorsal; ist nicht sehr groß, wird von einem hohen Drüsenepithel ausgekleidet und besitzt eine Muskelgeschicht, die von den Ausführungsgängen extrakapsulärer Drüsen durchbrochen wird. Ihr Ausführungsgang ist sehr kurz; er verläuft ein Stück weit dicht neben dem Ductus ejaculatorius, doch vereinigen sich beide erst kurz vor der Öffnung. Der Ductus ejaculatorius ist ein langes, mehrfach gewundenes Rohr; es entspringt aus dem vorderen Ende der mächtigen, muskulösen Samenblase. Diese ist von birnförmiger Gestalt, ihr spitzeres Ende ist nach vorn und unten gerichtet. In das hintere, stumpfere Ende mündet das enge Vas deferens, in welchem sich die beiden großen Samenkanäle vereinigt haben. Sie sind bei diesem Tier ganz ungewöhnlich stark entwickelt und nehmen den ganzen Raum zwischen dorsaler und ventraler Hautmuskulatur ein. Sie bestehen aus einer
Anzahl dicht aufeinander folgender blasiger Anschwellungen, die einander, wenn sie, wie hier, prall gefüllt sind, nach den Seiten drängen, so daß sie vielfach nebeneinander zu liegen kommen. Überall, wo sie sich berühren, kommunizieren sie. Die einzelnen Blasen treiben die Leibeswander der Bauchseite auf und bilden so die weißen Knötchen, die man schon bei makroskopischer Betrachtung des Tieres durchsichern sah (Fig. 3, Taf. VIII). Wie bei verwandten Formen, so finden sich auch hier im Epithel außerordentlich zahlreiche Stäbchen, die die gewöhnliche spindelförmige Gestalt haben.

Es kann kein Zweifel sein, daß wir eine Pseudoceride vor uns haben. Der ganze Habitus und fast alle wesentlichen Merkmale stimmen genau zur Familiendiagnose. Eine Abweichung finden wir in dem krausenformigen Pharynx, der so fein gefaltelt ist wie bei irgend einer anderen Polyclade, in der Pharyngealtasche, die — freilich nicht sehr tiefe — Seitentaschen besitzt, und in der Anordnung der Gehirnhofaugen, die hier zu einer Gruppe zusammentreten. Auch habe ich Uterusdrüsen, wie erwähnt, nicht gefunden, möchte darum aber nicht sicher behaupten, daß keine vorhanden seien; die mangelhafte Erhaltung könnte schuld daran sein, daß man sie nicht erkennen kann. Diese Unterschiede sind jedenfalls nicht genügend, um die Form von den Pseudoceriden zu trennen; in eine der bekannten Gattungen gehört sie aber nicht. Die Diagnose der neuen Gattung, die ich für dieses und das gleich zu beschreibende Tier aufstellen möchte und die ich Thysanoplana nenne, würde folgendermaßen lauten:

Thysanoplana marginata n. g. n. sp.
Taf. VIII, Fig. 1, 2.

Unter der Semen'schen Ausbeute ist ein anderes Tier, das der gleichen Gattung einzuverleiben ist. Es ist 27 mm lang, 15 mm breit, von elliptischem Umriß; der Rand ist in wenige große Falten gelegt. Das Vorderende, das zwei große Randtentakel trägt, ragt

Die Geschlechtsorgane sind nur in der ersten Anlage vorhanden. Die Lage des männlichen Apparates wird durch eine starke Anhäufung von Kernen unmittelbar hinter dem Pharynx, also am Anfang des zweiten Körperdrittels, markiert.

Der viel schwächere Kernhaufen, der die Anlage des weiblichen Apparates darstellt, liegt 1 mm dahinter, 3 mm vor
Neue Polycladen.

dem Saugnapf. Von Ovarien und Hoden ist noch nichts zu erkennen.

N. Fam. Diplopharyngeatidae.

Diplopharyngeata filiformis n. g. n. sp.

Taf. XII, Fig. 2, 3, 4, 5, 6, 7, und Taf. XIII, Fig. 12.

Das Tier ist 25 mm lang, die größte Breite beträgt 3 mm, an den Enden ist es noch bedeutend schmäler. Die Dicke erreicht an den dicksten Stellen kaum $\frac{1}{2}$ mm.

Die Farbe ist grauhaft, von Zeichnung ist keine Spur zu entdecken; Tentakel und Saugnapf fehlen. Ca. 8 mm vom einen Ende sieht man eine kleine Vorragung (Fig. 7, Taf. XII); es ist der ausgestreckte, in diesem Zustand nach vorn gerichtete Penis, der also am Ende des ersten Körperdrittels liegt. Von den anderen Öffnungen ist bei Lupenbetrachtung nichts zu bemerken.

Das Gehirn liegt nur 1 mm vom Vorderende; es ist nicht deutlich zweiteilig, sondern hat die Form eines dorso-ventral abgeplatteten Ellipsoides. Über der vorderen Hälfte des Gehirns befindet sich eine Ansammlung von Kernen, die wohl der Austrittsstelle der Sinnesnerven entspricht; sie ist nicht sehr ausgeprägt. Die Augen sind klein und wenig zahlreich. Zwei kleine, lange Gruppen erstrecken sich von beiden Seiten des Gehirns nach vorn und enthalten je nur etwa zehn Augen, ferner gibt es noch ca. fünfzehn Augen zwischen Vorderrand und Gehirn.

Das Merkwürdigste an dem in mancher Hinsicht interessanten Tier ist der Pharyngealapparat (Fig. 4, Taf. XII). Der äußere Mund, der am Ende des ersten Körpersechstels liegt, führt in den vorderen Teil einer schmalen und kaum 2 mm langen Pharyngealtasche, die beiderseits vier seichte Nebentaschen besitzt und an deren Wänden der Pharynx in der gewöhnlichen Weise inseriert. Er bildet wenige große Falten von relativ bedeutender Dicke. Die Tasche setzt sich nach vorn in einen anderen Raum fort, den man nur als eine zweite Pharyngealtasche auffassen kann. Diese zweite, vordere Tasche hat fast die doppelte Länge der hinteren und be-

Der Darmmund liegt am hinteren Ende des hinteren Pharynx; er führt in den sehr langen Hauptdarm, der bis zum Körperrande reicht, zwar schmal ist, aber von der Gegend hinter den Geschlechtsorganen an in dorso-ventraler Richtung die ganze Körperdicke einnimmt. Nach vorn zu ist er wesentlich enger, erreicht nicht ganz das vordere Ende des Pharynx; ein medianer Darmast ist nicht sicher zu erkennen. Sehr zahlreiche Darmäste (Fig. 6, Taf. XII) gehen nach den Seiten ab, sie liegen ganz dicht gedrängt nebeneinander, nur die Keimdrüsen schieben sich von oben her dazwischen. Jeder Darmast berührt dorsal sowie ventral die Körperwand und verläuft gerade, ohne sich zu verzweigen oder mit anderen zu anastomosieren.

Die Keimdrüsen finden wir hier wieder einmal ausschließlich dorsal gelegen; Ovarien und Hoden regellos durcheinander in allen
Bezirken des Körpers, außer in der Mediane über dem Hauptdarm.

Die Uteri sind ziemlich weite, stellenweise aufgetriebene Schläuche, die nach vorn nicht ganz bis zum hinteren Ende der Pharyngealtasche reichen. Sie sind ganz mit Eiern gefüllt, die gute Kernteilungsfiguren zeigen. Nach hinten zu verengern sie sich, am Ende des ersten Körperdrittels vereinigen sie sich zum Eiergang. Dieser verläuft nur noch ein ganz kurzes Stück weit nach hinten, wendet dann nach oben und nach vorn um und geht in den Schalendrüsengang über, der ca. 1 mm hinter der männlichen Öffnung, ohne daß es zur Bildung einer Bursa copulatrix käme, nach außen mündet. Der Apparat ist also außerordentlich einfach gebaut, auch eine accessorische Blase fehlt.

Der männliche Apparat besitzt keine Körnerdrüse, dafür sind aber die langen, vielfach gewundenen, großen Samenkanäle durchweg mit drüsigen Epithel ausgekleidet, das jedenfalls ihre Funktion versieht. Die Samenkanäle vereinigen sich in der langen, stark muskulösen Samenblase, von der aus der enge Ductus ejaculatorius in den Penis eintritt. Der Penis wird nach vorn vorgestreckt; er ist recht voluminös und reichlich mit Muskeln versehen, aber unbewaffnet.

Es ist durchaus nicht möglich, das Tier in einer der bekannten Familien unterzubringen. Auch abgesehen von dem Besitz zweier Pharynges, zeigt es keine ausgesprochene Verwandtschaft zu irgend einer von ihnen. Die neue Familie, die man dafür gründen muß und die ich Diplopharyngeatidae nenne, ist wie folgt zu charakterisieren:

Von bekannten Species, deren Identität sich sicher feststellen ließ, befanden sich unter dem Chierchia'schen Materialien nur vier; es sind: Planocera pellucida (Lang), Stylochus pilidium (Lang), Pseudoceros superbus (Lang), Stylostomum variabile (Lang). Bei zwei Formen ließ sich zwar die Gattung (Prostheceraeus, Prosthiostomum) nicht aber die Art bestimmen.

Die sechs Formen sind für ihre Fundorte — mit Ausnahme von Planocera pellucida, die schon als kosmopolitisch bekannt war — neu, und es ist tiergeographisch interessant, daß sich drei der Species, die bisher nur aus dem Mittelmeer oder doch nur von der europäischen Küste beschrieben waren, nun auch im Stillen Ocean resp. an der amerikanischen Küste des Atlantischen gefunden haben. Graff (5) hebt hervor, es seien nur drei Species bekannt [Planocera pellucida (Lang) und grubei (Graff), Stylochoplana sargassicola (Mertens)], die sowohl im Atlantischen, als auch im Stillen oder im Indischen Ocean vorkommen; Thysanozoon Brochii darf man vielleicht auch zu diesen weit verbreiteten Formen zählen; nun kommen außerdem noch die erwähnten drei Species hinzu (Stylochus pilidium, Pseudoceros superbus, Stylostomum variabile). Es ist somit nicht unwahrscheinlich, daß man bei genauer Durchforschung der Polycladenfauna ferner Oceane noch mehr alte Bekannte aus europäischen Meeren antreffen würde.

Ich gehe zu einigen Bemerkungen über die sechs Formen über.

1. Planocera pellucida (Lang).

Diese Species ist schon in den verschiedensten Weltgegenden gefunden worden, und auch unter dem mir vorliegenden Material sind Exemplare aus dem Atlantischen und aus dem Pacifischen Ocean. Die ersteren sind unter dem 5° nördlicher Breite, dem 25° westlicher Länge, also ungefähr gleichweit von der afrikanischen und der amerikanischen Küste, gefischt worden; die letzteren, ebenfalls pelagisch, südlich von den Galapagos-Inseln. An diesem letzteren Fundort muß die Species sehr häufig sein, da sie an vier verschiedenen Tagen und zuweilen in ziemlich reichlicher Menge sich unter der Ausbeute fand.

Bei einigen der untersuchten Tiere zeigen sich recht schöne Kernteilungsbilder in den Uteruseiern.

Es sei mir erlaubt, auf eine Abweichung meiner Beobachtungen an dieser Art von denjenigen Graff's (5) aufmerksam zu machen. Graff giebt an, daß bei Planocera pellucida (ebenso wie bei Planocera Simrothi) die Einmündungsstelle der Uteri „vor der Schalen-
Neue Polycladen. 171
drüse (d. h. näher der weiblichen Geschlechtsöffnung) liegt, während
bei allen anderen Polycladen das umgekehrte Verhältnis obwaltet. Das ist bei den Tieren, die ich untersuchte, nicht der Fall, sie verhalten sich in diesem Punkte genau wie alle anderen Polycladen, so daß ich nicht umhin kann, anzunehmen, es habe Graff ein abnormes Tier vorgelegen. Die Species ist so scharf charakterisiert, daß über ihre Identität ein Zweifel nicht bestehen kann; meine Exemplare stimmen in allen übrigen Punkten mit den Graff'schen Figuren und mit seiner Beschreibung absolut genau überein; nicht einmal die zahlreichen Distomeen, die im Parenchym eingekapselt liegen, fehlen. Nur die Bezeichnung auf der Graff'schen einen medianen Längsschnitt darstellenden Figur würde ich anders wünschen: was dort als accessorische Blase (ba) gedeutet ist, wäre nach meinen Präparaten die Einmündungsstelle der Uteri (ue), während eine accessorische Blase überhaupt fehlt.

2. Stylochus pilidium (Lang).

3. Pseudoceros superbus (Lang).

Ebenfalls bisher nur im Mittelmeer bekannt, jetzt von Chierchia bei den Galapagos-Inseln gefunden. Nach ihrer Gestalt, der Form der Tentakel, der Lage der Öffnungen und der inneren Anatomie sind die beiden mir zu Gebote stehenden Exemplare völlig identisch mit der Lang'schen Species, in Farbe und Zeichnung freilich weichen sie vollständig ab. Das wird man aber um so weniger als ein wichtiges Unterscheidungsmerkmal auffassen dürfen, als auch bei der nahe verwandten Species, Pseudoceros maximus, die individuelle Variabilität in Farbe und Zeichnung eine ganz außerordentliche ist. — Bei dem größeren der mir vorliegenden Tiere (Länge 40 mm, größte Breite 10 mm vom Hinterende 26 mm) ist die Bauchseite gleichmäßig hellgelblich, die Grundfarbe der Oberseite etwas dunkler, nach der Mitte zu bräunlich; gerade in

5. *Prostheceraeus* (Lang).

Bei dem einzigen Tier, über das ich verfügte, läßt sich nur das Genus, nicht die Species feststellen. Die verschiedenen Species der Gattung unterscheiden sich ja fast nur äußerlich, und gerade die äußere Gestalt ist hier ganz schlecht erhalten, das Epithel ist größtenteils abgelöst, von Farben nichts zu erkennen. Das Tier ist an der brasilianischen Küste nördlich von Rio gefunden. An der Ostküste von Süd-Amerika war bisher noch kein Prostheceraeus konstatiert worden, während verschiedene Arten dieser Gattung sonst schon in allen Meeren angetroffen worden sind. Von den mittelmeerischen Species unterscheidet sich das vorliegende Exemplar durch seine geringe Größe. Es ist 6 mm lang, 4,5 mm breit und schon völlig geschlechtsreif.

Litteratur.

1) A. LANG, Die Polycladen (Seeplanarien) des Golfes von Neapel und der angrenzenden Meeresabschnitte. (Fauna und Flora des Golfes von Neapel, IX. Monographie.) Leipzig 1884.
2) BERGENDAL, Polypostia similis n. g. n. sp., Lund 1893.
3) — Einige Bemerkungen über Cryptocelides Loveni, Lund 1893.
4) GRAFF, Enantia Spinifera, der Repräsentant einer neuen Polycladenfamilie, Graz 1889. (Mitteilungen des Naturwissenschaftlichen Vereins für Steiermark, Jahrgang 1889.)
5) — Pelagische Polycladen. Arbeiten aus dem zoologischen Institut zu Graz, Bd. 5, Nr. 1, 1892.

Ich habe mich auf die Anführung der wenigen seit 1884, also seit dem Erscheinen der großen Lang'schen Monographie, veröffentlichten Arbeiten beschränkt. Die Konsultation der früheren Werke wird ja durch diese Monographie, die alles damals Bekannte enthält, überflüssig gemacht.
Erklärung der Abbildungen
zu Tafel VIII—XIII.

Buchstabenbezeichnung, für alle Figuren geltig:

acd Ausführungsgänge extrakapsulärer Drüsen.
am Antrum masculinum.
asc Anschwellung d. Samenkanäle.
asd Anlage der Schalendrüse.
ba accessorische Blase.
bc Bursa copulatrix.
cc Centralkanal der Körnerdrüse.
da Darmast.
dbsc drüsige Blase d. Samenkanals.
de Ductus ejaculatorius.
dmo Darmmund.
dru drüsiger Teil des Uterus.
drs Drüsenschläuche der Körnerdrüse.
ei Eiergang.
eiu eierenthaltender Teil d. Uterus.
evda Einmündung der Vasa deferentia in die Samenblase.
g Gehirn.
gau Gehirnhofaugen
h Hoden
hd Hauptdarm
kph hintere Pharyngealtasche
kd Körnerdrüse
lm Längsmuskulatur.
n Nerv.
rm Ringmuskulatur.
sb Samenblase.
csc Samenkanal.
sd Schalendrüse.
sdg Schalendrüsegang.
sp Sperma.
st Seitenpapillen d. vorderen Pharynx.
t Tentakel.
tau Tentakelhofaugen.
u Uterus.
ue Einmündung des Uterus in den Eiergang.
vda vorderer Darmast.
vph vordere Pharyngealtasche.
♂ männliche Geschlechtsöffnung.
♀ weibliche Geschlechtsöffnung.

Tafel VIII.

Fig. 1. Thysanoplana marginata. Ansicht der Rückenseite. Vergr. 2.
Fig. 2. Thysanoplana marginata. Ansicht der Bauchseite. Vergr. 2.
Fig. 3. Thysanoplana indica. Ansicht der Rückenseite.
Fig. 4. Thysanoplana indica. Ansicht der Bauchseite.

Tafel IX.

Fig. 1. Planocerid. Querschnitt durch den seitlichen Körperrand. Ein Darmastporus ist getroffen. Vergr. ca. 50.
Fig. 2. Acelis arctica. Längsschnitt. Vergr. 4.
Neue Polyeladen.

Fig. 3. Aloioplana delicata. Längsschnitt. Vergr. ca. 30.
Fig. 4. Aloioplana delicata. Mundrohr. Vergr. ca. 50.
Fig. 5. Aloioplana delicata. Augenstellung.
Fig. 6. Plagirotata promiscua. Stück eines Längsschnittes nahe der Mediane. Ein großer Teil des Ösophagus ist der Länge nach getroffen. Vergr. ca. 50.
Fig. 7. Plagirotata promiscua. Skizze der Anatomie.
Fig. 8. Acelis arctica. Skizze der Anatomie.
Fig. 9. Plagirotata promiscua. Längsschnitt. Vergr. ca. 10.

Tafel X.

Fig. 1. Leptoplana Kükenthalii. Skizze der Anatomie.
Fig. 2. Leptoplana Kükenthalii. Körnerdrüse. Längsschnitt nahe der Mediane. Das Bindegewebe zwischen den Drüenschläuchen ist nicht erhalten. Vergr. ca. 75.
Fig. 3. Leptoplana panamensis. Skizze der Anatomie.
Fig. 4. Leptoplana panamensis. Querschnitt durch die Körnerdrüse. Vergr. ca. 75.
Fig. 5. Leptoplana panamensis. Tangentialschnitt durch die Längsmuskulatur der Körnerdrüse. Vergr. ca. 200.
Fig. 6. Leptoplana Kükenthalii. Augenstellung.
Fig. 7. Leptoplana pacificola. Skizze der Anatomie der var. chilensis.
Fig. 8. Leptoplana pacificola. Längsschnitt der var. peruvianus. Vergr. 10.
Fig. 9. Leptoplana pacificola. Längsschnitt der var. chilensis. Vergr. 10.
Fig. 10. Leptoplana panamensis. Erwachsenes Tier. Vergr. 2.
Fig. 11. Leptoplana panamensis. Noch nicht geschlechtsreifes Tier. Vergr. 2.

Tafel XI.

Fig. 1. Leptoplana Chierchiae. Längsschnitt. Vergr. 12.
Fig. 2. Leptoplana Chierchiae. Augenstellung.
Fig. 3. Leptoplana Chierchiae. Längsschnitt durch die accessorische Blase. Vergr. ca. 50.
Fig. 4. Leptoplana Chierchiae. Querschnitt durch die Körnerdrüse. Vergr. ca. 150.
Fig. 5. Semonia maculata. Skizze der Anatomie.
Fig. 6. Latocestus atlanticus. Augenstellung.
Fig. 7. Latocestus atlanticus. Querschnitt durch das Mittelfeld. Vordere Körperhälfte. Vergr. ca. 50.
Fig. 8. Latocestus atlanticus. Längsschnitt durch den männlichen Apparat. Vergr. ca. 50.
Fig. 9. Latocestus atlanticus. Längsschnitt, brasiliansches Exemplar. Vergr. 6.
Fig. 10. Latocestus atlanticus. Schnitt durch die accessorische Blase, welche Eier und Sperma enthält. Vergr. ca. 50.
Fig. 11. *Thysanoplana indica*. Querschnitt durch das Mittelfeld. Hintere Körperhälfte. Vergr. ca. 50.

Fig. 12. *Semonia maculata*. Längsschnitt durch ein Seitenfeld. Eine drüsige Blase des Samenkanals ist getroffen. Vergr. ca. 50.

Tafel XII.

Fig. 1. *Thysanoplana indica*. Längsschnitt. Vergr. 10.
Fig. 2. *Diplopharyngeata filiformis*. Querschnitt durch das Mittelfeld des Körpers, an der Stelle, wo die Vasa deferentia in die Samenblase eintreten. Vergr. ca. 50.
Fig. 3. *Diplopharyngeata filiformis*. Querschnitt durch die männliche Geschlechtsöffnung. Vergr. ca. 50.
Fig. 4. *Diplopharyngeata filiformis*. Skizze der Anatomie des vorderen Körperdrittels.
Fig. 5. *Diplopharyngeata filiformis*. Stück eines Längsschnittes nahe der Medianen. Die hintere Pharyngealtasche ist getroffen und drei Seitenröhren der vorderen. Vergr. ca. 50.
Fig. 6. *Diplopharyngeata filiformis*. Stück eines Längsschnittes durch ein Seitenfeld. Vergr. ca. 50.
Fig. 7. *Diplopharyngeata filiformis*. Längsschnitt. Vergr. 10.

Tafel XIII.

Schemata der Begattungsapparate.

Um den Vergleich zu erleichtern, sind die gleichen Farben gewählt wie in: Lang, Die Polycladen des Golfes von Neapel.

Also Muskulatur: rot,
Epithel: gelb,
Körnerdrüse: grün,
Schalendrüse: blau.

Fig. 1. *Alloioplana delicata*.
Fig. 2. *Plagiotata promiscua*.
Fig. 3. *Semonia maculata*.
Fig. 4. *Acelis arctica*.
Fig. 5. *Acelis arctica*. Körnerdrüse und Samenblasen auf eine Querebene projiziert.
Fig. 6. *Leptoplana Kükenthalii*.
Fig. 7. *Latocestus atlanticus*.
Fig. 8. *Leptoplana Chierchiae*.
Fig. 9. *Thysanoplana indica*.
Fig. 10. *Leptoplana pacifica*.
Fig. 11. *Leptoplana panamensis*.
Fig. 12. *Diplopharyngeata filiformis*.
Über Regenerationsvorgänge bei Lumbriciden.

Von
Dr. phil. Karl Hescheler,
Assistent am zoologischen Laboratorium beider Hochschulen in Zürich.
Mit Tafel XIV und XV.

Einleitung.

Die Anregung zu nachfolgender Untersuchung, welche im zoologischen Institut beider Hochschulen in Zürich ausgeführt wurde, verdanke ich meinem hochverehrten Lehrer, Herrn Prof. Dr. Arnold Lang, dem ich auch sonst zufolge der mir von seiner Seite in reichem Maße zu teil gewordenen Unterstützung sehr verpflichtet bin. Ich benutze die Gelegenheit, ihm an dieser Stelle meinen herzlichsten Dank auszusprechen.

Was hier zunächst geboten wird, ist nur ein erster Teil der ganzen Arbeit, welcher die äußeren Vorgänge bei der Regeneration der Regenwürmer behandelt. Ich hoffe, bald einen zweiten Abschnitt folgen lassen zu können, in welchem von histo- und organogenetischen Prozessen die Rede sein soll.

I. Teil.
Die äußeren Vorgänge.
a) Frühere Beobachtungen.

Schon seit alter Zeit hat das Vermögen der verschiedensten Tiere, verloren gegangene Teile ihres Körpers wieder zu ersetzen, das Interesse der Naturkundigen erweckt; im 18. Jahrhundert aber wurde den Erscheinungen der Regeneration eine besondere Aufmerksamkeit geschenkt, und die Beobachtungen aus jener Zeit erscheinen zum Teil jetzt noch äußerst wertvoll. Die Untersuchungen

Es wird nicht die Aufgabe dieser Arbeit sein, die historische Entwicklung der Regenerationsfrage im allgemeinen zu behandeln, da in dieser Hinsicht auf die erschöpfenden Darstellungen von Milne-Edwards (34) und Fraisse (21), was die Würmer anbetrifft, auch Bülow (12) verwiesen werden kann; dagegen muß auf jene Beobachtungen, die speziell über die Regeneration der Regenwürmer vorliegen, eingehend eingetreten werden, da hierüber in den bisherigen Arbeiten nichts Genaueres und Vollständiges zu finden ist. Zur weiteren Rechtfertigung einer einläufigen Behandlung der älteren Litteratur sei darauf hingewiesen, daß es wohl über keine andere Tiergruppe in Hinsicht auf genanntes Problem widersprechendere Angaben gibt, deren verschiedenartige Variationen sich bis zum heutigen Tage erhalten haben, so daß schon von diesem Gesichtspunkte aus eine einläufige Sichtung des vorliegenden und größtenteils vergessenen Beobachtungsmaterials am Platze ist. Zudem handelt es sich hier um Versuche, die nicht mit so großer Leichtigkeit und so sicherem Erfolge wiederholt werden können, wie diejenigen an den Polypen und Würmern des süßen Wassers z. B. Es seien vorerst nur zwei Angaben aus Werken, die ein allgemeineres Interesse beanspruchen, angeführt, welche beweisen, wie über diesen Gegenstand die widersprechendsten Ansichten mit großer Bestimmtheit ins Feld geführt werden.

Einmal finden wir bei Weismann (58), Das Keimplasma, S. 202: „Der in zwei Stücke geschnittene Regenwurm bildet sich zwar am
Vorderstück ein neues Schwanzende, nicht aber am Hinterstück einen neuen Kopf. Dazu fehlt also hier noch die Einrichtung, welche bei Lumbriculus und Nais vorhanden ist.4

BERGHI (6) dagegen schreibt in den „Vorlesungen über allgemeine Embryologie“, S. 223: „Bei vielen Anneliden, z. B. bei Regenwürmern, können aus einem in eine vordere und eine hintere Hälfte zerschnittenen Individuum zwei ganze Würmer hervorgehen, indem das vordere Stück ein neues Hinterende, das hintere ein neues Vorderende reproduziert; also können große Partien des Nervensystems (sowohl Gehirn, als große Strecken des Bauchstranges) und des Verdauungskanals, sowie die Geschlechtsorgane neugebildet werden.4

Sehen wir also zu, was man bis jetzt Sicheres über die regenerativen Vorgänge beim Regenwurm weiß.

Nachdem TREMBLEY im Dezember des Jahres 1740 die überraschende Entdeckung gemacht hatte, daß Hydren, die in Stücke zerschnitten werden, sich zu ebensoviel Individuen vervollständigen, war es begreiflich, daß man gleich auch bei anderen Tieren Versuche dieser Art anstellte, und es war natürlich, daß man zunächst niedere Formen, z. B. Würmer, als Objekte wählte. TREMBLEY teilte seine Beobachtung sofort RÉAUMUR (46) mit, und dieser hat dieselbe auch, bevor TREMBLEY's Originalarbeit erschien, in seiner berühmten und von den Zeitgenossen vielfach citierten „Préface“ zum „Tome sixième des mémoires pour servir à l'histoire des Insectes“ 1742 publiziert. „Dès que la découverte de M. TREMBLEY“, sagt er l. c. S. LXVI, „fut connu des savants qui se plaisent à étudier les insectes, ils jugèrent que les polypes ne doivent pas être les seuls auxquels il eût été accordé de pouvoir être multipliés d’une façon si étrange. . . . Un grand nombre d’insectes aquatiques furent bien-tôt exposés à périr cruellement sous l’instrument, dont on se servoit pour essayer de les multiplier.4

Auch die Regenwürmer gehörten zu den Formen, die diese Prüfung über sich ergehen lassen mußten. BONNET (8) und RÉAUMUR (46) sind es, die ungefähr gleichzeitig mit diesen Tieren die ersten wissenschaftlichen Regenerationsversuche anstellten. Es ist nicht mehr möglich, aus ihren Angaben zu ersehen, wem dabei die Priorität gebührt1).

1) RÉAUMUR (46) schreibt S. LXXVI (1742): „M. BONNET et moi avons mis chacun de notre côté des vers de terre à l'épreuve que soutiennent si bien les vers aquatiques qui leur ressemblent.“

BONNET (8) citiert in der ersten Ausgabe des „Traité d'insecto-
Betrachten wir zunächst die Versuche von Réaumur (46). Er schreibt S. LXXVI:

„J'ai commencé par en (les vers de terre) couper en deux; la partie antérieure, quoique je ne lui eusse pas laissé la moitié de la longueur de la partie postérieure, a paru avoir peu souffert, d'avoir été separée de celle-ci, souvent en moins de deux jours elle a été un nouvel animal, beaucoup plus court à la vérité que celui dont elle avait fait partie, mais en état d'en remplir toutes ses fonctions. L'anus s'étioit bien formé au bout produit par la section, et étoit rebordé comme il l'est dans l'état ordinaire. Il ne manquoit plus à ce nouveau ver que de croître en longueur, d'acquérir celle qu'avoit eu l'ancien, c'est ce qui s'est fait peu à peu, et qui a demandé plusieurs mois. Mais la reproduction qui logie“ (1745) die Versuche von Réaumur gar nicht, dagegen findet sich in der „Collection complète de ses oeuvres“ (9) Tom. I, S. 245 (1779) eine Anmerkung folgenden Inhalts:

„J'avois communiqué à M. de Réaumur mes premières tentatives sur les vers de terre. Il en avoit fait de son côté, et se proposoit d'en publier les détails dans le dernier Volume de ses Mémoires sur les Insectes; mais la mort l'ayant prévenu, je crois obliger le publié en lui faisant part des détails que ce grand naturaliste m'avoit communiqués sur la reproduction de ces vers, en réponse à mes lettres. Voici donc l'extrait de deux des siennes sur ce sujet intéressant; l'une du 28 de Février 1742, l'autre du 8 Août de la même année.“ (Siehe übrigens auch Bonnet (9), Tome III, S. 218, Considérations sur les corps organisés.) Ich citerie hier gleich weiter aus jener Anmerkung eine Stelle, auf die wir unten zu sprechen kommen werden; sie stammt also aus einem Briefe von Réaumur an Bonnet:

„„J'ai eu des vers de terre dont les têtes étaient assez bien refaites; mais, dont les uns sont pérés par trop de sécheresse, les autres par trop d'humidité, et d'autres par le froid. Pour la reproduction de la partie postérieure, elle se fait avec une toute autre facilité. J'en avoient de ceux à qui elle avoit été emportée auprès de dernières parties de la génération, et d'autres entre ces parties, qui sont des vers à qui rien ne manque actuellement.“ Dans sa lettre du 8 Août, M. de Réaumur s'exprimoit ainsi: „J'ai eu des vers de terre parfaits, mais ce n'a été qu'au bout de plus de trois mois, et de ceux qui ont été divisés en deux. Au bout de ce temps j'ai eu des parties postérieures à qui il étoit revenu une tête qui faisoit ses fonctions; le ver me l'a prouvé en rejetant dans ma main, par l'anus, des grains d'excréments... J'ai fait mes expériences sur trois espèces de vers de terre différentes. Mais il en pérît beaucoup. De cinquante parties postérieures il ne m'en est quelquefois venu à bien que trois à quatre ect.““
se doit faire dans la playe de la partie postérieure d'un pareil ver, est bien un autre ouvrage que celle d'un anus, et que celle d'une suite d'anneaux assez uniformes: une tête s'y doit former, ou développer; à peu de distance de cette tête doivent se reproduire, tant dans l'intérieur que dans l'extérieur, les parties propres du sexe mâle, et d'autres propres à celui de la femelle; les unes et les autres doivent non seulement se trouver dans le même ver, elles doivent y être doubles; aussi n'est-ce qu'au bout de trois à quatre mois ou environ que la partie postérieure des vers de terre les plus communs, devient un ver parfait." Daran knüpft der Autor Bemerkungen über die Schwierigkeit der Aufzucht solcher Stücke, über den komplizierten Bau der Würmer und schließt den Abschnitt mit den Worten:

„Parmi les vers de terre il y en a plusieurs espèces différentes de celle qui se présente le plus souvent à nos yeux; j'en connois deux dans lesquelles les reproductions se font plus vite que dans l'espèce la plus commune."

Dies ist alles, was uns RéAUMUR über seine Regenerationsversuche an Regenwürmern hinterlassen hat; der Tod ereilte ihn, bevor eine ausführliche Darstellung seiner Versuche erschien. Auch die kurzen Zusätze, die Bonnet (s. Anm. S. 179 u. 180 dieser Arbeit) noch anführt, geben kaum weiteren Aufschluß. Im übrigen will ich bei jedem Autor am Schlusse eine kurze, womöglich tabellarische Zusammenfassung und Kritik seiner Versuche folgen lassen.

RéAUMUR: Zusammenfassung.

<table>
<thead>
<tr>
<th>Species, Alter</th>
<th>Art der Operation</th>
<th>Anzahl</th>
<th>Jahreszeit</th>
<th>Resultate</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, aber welche?</td>
<td>Halbiert; nach weiteren Angaben ist aber das vordere Stück, weniger als in einem Teil der Fälle, kleiner als die Hälfte des hinteren, daher eher vordere (\frac{1}{3}) und hintere (\frac{2}{3}).</td>
<td>?</td>
<td>?</td>
<td>Vorderes (\frac{1}{3}) in einigen Monaten vollkommen regeneriert. Hintere (\frac{2}{3}) nach 3—4 Monaten wieder ein vollkommener Wurm.</td>
</tr>
</tbody>
</table>

Es fehlen zunächst genaue Angaben über Species, Alter, Größe etc. der untersuchten Objekte. Wohl spricht RéAUMUR von einer Art, die als „la plus commune“ bezeichnet wird, und von zwei anderen sagt er, daß sie schneller regenerieren als jene; allein daran mehr als bloße Vermutungen zu knüpfen, wäre sehr ungerechtfertigt.
Was die Art der Operation anbetrifft, erfahren wir, daß die Würmer entzweigeschnitten („coupé en deux“) wurden; später heißt es, daß der vordere Teil nicht einmal die Länge der Hälfte des hinteren besessen habe; das Verhältnis ist daher eher $\frac{1}{3} : \frac{2}{3}$. Wo der Schnitt wirklich durchgegangen ist, kann bei der fehlenden Angabe der Species auch nicht approximativ bestimmt werden. Nach Bonnet wurden einzelne in der Gegend der Geschlechtsorgane operiert; daß es sich dabei um die eigentlichen Geschlechtsorgane oder wenigstens um die Gegend vor dem 15. Segment handelt, beweist ein Blick auf die damals allgemein bekannten anatomischen Beschreibungen des Regenwurmes von Redi (47) und Willis (61). Angaben über die Zeit der Operation, sowie über die Anzahl der Versuchstiere fehlen gänzlich. Die Resultate sind nach dem Vorhergehenden schwer zu beurteilen. Die zuletzt genannten Stücke, bestehend aus ca. 15 vorderen Segmenten, sollen einen neuen Schwanz bilden, eine Angabe, die es wiederum sehr zweifelhaft erscheinen läßt, ob es sich um die wirklichen Geschlechtsorgane handelt. Die Bildung der Hinterenden geht überhaupt sehr leicht vor sich; allmählig fügt sich Segment um Segment zu („c'est ce qui s'est fait peu à peu“); man vergleiche damit die bezüglichen Beobachtungen von Bonnet weiter unten.

Von der Regeneration der vorderen Partien am hinteren Teile erfahren wir, daß es sich dabei um eine Zeit von etwa 4 Monaten handelt, woraus, sowie aus der Bemerkung, daß unter 50 meist nur 3 oder 4 Stücke Neubildungen aufweisen, wir schließen dürfen, daß Partien von beträchtlicher Länge weggenommen wurden; ob mehr als 15 Segmente, wissen wir allerdings nicht.

Bonnet (8) begann seine Untersuchungen an Wasserwürmern im Juni 1741, nachdem ihm Trembley Anfangs dieses Jahres seine Aufsehen erregende Entdeckung mitgeteilt hatte, er selbst aber bei vergeblichem Suchen nach den Polypen des süßen Wassers auf jene Lumbriculi gestoßen war. Am Schluß seiner Arbeit, die erst 1745 publiziert wurde und von der eine zusammenfassende Übersicht bei Bülow (12) sich findet, beschreibt er anhangsweise, in die Figurenerklärung eingeschaltet, seine Versuche, die er an Regenwürmern angestellt hat. Obwohl dieselben auf den Juli 1743 zu beziehen sind, steht doch fest, daß Bonnet schon früher, gleichzeitig mit Réaumur (1741) sich mit diesem
Gegenstand beschäftigte (siehe Anm. S. 4 dieser Arbeit, Brief vom 28. Februar 1742). Er will nicht näher darauf eintreten; denn: „Dépuis je les (expériences) ai reprises avec un nouveau soin: mais ne les ayant pas encore assez poussé pour avoir quelque chose de positif sur leur reproduction, je me contenterai de donner ici l’explication de quelques Figures qui représentent différentes portions de ces vers dans l’état de végétation.“

Bonnet, es sei dies gleich bemerkt, ist übrigens der einzige von den früheren Autoren, der seine Beobachtungen mit Abbildungen belegt; dies erhöht den Wert derselben beträchtlich.

Zuerst beschreibt er die vordere Hälfte eines Regenwurms, der am 27. Juli 1743 operiert wurde, einmal wie sie sich ihm am 15. August und sodann 1 1/2 Monate nach der Operation darbot. Der Wurm hat sein Schwanzende vollkommen regeneriert. Eine weitere Figur zeigt die hintere Hälfte desselben Tieres, die in der Länge ungefähr dem vollständigen Regenerat am vorderen Teile entspricht. Sie hat nicht regeneriert, sondern besitzt am vorderen Ende nur „une petite corne mousse“.

Da die Zeit, welche diese Würmer zur Regeneration brauchen, viel größer ist als bei den Würmern des süßen Wassers, schließt Bonnet, sie sei augenscheinlich proportional den Dimensionen des Wurmes. Dafür habe sie die Natur entschädigt, indem sie ihnen ermöglichte, lange zu fasten. Eine hintere Hälfte blieb mehr als 9 Monate am Leben, ohne Regenerationserscheinungen zu zeigen.

So weit die genauerem Angaben Bonnet’s! Was er an anderer Stelle über diese Frage berichtet, bezieht sich alles auf die beschriebenen Versuche. (Vergl. das Litteraturverzeichnis dieser Arbeit!)

Von Wichtigkeit sind vor allem noch die Ausführungen, die er in den
Karl Hescheler,

Diese Stigmata, schließt er, entsprechen einem Paket von Tracheen, und alles dies muß folglich regeneriert werden. Das Verhalten der großen Arterie interessiert ihn sehr; sie ist in dem neuen Teile sehr deutlich sichtbar. „Au bout d'un mois et demi, à compter du jour de l'opération, cette nouvelle partie postérieure, d'abord si effilée, avoit acquis une grosseur égale ou à peu-près, à celle du reste du corps, et elle avoit crû proportionnellement en longueur. Sa couleur avoit pris une teinte plus foncée, et les nouveaux intestins étoient pleins de terre. Les intestins nouvellement régénérés étoient donc capables s'acquitter de leurs fonctions.¹“ Die hintere Hälfte desselben Wurmes hat, das wissen wir bereits, in der Zeit von 9 Monaten, während der sie noch lebte, nicht zu regenerieren begonnen.

Was die Operation der vordersten Partien anbetrifft, drückt sich Bonnet an der Stelle etwas deutlicher aus: „Je retranchai à un ver de terre, sur la fin de Juillet, la tête et les premiers anneaux.¹“ Eine deutliche Knospe „en forme d'un petit bouton¹“ erscheint Ende August; diese wächst langsam bis zum Dezember, in welchem Monat das Tier zu Grunde geht. Von einer Segmen-

¹) Bezüglich dieser Stigmata erklärt Bonnet in einer Anmerkung einer späteren Ausgabe, daß er sich getäuscht habe und daß es sicher sei, daß, wie Spallanzani festgestellt habe, der Regenwurm keine solchen Stigmata besitze.
Über Regenerationsvorgänge bei Lumbriciden.

tierung, die an der Knospe aufgetreten wäre, wird auch hier nichts bemerkt. Endlich sagt er noch:

„J'observai les mêmes phenomènes sur des vers de terre partagés en trois, quatre ou cinq portions. Je vis des portions intermédiaires pousser à la fois une partie antérieure et une partie postérieure; mais les progrès de celle-ci furent constamment plus grands, en teus égal, que les progrès de celle-là. . . . Tous ces vers périrrent avant qu'il me fût permis de voir la reproduction complète d'une partie antérieure."

Bonnet: Zusammenfassung.

<table>
<thead>
<tr>
<th>Species, Alter</th>
<th>Art der Operation</th>
<th>Anzahl</th>
<th>Jahreszeit</th>
<th>Resultate</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Dreigeteilt a, b, c</td>
<td>1</td>
<td>27. Juli</td>
<td>b regeneriert beidseitig.</td>
</tr>
</tbody>
</table>

Auch hier fehlt eine Aussage über Species, Länge, Alter der Würmer. Aus den Abbildungen, bei denen nicht bemerkt ist, ob sie die natürliche Größe wiedergeben, etwas weiteres schließen zu wollen, dürfte ziemlich gewagt sein. Die Stelle der Operation ist in den ersten beiden Fällen annähernd genau bestimmt, allerdings nicht nach der Zahl der Segmente. Was die Abnahme des Kopfes und der vordersten Ringe betrifft, ist man sehr im Zweifel, wie viel darunter zu verstehen sind, um so mehr, als der betreffende Wurm außerordentlich langsam regenerierte (dazu im Sommer) und das neue Stück noch nach 5 Monaten unsegmentiert erscheint, was nach meinen Erfahrungen für die Entfernung von mehr als mindestens der 10 vorderen Segmente spricht.

Bedauerstam ist die Figur, welche das mittlere Drittel eines Wurmes mit Regeneraten am Vorder- und Hinterende abbildet. Das alte Stück weist 15 Segmente auf; entspricht dies der Wirklichkeit, so sind ungefähr gleich viele abgeschnitten worden; der
ganz Wurm würde aber entsprechend kaum viel mehr als 50 Ringe besessen haben.

Bei all' diesen Beobachtungen ist nicht zu vergessen, daß Bonnet angiebt, daß er dieselben an anderen Stücken bestätigt gefunden habe.

Die soeben besprochenen Versuche von Réaumur und Bonnet sind neben denjenigen von Spallanzani die, auf welche sich die späteren Autoren am meisten berufen. Chronologisch schließen sich hier die Aufzeichnungen zweier italienischer Naturforscher an, deren Untersuchungen ziemlich in Vergessenheit geraten sind, so daß man sie selten citiert findet.

Zunächst Ginanni (26), dessen Beobachtungen überhaupt kein Späterer kritisiert hat. In Form von Briefen, von denen der erste vom 23. November 1743 datiert ist, beschreibt er seine ziemlich ausgedehnten Versuche in umständlicher und, was den Ausdruck anbetrifft, oft sehr schwer verständlicher Weise. Die neu entdeckten Wunder der Natur sind ihm durch das Werk Réaumur's bekannt geworden; er will sich selbst von der Richtigkeit derselben überzeugen. „Imperciocchè non mi sono contentato delle dodeci osservazioni tutte chiare, ed uniformi, delle quali si contentavano il Redi, ed il Valisneri per istabilire la verità di una cosa, ma ho tagliato in due, in quattro, in sei parti più di venti Lombrichi terrestri, e più di otto vermi aquatici, e mi è sempre riuscita, e rade volte andata a voto l'operazione.”

Er beginnt seine Untersuchungen in den ersten Tagen des Juli 1743 mit Würmern, die ziemlich genau beschrieben werden („erano di un colore rosso, e infiammato sì, che rassemblavano di vivo cinabro; non più lunghi di quattro dita traverse, né più grossi di quelle penne di Pollo“). Er schneidet er, einen jeden, in 4 Stücke; allein nach einigen Tagen gehen diese zu Grunde.

Am 17. Juli wiederholt er das gleiche Experiment mit einem Wurme ähnlicher Art. Am 20. Juli haben sich die Stücke auf der Schwanzseite zugespitzt, die drei hinteren sind auf der Kopfseite noch nicht vernarbt. „Alle due poi di Agosto il piacere

1) Der Name Ginanni findet sich in der betreffenden Arbeit nirgends angegeben. Spallanzani (50) und nach ihm Milne-Edwards (34) bezeichnen ihn als Autor.
di veder, e di ammirare i tre pezzetti di Lombrico con quella loro testa; a mio credere, non ancora condotta a fine, e più ristretta, e riservata di quella dell' altro pezzetto, ch'era già divenuto un vermicello bello e lungo." Am 20. August ist der regenerierte Kopf gleich dem eines unverletzten Regenwurmes.

Zu gleicher Zeit zerschneidet er einen viel größeren Lumbri
ciden mit Clitellum (,,di quelli, che il Redi chiama della bardella") der Länge nach. Am 20. Juli findet er diesen vollständig ver-
west, und er bemerkt dazu, daß dies jedesmal passiert sei, wenn er ein Exemplar nach dieser Art operiert habe. Am 20. August teilt er einen „Lombrico terrestre“ in zwei Teile. „In capo a poco più di 48 ore quella parte, che per la sezione era rimasta senza coda, me la manifestò riprodotta, e perfezionata a tal segno, che fattomi subito apprestare un altro vaso, ve la gittai in tre pezzi. L'altra parte mostrava ancora una ben piccola cicatrice non bene rammargiata, e durò in questo stato per fino a ’29. dopo il qual giorno non mi fu possibile di riconoscervi segno alcuno di ferita, ma non apparve il capo, se non a mezzo Settembre. Solo allora scoperse che i tre pezzetti fatti dalla parte superiore del noto Lombrico erano quasi ridotti alla perfezione."

Experimente ähnlicher Art, sagt er, seien ihm noch vielfach
geglückt. Auch an anderen Würmern, von denen er einen aus-
drücklich als „Lombrico palustre“ bezeichnet, hat er Versuche
angestellt. Dann setzt er sich zur Aufgabe, die Beobachtungen
zu wiederholen „in tutte le stagioni dell' anno, e in tutte le
alterazioni dell' aria“.

Am 21. Dezember zerschneidet er einen Regenwurm, der 2
Daumen lang, dick wie eine Kontrebaßsaite und nicht wie die bis-
herigen Würmer rot, sondern „di colore di ruggine“ war, in 3
Teile. Das vorderste Stück soll nach 3 Tagen „un verme quasi
perfetto“ gewesen sein, und am 12. Januar 1744 sind auch die
3 anderen Stücke wieder vollständige Würmer geworden. „Trovai
a ’12. di questo mese ne' tre vasi, non più tre pezzi, ma tre vermi,
ne' quali per vero dire, se non che in uno, si manifestava una
interna proposcidie, e non erano più lunghi ciascheduno di un
pollice“.

Er stellt ferner Versuche an über den Einfluß der Beson-
nung, zeigt, daß sie sehr unter Trockenheit leiden; er zerreißt
sie, anstatt sie zu zerschneiden; bei letzterem Versuche gehen aber
alle Tiere zu Grunde.

,,Non v' ha dubbio alcuno, che dalle osservazioni sopra descritte

13*
non s’inferisca eziandio, che il tronco di mezzo metta la testa dalla parte, ch’era verso la testa più vicina, e così discorrendo della coda; e che non segua in quell’occasione avvolgimento alcuno della parte in aurelia alla guisa degli’ Insetti nel divenir volanti. “

Am 3. Januar setzt er den Kopfteil eines Würmes in ein Gefäß mit Erde und sieht, daß am 12. schon „la testa ha gettata fuori la coda in mezzo a molti circoli concentrici“.

Nachdem Ginanni noch auf die Anatomie der Regenwürmer eingetreten und hier mit Redi und Willis übereinstimmt, sagt er: „Una molto simile interna struttura de’ Lombrichi si manifesta chiaramente ne’ Lombrichi de’ quali ci diede una esattissima anatonia il tante volte nominato Redi, e pure fra i molti vermi da’ quali nell’ incisione non si ha il medesimo fenomeno della multiplicazione; questi sono senza dubbio.“

Dieser schwer zu deutende Satz soll unten diskutiert werden. Endlich folgt in einem letzten Briefe die Darstellung einer Versuchsreihe mit 60 Würmern, von denen je einer in ein besonderes Gefäß gesetzt wird und für je einen Tag zur Kontrolle dient, so daß sich der ganze Versuch über 60 Tage erstreckt. Jeder dieser Regenwürmer wurde in 3 Teile zerlegt (wir wollen diese mit a, b, c bezeichnen) und die Untersuchung am 1. Juni 1744 begonnen. Ich greife die wichtigsten Stadien heraus:

Am 2. Tage erscheinen die Stücke a und b vollständig verheilt, c aber noch nicht verwarbt. Am 3. Tage findet sich bei a mitten in der Narbe eine kleine Spitze, c ist verheilt; das neue Schwanzstück von a wächst in den folgenden Tagen. Am 6. zeigen b und c an der der Kopf zugewandten Seite eine kleine Höhlung („non molto dissimile a quella de’ Limoni, o d’ altri frutti, quando sono distaccati dal gambo“). Am 21. hat b seinen Schwanzteil regeneriert und vorn „là dov’ er sta la sopradescritta cavità, si vedeva in iscambio una convessità, che venia a formare una ritondetta punta“. Dasselbe Verhalten zeigt c.

Wichtig ist der 26. Tag, von dem er sagt: „Nel ventesimo sesto la facenda andò un po’ più scoperta nel vaso XXVI, perché non ebbi prima distinti i tre pezzetti, che vidi in ciascheduno di esse non meno, la coda, che allungavano a loro piacimento, e scorciavano, che ancora la testa, la quale però in due di loro stava ancora fra que’ muscoli circolari, da cui l’altra era uscita d’innanzi a miei occhi. Il tocarle con uno spillone era lo stesso, che fargliene ritirar maggiormente in dentro, e farli poscia camminare, per dir così retrogradi, strisciando innanzi la coda.”
Am 40. Tage war a wieder ganz herangewachsen, bei b ist der Kopf „per anche alquanto nascosta, ma la coda era nello stato, in cui l'hanno tutti quanti i Lombrichi“ c hat noch keinen Kopf erzeugt. Am 43. Tage bemerkt er, daß die Stücke a und c immer dicker werden, b dagegen nicht. „Ella è cosa mirabile, che perfezionato il verme già più non vedesi menoma cicatrice; ma finch'egli non è compiuto, là vi si riconosce per un anello rilevato, che circonda l'intaccatura della nuova parte, e pare, che la riceva nel suo seno. Questo anello però vassi perdendo nell' allungarsi dell' animale con moto progressivo“. An den folgenden Tagen findet Ginanni noch einige vollkommen regenerierte Würmer.

Ginanni: Zusammenfassung.

<table>
<thead>
<tr>
<th>Species, Alter</th>
<th>Art der Operation</th>
<th>Anzahl Jahreszeit</th>
<th>Resultate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) L. rubellus (?)</td>
<td>4 Stücke</td>
<td>2 Juli</td>
<td>Sterben nach einigen Tagen.</td>
</tr>
<tr>
<td>2) do.</td>
<td>4 Stücke: a, b, c, d</td>
<td>1 17. Juli</td>
<td>Bei b, c und d ist der Kopf am 2. Aug. schon ziemlich regeneriert und am 20. Aug. vollständig.</td>
</tr>
<tr>
<td>3) L. Herculeus (?) mit Clitellum halbiert</td>
<td>Der Länge nach halbiert</td>
<td>1 17. Juli</td>
<td>Geht nach kurzer Zeit zu Grunde, ebenso alle anderen, die in gleicher Weise operiert werden.</td>
</tr>
<tr>
<td>4) ?</td>
<td>Halbiert a und b</td>
<td>1 20. Aug.</td>
<td>b erzeugt einen neuen Kopf bis Mitte September. a₁, a₂, a₃ sollen zu dieser Zeit auch wieder vollständig gewesen sein.</td>
</tr>
<tr>
<td>7) ?</td>
<td>Dreigeteilt a, b, c</td>
<td>60 1. Juni</td>
<td>Genaueres siehe vor; es werden wiederholt Stücke a, welche Hinterenden, b und c, welche den Kopf regenerierten, beobachtet.</td>
</tr>
</tbody>
</table>

Eine merkwürdige Arbeit, diese vorliegende von Ginanni! Sie verursacht viel Kopfzerbrechen. Die Versuche sind, wie man sieht
sehr ausführlich von ihm beschrieben und kurz nach den Réau-
mur'schen und Bonnet'schen angestellt worden; doch nur die
ersteren waren dem Beobachter bekannt. So erscheint es in höch-
stem Grade auffällig, daß keiner der späteren Autoren (von dem
bloßen Namenscitate bei Spallanzani sehen wir ab) von ihm
weiter Notiz nimmt, daß namentlich Bonnet ihn nicht erwähnt,
der doch diese Frage mit größtem Interesse verfolgte; dieser
äußert sich sogar an einer Stelle ausdrücklich. es habe, soweit
ihn bekannt, nach Réau-Murm kein anderer dessen Versuche an
Regenwürmern kontrolliert. (Siehe Näheres weiter unten bei
Vandelli!) Merkwürdig sind aber vor allem die Resultate, die
Ginanni erzielte, und sie sind um so schwieriger zu beurteilen,
weil er sich einer höchst schwer verständlichen, schwülstigen
Schreibweise bedient. Andererseits ist nicht zu leugnen, daß sich
wiederum so genaue und zutreffende Angaben finden, daß man
an der Wahrheit seiner Beobachtungen nicht zu zweifeln wagt.

Zunächst giebt er ein paar Beschreibungen der von ihm unter-
suchten Würmer, die ganz wohl Schlüsse auf die Species, welche
er verwandte, erlauben. So darf man vielleicht bei den ersten,
bei denen ihm das Experiment mißglückte, Lumbricis rubellus an
nehmen, während jener längsgeteilte mit Clitellum (zu vergleichen
ist auch die Klassifikation von Redi) wohl ein L. Hericuleus war.
Einmal erscheint die Angabe, daß die Würmer rostfarben (colore
di ruggine) gewesen; ich habe dahinter Allobophora caliginosa
vermutet. Im übrigen freilich begegnen wir in dieser Hinsicht
ebensowenig Genauerem wie bei den bereits erwähnten Autoren;
namentlich vermißt man beim letzten Versuche mit den 60 Würmern
durchaus die Angabe, ob hier Individuen der gleichen Art und von
ungefähr gleichem Alter vorlagen.

Was die Resultate anbetrifft, so mag nach dem, was wir bei
Réau-Mur und Bonnet bereits gehört haben, weniger Verwunderung
darüber herrschen, daß es ihm so oft geglickt ist, bei den Stücken
b und c eines 3-geteilten Würmes, resp. bei b, c und d eines 4-
geteilten, Regenerate der vorderen Partie zu erhalten, als eher
darüber, daß diese Regenerationsvorgänge sich so rasch abspielten.
Nach einem Monat bekamen in einem Fall (20. Aug.) die Stücke
b, c, d einen neuen Kopf; ein Gleiches passiert noch im Septem-
ber. Einmal kann hier die Vermutung auftauchen, daß es sich
gar nicht um Regenwürmer handelt, was aber fallen gelassen wer-
den muß, wenn man seine anatomische Beschreibung liest, die mit
derjenigen von Redi ganz übereinstimmt, und wenn man sieht,
Über Regenerationsvorgänge bei Lumbriciden. 191
daß er ausdrücklich „Lombrico terrestre“ und „Lombrico palustre“ unterscheidet.

Einigemal kann man sich auch des Eindruckes nicht erwehren, daß derartige Resultate mit dem Worte Regeneration nicht ungewöhnlicher Beschreibung verbunden sind. Wenn er am 20. Aug. bemerkt, daß ein Stück nach 48 Stunden schon „riprodotta e perfezionata“ war, so kann es sich unmöglich um die Wiedererzeugung der verlorenen Teile, sondern höchstens um Zuspitzung des Hinterendes der alten Partie in Form eines Schwanzes handeln. Andere Stellen freilich lassen uns nicht im Zweifel, daß er wirkliche Regenerationsvorgänge beobachtet hat, z. B. bei Objekt 4 und 6, dann bei den letzten 60 Würmern, wo er das Auftreten des neuen Teiles zuerst in Form einer kleinen Spitze beschreibt, Ausdrücke wie „la testa per anche alquanto nascosta“, „l’intaccatura della nuova parte ect.“

Auf alle Fälle sind diese Versuche mit großer Vorsicht aufzunehmen.

Mit größerer Befriedigung nehmen wir sodann die Arbeit eines späteren Landsmannes dieses Ginanni, nämlich diejenige von Vandelli (56) zur Hand. Die Darstellung Réaumur’s von diesen wunderbaren Vorgängen in der Natur hat auch ihn zu weiteren
Beobachtungen angeregt; er zweifelt aber von Anfang an der Richtigkeit dieser Angaben. Wohl sei es begreiflich, daß der Vorderteil eines Wurmes das Hinterende zu regenerieren ver-
st, aber daß dieses letztere einen Teil wiedererzeuge, der so wichtige Organe wie „os, oesophagum, ventriculum, intestini et mesenterii principium, cerebrum, cor et ovaria“ enthält, sei durch-
- aus unwahrscheinlich. Zunächst giebt uns der Autor eine Ana-
tomie des Regenwurmes, die sich im wesentlichen an die bereits genannten Beschreibungen von Willis und Redi anschließt.

Die ersten Versuche stellt er 1757 an. Am 8. April werden
150 Würmer „sub ventriculou“ in 2 Teile zerschnitten, so daß die vordere Partie „os, oesophagum, ventriculum, intestini et ductus flavi sive mesenterii principium, cerebrum, cor et ovaria“ enthält, die hintere dagegen nur „intestinum et mesenterium“. Ferner macht er aus 25 Würmern je 3 Teile, von denen der vorderste alle jene genannten Organe besitzt. Bezeichnen wir die ersten 150 Versuchsobjekte mit A und die beiden Hälften eines jeden mit a und b, die letzten 25 Würmer mit B und ihre Teile mit a, b, c, so ergaben sich folgende Resultate: Nach 1 Monat be-
gannen alle 150 A a zu regenerieren „in praeciso extremo XIV parvos annulos subpallidos adeptae erant; haec aucta pars tenuis et acuta erat, duasque parisienses lineas longa, et vix unam crassa“. Von den Ab lebten noch 132, ohne Zeichen der Re-
generation; Ba lebten noch alle und besäßen neue, regenerierte Ringe; Bb fanden sich noch 6, Bc noch 9 Stück ohne die ver-
lorenen Teile wiedererzeugt zu haben. Am 15. August: A a „In
primo vasi XXX vita fruebantur et XXXII annulos subrubros, XIV prioribus jam auctis, adjunctos habeabant; longitudo totius partis auctae erat VIII linearum parisiensium, crassities III“. A b noch 3 lebend ohne eine Spur von Regeneration; sie sterben nach wenigen Tagen. Ba werden 16 Stück aufgefunden mit Re-
generaten, über die keine nähere Angabe vorliegt, Bb sind alle
tot und von Bc alle ausgenommen 4, die 6 Tage später zu Grunde gehen, ohne daß bei ihnen von neu erzeugten Teilen etwas
tzu bemerken gewesen wäre.

„Eodem sextili mense (August 1757) vermes terrenos a cele-
berrimo Antonio Vallisnerio publico historiae naturalis pro-
fessore sectas aprili mense eadem observavi diligentia et inveni
illorum partes omnes, quae visceribus vitae et digestionis care-
bant, in terram conversas esse; et incrementum solum susceptisse,
quae organis vitae, digestionis et generationis gaudent“.
Eine zweite Reihe von Versuchen stellte **Vandelli** am 1. März 1758 an; die Resultate sind dieselben, nur die Stücke **a** regenerieren. Am 8. Juli zerschneidet er wiederum 100 nach der Weise wie früher die **A**, 100 dagegen wie vorher die **B**; der Erfolg ist der nämliche: nur die Stücke **a** weisen Regenerate auf, die anderen sterben oder machen wenigstens keine Anstalten, die verlorenen Teile wieder zu ersetzen. Am 24. September sind die **a** so weit, „ut nisi ob colorem pallidum nunquam abscessit videbantur“.

Vandelli schließt seine Arbeit mit den Worten: „Ego vero Viris Praestantisimis in contrarium sentientibus contradicere absolute non audeo; sed solium mihi in animo fuit hujus admirabilis phenomeni difficultates, et haesitationes me ex verium mechanica structura maxime desumptas, una cum meis experimentis palam facere, ut melius et exactius observatores investigent hoc naturae arcaneum.“

Vandelius: Zusammenfassung.

<table>
<thead>
<tr>
<th>Species, Alter</th>
<th>Art der Operation</th>
<th>Anzahl</th>
<th>Jahreszeit</th>
<th>Resultate</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Dreigeteilt a, b und c</td>
<td>25</td>
<td>8. April</td>
<td>Von den a regenerieren 16 (15. Aug.). b und c ohne Regeneration.</td>
</tr>
</tbody>
</table>

In **Vandelli** treffen wir zum ersten Male einen Autor, der die Regenerationsfähigkeit der Regenwürmer auf gewisse Grenzen beschränkt findet. Aus seinen Versuchen ergibt sich klar, daß nur die vordere Partie befähigt ist, den hinteren Teil zu ersetzen, nicht aber dieser allein imstande, das vordere Stück zu ergänzen.

Von früheren Beobachtern erwähnt Vandelli nur Réaumur, sagt aber ausdrücklich, daß auch andere ähnliche Versuche angestellt haben; unter diesen kann natürlich Ginanni ganz wohl eingeschlossen sein. Vandelli's Arbeit selbst geriet bald in Vergessenheit. Bonnet schreibt in den Consid. s. l. corps org. P. II, Chapt. I. (1762): „M. de Réaumur s'est contenté d'assurer qu'il résultoit de ses expériences, que les vers de terre se reproduisissent après avoir été partagés, et il paroit qu'on l'en a cru facilement sur la parole, au moins ne connois-je aucun Naturaliste qui ait vérifié le fait, et qui ait publié là-dessus de nouvelles expériences.“

Später scheint er des Vandelli Arbcit allerschieds kennen gelernt zu haben; denn er schreibt 1766 an Spallanzani: „Voilà donc la reproduction de la tête du ver-de-terre bien constatée, graces à vos soins et à votre patience. Ce Vandelli qui pré-cipite son jugement, mérite que vous le réfutiez, et que vous lui appreniez à être meilleur Logicien.“

1) Es muß hier allerdings darauf aufmerksam gemacht werden, daß sich L. Herculeus gegenwärtig im mediterranen Gebiete sehr selten findet (Kosa, 48); allein im obigen Falle wird es sich kaum um eine andere Species handeln. Dies ist auch schon für Ginanni in Betracht zu ziehen.
Was den A. Vallisneri [ca. 1758] (54), der oben citiert wurde, anbetrifft, sei auf das Litteraturverzeichnis verwiesen.

Lazaro Spallanzani [1768] (50), dessen Name mit so vielen Problemen der Regeneration verknüpft ist, zeigt sich auch als derjenige Forscher, der wohl die weitgehendsten Untersuchungen über solche Erscheinungen beim Regenwurm angestellt hat. Leider hinterließ er uns darüber nur kurze Notizen, bloße Skizzen. Das Hauptwerk, das sich über diesen Gegenstand verbreiten sollte, ist nie erschienen (51). Was uns geboten wird, ist eben nur ein Programm, ein Entwurf für die Untersuchungen, wobei der Verfasser allerdings hie und da bemerkt, welche der anzustellenden Versuche ihm bereits geglückt sind, welche nicht. Eine eingehende Darstellung seiner interessanten Ausführungen über dieses Thema zu geben, würde zu viel Raum beanspruchen; ich muß mich mit der Andeutung des Wichtigsten begnügen.

Spallanzani unterscheidet an einem Regenwurm eine vordere Partie, den Kopf, eine hintere, den Schwanz, und die mittleren Partien.

1) Er findet, daß die vordere Partie imstande ist, einen abgeschnittenen hinteren Teil zu ersetzen, daß es aber gewisse Grenzen der Länge des alten Teiles gibt, innerhalb welcher eine Regeneration nicht mehr stattfindet. Diese Grenzen werden jedoch nicht genauer bezeichnet.

Er stellt sich sodann verschiedene Fragen, z. B. wie sich die regenerierten Teile unter sich verhalten, wie schnell sie reproduzieren werden, ob verschiedene Species einen Unterschied hierin aufweisen oder etwa Individuen der gleichen Species, aber von verschiedenem Alter. Auf alle diese Fragen erfolgt keine bestimmte Antwort. Hier findet sich auch die bemerkenswerte Stelle: „Dans le cours de ces examens j’ai découvert une nouvelle espèce de vers-de-terre qui diffère entièrement des autres, non seulement par l’espace fort considérable de temps qu’il faut pour commencer la reproduction de la queue, mais aussi par la reproduction même, différente en tout de ce qui a été observé par tous les naturalistes, non seulement touchant la régénération des vers-de-terre, mais même de tous les autres animaux: et cela quant aux parties antérieures ou les têtes qui reproduisent une queue.“

2) Die hinteren Partien sind imstande, einen neuen Kopf hervorzubringen, und zwar alle Species von Lumbriciden, die darauf-
hin geprüft worden sind; allein auch hier fügt Spallanzani eine Beschränkung hinzu:

„Dans cet examen j'ai découvert que coupant un nombre donné d'anneaux dans la partie antérieure du ver-de-terre, on trouve la régénération dans toutes les espèces que je connais de ver-de-terre.... Mais si dans l'opération on augmente le nombre des anneaux de manière que l'on ôte une portion considérable, on ne voit alors la reproduction de la tête qu'après un espace de temps très long: et cette reproduction se fait très difficilement, je dirai plus; elle ne s'opère pas dans toute sorte de ver-de-terre. Mais comme la difficulté de la reproduction n'exclut pas la reproduction même, on peut établir que les ver-de-terre, du moins ceux de certaines espèces, non seulement reproduisent leurs queues, mais aussi leurs têtes.“ „Cependant quoiqu'après la section de quelques anneaux de la tête du ver-de-terre, la reproduction devienne toujours à peu près égale à la partie retranchée, il n'en est pas de même quand les anneaux retranchés sont en plus grand nombre: car alors la tête reproduce est ordinairement plus courte et ses anneaux en plus petit nombre.“

Nachdem noch festgestellt worden, daß der Kopf sich schneller reproduziert als der Schwanz, knüpft er hieran eine Reihe von Fragen, die den Grund dieser verschiedenen Erscheinungen zu erforschen trachten.

3) Mittlere Partien bringen Kopf und Schwanz neu hervor, vorausgesetzt, daß man nicht ein zu großes Stück des Kopfes abgenommen hat. „C'est pourquoi si l'on ne coupe qu'une petite partie de la tête, on verra sortir la tête et la queue, mais la tête la première comme j'ai déjà observé.“ Auch im Falle, daß die mittlere Partie keinen Kopf erzeugt, kann sie doch einen Schwanz regenerieren.

Spallanzani hat ferner Würmer in 4, 5 und mehr Teile zerschnitten; was er aber an diesen Stückchen beobachtet hat, erfahren wir nicht. Unter anderen Beobachtungen fällt ihm vor allem auf, daß bei allen Teilstücken, mögen sie von beliebiger Größe sein, das Blut in der Hauptarterie des Rückens stets dieselbe Stromrichtung zeigt. Er stellt sich ferner die Aufgabe, die Struktur und das Verhalten der neuen Gewebe und Organe zu studieren, ohne sich aber weiter darüber zu äußern.

Er überzeugt sich, daß mit der ersten Regeneration die Kraft, die ihr zu Grunde liegt, nicht erschöpft ist. „Si l'on retranche la partie reproduite, l'insecte en reproduira une seconde, puis une
troisième, une quatrième, une cinquième etc. Non seulement j’ai observé ces reproductions successives après avoir été uniquement la partie reproduite, mais aussi en faisant la section pour la seconde fois dans la première partie reproduite, la troisième dans la seconde, la quatrième dans la troisième etc. Ainsi j’ai eu une échelle de reproductions unies au vieux tronçon toujours plus jeunes, plus minces et de l’une à l’autre d’une couleur beaucoup plus claire."

Des weiteren fragt er sich, was wohl geschehen würde, wenn man einen Wurm nur halb durchschneidet. Endlich hat er auch Schnitte der Länge nach gemacht und die Individuen vollständig oder nur teilweise durchschnitten. Über das Resultat dieser Versuche äußert er sich nicht; wir vernehmen bloß: „Une grande partie de ces dernières expériences ayant eu un heureux succès dans un ver-de-terre entier, j’ai voulu les répéter sur des têtes, sur des parties intermédiaires et sur des queues."

Ein folgendes Kapitel ist der Regeneration eines Wurmes des süßen Wassers, den er „ver en batteau“ nennt, gewidmet, und worin bemerkt wird, daß unter anderem ein Unterschied vom Regenwurm darin zu erblicken sei, daß diese „reproduction se fasse même dans le coeur de l’hyver“.

So weit die Aufzeichnungen von Spallanzani, die leider nie in einem größeren Werke weiter ausgeführt worden sind, was um so mehr zu bedauern ist, als gerade dieser Autor die hohe Bedeutung der Regenerationserscheinungen schon damals erkannte und sie von allgemeinen Gesichtspunkten aus erfaßte.

Bonnet ist in der Lage, uns noch einige weitere Aufschlüsse über die betreffenden Untersuchungen seines mit ihm befreundeten, berühmten Zeitgenossen zu geben, so namentlich in „Consider. s. I. corps org.“ Part. II, Ch. I, p. 225:

Die Angaben sind einem Briefe Spallanzani’s an Bonnet, datiert vom 21. Sept. 1766, entnommen:

1) „Quand l’observateur a coupé transversalement la partie antérieure d’un ver de terre, de manière qu’elle a conservé assez de longueur pour renfermer ce qu’il nomme les ovaires, cette partie antérieure a reproduit une queue ou une partie postérieure.

2) Des parties intermédiaires pourvues des ovaires ont reproduit aussi.

3) La tête détachée du tronc, périt sans faire aucune production, mais le tronc reproduit une tête.

4) Les parties intermédiaires où les ovaires ne se trouvent
point, emploient environ huit à dix mois à repousser au bout antérieur. La nouvelle reproduction reste fort petite. Mais la reproduction au bout postérieur est considérable. J'ai observé le même fait essentiel.

5) Si l'on partage longitudinalement un ver de terre en commençant par la tête, et en poussant la division jusque vers les deux tiers de la longueur du corps, l'animal périt.

6) Si l'on partage de la même manière un ver de terre, en commençant la division par la queue, les portions divisées persistent, le reste pousse une nouvelle queue.

7) Le ver divisé en entier suivant sa longueur périt constamment.

8) La reproduction de la tête s'opère moins lentement que celle de la queue.

9) L'observateur a coupé trois fois la tête au même ver, et elle s'est reproduite autant de fois.

10) Les parties nouvellement reproduites reproduisent elles-mêmes comme les anciennes lorsqu'on les mutile.

11) L'auteur s'est assuré que l'accroissement ne s'opère que par l'expansion des anciens anneaux et non par le développement de nouveaux anneaux comme on aurait pu le soupçonner.

12) Il lui est arrivé de trouver des vers de terre qui avaient été mutilés par accident. J'avais observé la même chose dans ces vers d'eau douce que j'ai multipliés par la section.

13) Ces expériences ont été exécutées sur deux cents vers de terre.

14) L'auteur a confirmé par ses propres observations tout ce que j'avais rapporté sur la manière dont s'opère la reproduction du ver de terre."

Ich möchte gleich an dieser Stelle eine kleine Korrektur einflechten:

Fraisse (21) sagt S. 5 seiner citierten Arbeit: „Nach Spallanzani geschieht die Regeneration nicht durch Entwicklung neuer, sondern durch Auswicklung der älteren Ringe — eine Ansicht, welche durch die eigentümlichen Anschauungen seiner Zeit erklärt wird."

Ich glaube nun, diese Ansicht wird Spallanzani mit Unrecht in die Schuhe geschoben. Dieser selbst spricht sich in seinem „Prodromo“ über den Punkt nirgends aus, und Fraisse kam zu seiner Meinung offenbar nach Einsicht des Punktes 11 oben citierter Zusätze Bonnet's (oder vielleicht einer ähnlichen
Bemerkung in der „Contempl. de la Nat.“ T. II, p. 11 Anm.).
Hier wird aber ausdrücklich von „accroissement“ und nicht von Regeneration gesprochen. Es wäre auch sonderbar, wenn Spallanzani, der sonst so außerordentlich genau beobachtete, sich hierin getäuscht haben sollte. Der Beweis für meine Ansicht läßt sich aber auch indirekt erbringen. Einmal vergleiche man Punkt 14 oben citierter Zusätze von Bonnet und dessen Abbildungen von regenerierenden Regenwürmern im „Traité d'insectol.“. Dann schreibt Bonnet in den „Considéréat.“ p. 227: „Dans les vers qu'on a partagés, le tronçon ne se prolonge point non plus, il demeure tel qu'il étoit avant l'opération; mais, du centre de la cicatrice sort un petit bouton qui grossit et s'allonge de jour en jour, et se montre enfin sous l'apparence d'un ver naissant, greffé en quelque sorte sur le tronçon. On reconnoit évidemment que ce ne sont point les anciennes chairs du tronçon, qui en se prolongeant ont fourni à cette production.“ Wäre Spallanzani gegenteiliger Ansicht, so würde Bonnet dies hier ausdrücklich bemerkt haben. Ganz klar wird aber die Sache durch folgende Stelle:

Lettre à Spallanzani T. V., p. 26:

„La peine que vous avez prise de comparer le nombre des anneaux dans le ver naissant avec celui des anneaux dans le ver qui a achevé de croître, prouve en effet que dans l'état naturel, l'accroissement s'opère par la simple expansion des anciens anneaux, et non par le développement de nouveaux anneaux. . . .

Mais il est bien clair, qu'il n'en va pas de même dans les reproductions de l'animal. De nouveaux anneaux se développent, et les anciens, ceux qui appartiennent au tronçon, ne fournissent pas à l'accroissement.“

Spallanzani: Zusammenfassung.

1) Regeneration des Schwanzes. Diese erfolgt verhältnismäßig leicht; allein die vordere Partie muß, um regenerieren zu können, von einer gewissen Länge sein. Nach Bonnet's Angabe liegt das Kriterium im Besitz von Ovarien. Schon früher (z. B. bei Vandelli) mußten wir auf die damaligen Ansichten über die Anatomie des Regenwurmes eintreten, und es zeigte sich, daß die bekanntesten Angaben aus jener Zeit (Willis, Redi, Vandelli) unter Ovarien im allgemeinen die Gesamtheit der jetzt als Geschlechtsorgane erkannten Teile des Wurmes verstehen. Jeden-

2) Ein Kopf wird regeneriert, wenn nicht zu viel vordere Segmente weggenommen wurden ("pas une portion considérable"); über die genaue Grenze erfahren wir aber nichts. Das Verhalten verschiedener Species ist ein verschiedenes. Von Wichtigkeit erscheint die Bemerkung, daß die Anzahl der neugebildeten Ringe in einzelnen Fällen (Regeneration größerer vorderer Partien) geringer ist als diejenige der abgeschnittenen.

3) Mittlere Partien können Kopf und Schwanz neu erzeugen, erst ersteren aber nur unter oben gegebenen Bedingungen. Der Schwanz entsteht leichter, aber später als der Kopf.

4) Operationen in der Längsrichtung führen den Tod des Tieres herbei, nur wenn von hinten her bloß ein Stück weit durchgeschnitten wird, erzeugt das intakte Stück, nach dem Tode des angeschnittenen, einen neuen Schwanz.

Wenn nun die Veröffentlichung des "Prodromo" auch die Regenerationsfrage erst recht in Fluß brachte, so finden sich doch nur wenige, die sich der Mühe unterzogen, die Untersuchungen an Lumbriciden nachzuprüfen; das Hauptinteresse wandte sich den Regenerationsvorgängen bei Schnecken und Wirbeltieren zu. So haben wir nur noch einer Angabe aus dem letzten Jahrhundert zu gedenken, wenn wir von bloßen Citaten erwähnter Versuche absehen. Siehe auch Müller (37 und 38) und Murray (39).

Valmont de Bomare [1775] (55) leugnet, ohne übrigens seine
Experimente näher zu beschreiben, die Regenerationsfähigkeit der Regenwürmer; auch bei den Schnecken hatten seine Versuche vollständig negativen Erfolg.

In der Folge geht für die Fragen der Regeneration das lebhafe Interesse verloren, das ihnen während eines halben Jahrhunderts geschenkt worden war, und das allerdings nur dazu geführt hatte, daß die rein äußeren Vorgänge bei diesen biologischen Problemen zum Gegenstand eifriger Studiums erhoben wurden. Die früheren Beobachtungen geraten in Vergessenheit; ab und zu wird die Sache gelegentlich gestreift, und in der Mitte dieses Jahrhunderts stoßen wir deshalb häufig auf Äußerungen von Naturforschern, welche die Auslassungen Bonnet's und Spallanzani's, wenigstens soweit sie Regenwürmer betreffen, als unglaubwürdig zurückweisen.

{\textit{Über Regenerationsvorgänge bei Lumbriciden.}} 201
hinteren 5 oder 6 neue Segmente. Diese 6 aus den ursprünglichen 3 erhaltenen Würmer soll SANGIOVANNI der Akademie (welcher?) vorgewiesen haben.

SANGIOVANNI: Zusammenfassung.

<table>
<thead>
<tr>
<th>Species und Alter</th>
<th>Art der Operation</th>
<th>Anzahl</th>
<th>Jahreszeit</th>
<th>Resultate</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. terrestris L.</td>
<td>Zweigeteilt</td>
<td>3</td>
<td>10. April</td>
<td>a 4. Mai 5—6</td>
</tr>
</tbody>
</table>

Es interessiert hier vor allem, die Operationsstelle genau zu kennen. Nach der Beschreibung würde man am ehesten auf das Clitellum schließen, wenn der Autor von dem großen Bande oder Ringe spricht; falls dies richtig ist, sind die Würmer hinter dem Clitellum zerschnitten worden. Wie muß dann aber das Folgende aufgefaßt werden, wenn es heißt, daß die betreffenden Individuen 10 resp. 18 neue Ringe auf 15 oder auf 12 alte zeigten? Hat SANGIOVANNI hier unter Ringen keine Segmente verstanden oder hat er mit dem großen Band einen anderen Teil, vielleicht gerade das 15. Segment bezeichnet? Letzteres ist zwar kaum anzunehmen; aber je nachdem bekommen die Resultate ein ganz anderes Aussehen. Es ist von Wichtigkeit, zu wissen, ob die 5 oder 6 regenerierten Ringe, welche den neuen Kopf darstellten, vom 16. oder von einem Segmente aus, das hinter dem 30. zu suchen ist, hervorgesproßt sind, gerade so, wie es wertvoll zu konstatieren wäre, wenn 15 resp. 12 alte vordere Ringe einen neuen Schwanz hervorbringen konnten. Die weitere Angabe, daß die Würmer ungefähr im ersten Drittel ihrer Länge, vom Kopf her gerechnet, zerschnitten wurden, entscheidet aber mit ziemlicher Sicherheit für die Annahme, daß die Operationsstelle hinter dem Clitellum liegt; denn vermutlich handelt es sich um L. Herculeus (L. terrestris L. mit abgeplattetem Schwanze), für welche Species, wie übrigens auch für die meisten anderen, diese Längenangaben stimmen. So notieren wir uns denn als höchst beachtenswert, daß in dem Falle von etwa dem 38. Segment aus noch 5—6 Ringe als Ersatz des Vorderendes regeneriert wurden. Daß die Re-
Über Regenerationsvorgänge bei Lumbriciden.

Dugès [1828] (19) ist eigentlich der erste Beobachter, der über einzelne Regenerationsvorgänge genauere und einwurfsfreie Angaben macht, welche um so mehr Glauben verdienen, als sich dieser Autor auch um die Erforschung der Anatomie des Regenwürmkes Verdienste erworben hat. Réaumur und Bonnet werden von ihm citiert; Valmont de Bomare und Bosc haben vergeblich deren Versuche wiederholt; auch er selbst geht mit geringer Zuversicht auf Erfolg an die Untersuchung, und die ersten Resultate scheinen dieses Mißtrauen zu rechtfertigen. Ein Regenwurm, der in der Mitte quer geteilt wurde, regeneriert nur an der vorderen Hälfte das verlorene Schwanzende, die hintere stirbt ohne Neubildung nach 4—5 Monaten. „Ces réflexions m’engagèrent à simplifier le problème autant que possible; ainsi, respectant les organes qui siègent à la partie plus renflée du Lombric, je n’ai réséqué que les quatre ou huit premiers anneaux; mais je me suis assuré positivement qu’une partie de l’oesophage et du système nerveux, le ganglion céphalique au moins, avait été enlevés avec les segments musculo-cutanés. Au bout de dix jours (au mois de juin et par environ dix-huit degrés durant le jour au therm. de Réaumur), quand j’avais enlevé quatre anneaux seulement, après un espace de temps double ou triple, si j’en avais extirpé sept à huit, je voyais saillir, comme Bonnet l’avait vu déjà au centre de la plaie, un bouton conique et rougeâtre; mais ce qu’il n’a pas vu et que j’ai plusieurs fois observé, c’est le développement ultérieur de ce bouton. Huit à dix jours plus tard il était tout-à-fait pointu, fort contractile, rouge, humide, et l’on y reconnaissait parfaitement les anneaux extirpés, la lèvre antérieure et la bouche petite encore, mais avec leur forme normale. Dès lors l’animal s’enfonçait dans la terre et marchait la tête en avant; dès lors aussi l’intestin commençait à se remplir de la terre qui sert d’aliment aux Lombrics“ etc. „Ces expériences ont été faites sur le L. trapezoïdes.“ Schließlich meint er, daß es aber sehr zweifelhaft sei, daß ein in der Mitte entzwei geschnittener Wurm zu zwei vollkommenen Individuen heranwachsen könne.
Dugès: Zusammenfassung.

<table>
<thead>
<tr>
<th>Species, Alter</th>
<th>Art der Operation</th>
<th>Anzahl</th>
<th>Jahreszeit</th>
<th>Resultate</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. trapezoïdes Dugès</td>
<td>1) Halbiert</td>
<td>—</td>
<td>—</td>
<td>Vordere Hälfte regeneriert, hintere stirbt nach 5—6 Monaten ohne Regeneration.</td>
</tr>
<tr>
<td></td>
<td>2) 1-8 vorderste Segment entfernt, (18o R.)</td>
<td>Mitte Juni</td>
<td>Regeneration beginnt nach 10 Tagen (bei 4 Segm.), nach 20—30 (bei 8 Segm.), 8—10 Tage später Regenerat segmentiert.</td>
<td></td>
</tr>
</tbody>
</table>

Dugès’ Resultate stellen also fest, daß Regenwürmer imstande sind, wenigstens einen Teil der vorderen Segmente zu regenerieren; wo die Grenze dieser Fähigkeit liegt, kann aus denselben nicht entnommen werden. Merken wir uns auch, daß je nach der Zahl der abgenommenen Segmente ein Zeitunterschied bei der Neubildung nachzuweisen ist. L. trapezoïdes Dugès ist nach Rosa (48) als All. caliginosa zu bezeichnen.

1851 geht Williams (59) so weit, die Regenerationsfähigkeit der Regenwürmer überhaupt zu leugnen. Nach Erwähnung der Versuche von Bonnet und Spallanzani sagt er: „On the authority of hundreds of observations laboriously repeated at every season of the year, the author of this Report can declare with deliberate firmness, that there is not one word of truth in the above statement. It is because accounts so fabulous have been rendered „respectable“ by the fact, that Professor Owen had thrown over them the aegis of his great authority, that they demand a contradiction which may displease by the strength of the language in which it is given“.

Nicht nur den Lumbriciden spricht dieser Autor das Vermögen zu regenerieren ab, auch bei allen anderen Anneliden, bei denen dasselbe nicht direkt gelegnet werden kann, stellt er es als auf ein Minimum beschränkt dar, so bei Nais, bei marinen Formen etc. Er schließt den betreffenden Abschnitt mit den Worten: „From the analogy of the two species, viz. Arenicola and Nais, on which the author’s observations have been chiefly con-
duced, the conclusion may be deduced that the „fission of the body“ in every other species of Annelida in which it occurs, has for object in like manner to protect and incubate the ova. In this indirect sense, and that alone, can the „spontaneous division“ of the body in the Annelid be regarded as participating in the reproductive operations."

Kurze Zeit später tritt aber ein anderer Engländer, Newport [1853] (40), mit den vorigen direkt widersprechenden Aussagen auf; er demonstriert 3 Regenwürmer, welche das hinterste Drittel ihres Körpers regeneriert hatten, und er begreift die Ansicht von Williams um so weniger, als, wie er konstatiert hat, im Herbst außerordentlich häufig Würmer anzutreffen sind, die große Partien ihres Körpers in Form von Regeneraten aufweisen.

Wie sehr aber in neuerer Zeit die alten Versuche in Vergessenheit geraten sind, beweist schon der Umstand, daß z. B. auch C. Vogt [1864] (57) an der Regenerationsfähigkeit des Lumbricidenkörpers zweifelt.

Quatrefages [1865] (44) hat auch mit Regenwürmern experimentiert, doch giebt er darüber nur folgende kurze Notiz: „On a nié récemment encore la reproduction de la tête chez les Lombrics, mais j'ai fait à ce sujet des expériences très-précises. J'ai enlevé les premiers anneaux et retrouvé à l'intérieur le cerveau, l'anneau oesophagien, les deux premiers ganglions. Toutes ces parties se sont reproduites.“ Diese Resultate stimmen also ziemlich mit denen von Dugès überein.

Zu dem Zwecke schneidet er einem „lombric terrestre de grande taille“ (longueur 13 cm; largeur 5 mm) die 8 oder 9 ersten Ringe ab; am 4. März 1869 bemerkt er deutliche Zeichen der Regeneration, und am 30. April — Tag, an welchem das Tier getötet wurde — besitzt das neue Stück eine Länge von 5 mm, deutliche Segmentierung (die Zahl der Segmente wird nicht angegeben) und unterscheidet sich vor allem durch die hellere Farbe von den übrigen Partien des Körpers. Die Sektion ergiebt vollständige Neubildung der abgeschnittenen Strecke des Nervensystems.

Wir eilen dem Ende zu. Noch muß der Holländer Horst [1885] (29 u. 30) erwähnt werden, da er auch die Versuche von Dugès wiederholte. Im Mai hat er 8 Würmer der ersten 3 bis 6 Segmente beraubt, und nach 2 Monaten hatten 7 davon vollkommen
Karl Hescheler,

regeneriert. Einmal beobachtete er die Bildung eines neuen Schwanzendes von 4—5 mm Länge.

Schließlich liegen noch von Miss A. Fielde [1885] (20) Versuche vor. 8 Stücke von Hinterenden von Regenwürmern (L. terrestris), bestehend aus 30—40 Segmenten, lebten während 40-tägiger Beobachtung, ohne Zeichen von Wachstum zu zeigen. Indessen wurde dabei eine eigentümliche Entdeckung gemacht. „Between the segments, however, new half-segments had been inserted, after a method which ladies in sewing call a gusset. Some of these worms had five such insertions, while no similar half-segments were observed in many worms that were examined, in order to ascertain whether such half-segments existed in whole and healthy worms. These new half-segments appeared at irregular distances apart, between the old segments, on the sides of the portions of worms, and appeared to be a manner of growth not heretofore observed in earthworms regenerating excised parts."

9 Würmern wurden die ersten 5 Segmente abgeschnitten; sie regenerierten alle, ebenso 10 Individuen, denen die 5 ersten um 20—30 der hintersten Segmentle abgenommen worden waren.

8 Stücke verloren die hinteren Segmenten bis auf 10 hinter dem Clitellum und regenerierten einen Teil der abgenommenen Partie. Alle diese Beobachtungen wurden im November bei einer Zimmertemperatur von 60 ° F gemacht.

Über die nähere Vorgänge bei der Regeneration der 5 ersten Segmente schreibt Miss Fielde:

1) Findet eine Vereinigung der äußeren Körperhaut mit der des Darmkanals statt.

2) Diese beiden Häute verlängern sich in eine Röhre, die vor- und zurückgeschoben werden kann.

3) Es bildet sich eine Proboscis auf der oberen Seite des Regenerates.

4) Die Segmentierung schreitet vom vorderen Ende gegen hinten zu fort, bis die normale Zahl der Segmente erreicht ist.

5) Ablagerung von Pigment in der Epidermis des neuen Teiles und Vergrößerung des letztern auf den Durchmesser der alten Segmente.

40 Tage nach der Dekapitation war noch kein Gehirn zu finden, am 45. Tage dagegen verzweigte Blutgefäße um den vollständig regenerierten Pharynx. Erst am 58. Tage konnten mehr oder weniger vollständig regenerierte Teile des Centralnervensystems aufgefunden werden.
FELDE: ZUSAMMENFASSUNG

<table>
<thead>
<tr>
<th>Species, Alter</th>
<th>Art der Operation</th>
<th>Anzahl</th>
<th>Jahreszeit</th>
<th>Resultate</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. terrestris (?)</td>
<td>1) 20—30 hinterste Segmente für sich</td>
<td>8</td>
<td>29. Nov. (Zimmertemper. 60 ° F.)</td>
<td>Leben 40 Tage ohne Regeneration. Bildung von Halbsegmenten!</td>
</tr>
<tr>
<td></td>
<td>2) 5 vorderste Segmente abgeschnitten</td>
<td>9</td>
<td>do.</td>
<td>Regenerieren alle Segmente.</td>
</tr>
<tr>
<td></td>
<td>3) 5 vorderste und 20 — 40 hinterste Segmente abgeschn.</td>
<td>10</td>
<td>do.</td>
<td>Regenerieren alles.</td>
</tr>
</tbody>
</table>

Es mangel hier vor allem die genaue Speciesangabe, denn L. terrestris ohne Autorenname kann sehr Verschiedenes bezeichnen, so ist L. terrestris Eisen mit L. Herculeus zu identifizieren, L. terrestris Duges dagegen mit All. terrestris. Was jene auffällige Bildung von Halbsegmenten anbetrifft, soll darüber später gesprochen werden.

Überblicken wir kurz diesen Abschnitt. Nachdem einmal konstatiert war, daß die Regenwürmer überhaupt regenerieren können, gingen die früheren Forscher vor allem darauf aus, die Grenzen dieses Vermögens kennen zu lernen. Doch können dieselben nach den vorliegenden Angaben auch jetzt noch nicht genau bestimmt werden. Hatten die ältesten Beobachter, Réaumur, Bonnet, Ginanni, nach dieser Hinsicht überhaupt keine Einschränkung gefunden, so ist dann Spallanzani der Sache wohl am nächsten gekommen und hat darüber die weitgehendsten Beobachtungen gemacht; leider sind aber die schriftlichen Aufzeichnungen, die vorliegen, in einer Weise abgefaßt, welche direkte und bestimmte Schlüsse nicht erlaubt.

Daß der hintere Teil am Regenwurmkörper regeneriert werden könne, wurde im allgemeinen nie gelehend (ausgenommen von Williams); welches Minimum von vorderen Segmenten aber im-
stande ist, solche Regenerate hervorzubringen, kann nach den uns bekannten Versuchen nicht festgestellt werden. Die unsicheren Angaben von Réaumur geben ca. 15 Segmente an, Spallanzani ungefähr gleich viel („parties pourvues des ovaries“), Vandelli etwa 30, Sangiovanni ca. 40, Fielde ca. 45 (10 hinter dem Clitellum).

Der Hauptstreit dreht sich um die Frage der Regeneration des vorderen Teiles, des Kopfes. Nach Vandelli, Valmont de Bomare und Williams fehlt ein solches Vermögen überhaupt den Regenwürmern; nach Spallanzani darf, falls die Versuche von Erfolg begleitet sein sollen, nur eine kleinere Zahl von Segmenten abgeschnitten werden („pas une portion considérable“). Aus den Experimenten der folgenden geht hervor, daß vollständige oder teilweise Regeneration eintrat, wenn abgeschnitten wurden:

ca. 38 Segmente (Sangiovanni), 8 Segmente (Duges), ca. 6 Segmente (Quatrefages), 8—9 Segmente (Baudelot), 6 Segmente (Horst), 5 Segmente (Fielde).

Regeneration nach Wegnahme der vorderen Hälfte oder noch größerer Partien wollen beobachtet haben Réaumur, Bonnet, Ginanni.

Im übrigen wissen wir bereits, welche Unsicherheit mit Bezug auf Species und andere Angaben herrscht. Histologische Vorgänge hat auch von den neueren Autoren keiner bei den regenerativen Prozessen der Regenwürmer untersucht.

b) Eigene Untersuchungen.

Bestimmung der Species.

Die hier beschriebenen Versuche wurden im Herbst des Jahres 1893 begonnen und erstreckten sich bis gegen den Herbst 1895, ohne dort ihren Abschluß zu finden. Man wird bei den-

Wenn Untersuchungen auf diesem Gebiete Anspruch auf Genauigkeit machen sollen, so ist unbedingt eine unzweideutige Diagnose der verwendeten Species notwendig. Es galt also zuerst, sich in die Systematik der Lumbriciden einzuarbeiten. Zur Bestimmung wurden die Tabellen von Rosa (48) verwendet. Da die letzteren die Speciesnamen ohne Hinzufügung des Autorennamens gibt, folge ich dem Beispiel nach. Man findet übrigens die vollständige Angabe in dem neuesten Werke von Beddard (5), der, was die Genera Allolobophora und Lumbricus anbetrifft, in vollkommener Übereinstimmung mit Rosa steht. Alle Speciesnamen sind also auf Rosa’s Abhandlung zu beziehen; dies gilt auch schon für den historischen Abschnitt.

Alle diese sind leicht zu unterscheiden, ausgenommen All. terrestris und All. caliginosa. Auf den Punkt muß ich speziell aufmerksam machen, da er mich lange Zeit beschäftigt hat. Bei Rosa und ebenso wenig bei Beddard ist etwas von der Habitus-
ähnlichkeit dieser beiden Species zu ersehen. Beide machen darauf aufmerksam, daß Allolobophora terrestris mit Lumbricus Hercules verwechselt werden könne. Ich vermochte nie eine sehr große Übereinstimmung der zwei Arten zu finden; schon die Färbung, abgesehen von der viel schlankeren Form bei All. terrestris, differiert wesentlich: Hercules typisch rot, terrestris oben dunkelbraun. Hingegen zeigte Allolob. caliginosa in vielen Fällen einen zum Verwechseln ähnlichen Habitus wie terrestris, und nur die genauere Untersuchung (Lage des Clitellums, der Tubercula pubertatis etc.) gab eine Möglichkeit der Unterscheidung.

All. caliginosa ist im allgemeinen in Europa viel verbreiteter als terrestris. Bei uns sind beide gemein; terrestris kommt wohl in größerer Anzahl vor.

Dieser Ähnlichkeit im Habitus schien mir übrigens auch ein ähnliches Verhalten bei der Regeneration zu entsprechen.

Jedes Tier wurde, bevor es sich der Operation unterziehen mußte, genau bestimmt. Zu dem Zwecke wurde anfangs bei Individuen, bei denen der Personalausweis etwas Mißtrauen erweckend war, Chloroformbetäubung angewendet; später unterblieb diese, da ein übler Einfluß auf die Lebenstätigkeit wahrzunehmen war und deshalb auch Täuschungen bei der Beobachtung der Regenerationsvorgänge vorkommen konnten. Mit der Zeit wurde es auch leichter, lebende Tiere, ohne sie zu betäuben, zu bestimmen.

Selbstamputation.

Bei diesen vorbereitenden Arbeiten fiel mir bald eine Eigenschaft der Regenwürmer auf, die ich gleich an der Stelle besprechen will. Am 31. Oktober 1893, als ich ein Individuum von All. terrestris auf die Hand nahm, um es bestimmen zu können, bemerkte ich zu meinem Erstaunen, daß der Wurm in seinem hinteren Teile sich durchschnürte und so einen Teil seines Schwanzes verlor. Am Nachmittag desselben Tages machte ich wiederum bei einer All. terrestris dieselbe Beobachtung; diese gab das hinterste Viertel ihres Körpers preis. Bald konnte eine Reihe ähnlicher Fälle konstatiert werden, die wohl beweisen, daß es sich hier um Autotomie, um Selbstamputation handelt. Im ganzen wurden 71 solcher Fälle beobachtet, die sich auf folgende Species verteilen:
Über Regenerationsvorgänge bei Lumbriciden.

<table>
<thead>
<tr>
<th>Art</th>
<th>Fälle</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. Herculeus</td>
<td>8</td>
</tr>
<tr>
<td>L. rubellus</td>
<td>3</td>
</tr>
<tr>
<td>All. terrestris</td>
<td>43</td>
</tr>
<tr>
<td>All. caliginosa</td>
<td>7</td>
</tr>
<tr>
<td>All. foetida</td>
<td>9</td>
</tr>
<tr>
<td>All. chlorotica</td>
<td>1 Fall</td>
</tr>
<tr>
<td>Total</td>
<td>71</td>
</tr>
</tbody>
</table>

Damit soll jedoch mit Bezug auf die relative Häufigkeit dieser Erscheinung in Hinsicht auf die verschiedenen Arten nichts bewiesen werden; denn terrestris zeigt nur die meisten Fälle, weil von dieser Species im Verhältnis viel mehr Individuen untersucht wurden; die Zusammenstellung soll bloß darthun, daß Selbstamputation bei den verschiedensten Arten der Regenwürmer vorkommt.

Außer jenen Fällen, bei welchen als Ursache Unbehagen infolge Verweilens auf der Hand, wobei neben zunehmendem Ein tropfen wohl auch die Wärmewirkung in Betracht zu ziehen ist, oder Unbehagen infolge Verweilens auf dem Zimmerboden angenommen werden muß, sind eine Anzahl Beobachtungen bei Würmern gemacht worden, die an den verschiedensten Stellen des Körpers verletzt worden waren, und welche nun die verletzten Segmente mit den dahinter liegenden abschnürten; außerdem vermochten auch chemische Mittel ähnliche Erscheinungen hervorzurufen, und ein großer Teil der Beobachtungen bezieht sich auf Individuen, welche im Absterben begriffen waren. Ordnen wir die Fälle nach den Ursachen, so lassen sich zurückführen auf:

Unbehagen (Verweilen auf der Hand oder trockenem Boden)	5 (3 terr., 1 chlor., 1 rub.,)
Verletzungen	22 (14 terr., 5 Herc., 2 calig., 1 rub.,)
Wirkung	1 (terr.),
Chloralhydrat	1 (terr.),
chemischer Mittel	8 (4 terr., 4 calig.,)
Chloroform	28 (18 terr., 9 foet., 1 calig.,)
Absterben	7 (3 terr., 3 Herc., 1 rub.,)
unbekannte Ursachen	71

Auch hier besitzen die Zahlenangaben unter sich durchaus keinen relativen Wert.

I. Ursache Unbehagen. Dies sind die charakteristischen Fälle, weil bei diesen die Selbstamputation unter meinen Augen vor sich ging, und weil hier kein Zweifel walten kann, daß es sich um freiwillige Abschnürung eines Teils des Körpers handelt.
<table>
<thead>
<tr>
<th>Kontrollnummer</th>
<th>Species</th>
<th>Datum</th>
<th>Beobachtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>All. terrestris ohne</td>
<td>31. X. 93</td>
<td>Schnürt nach Verweilen auf der flachen Hand wenige Schwanzsegmente ab. Diese letzteren, b, tot am 9. XI. 93. Vorderer Teil, a, lebt noch 7 Monate, ohne zu regenerieren.</td>
</tr>
<tr>
<td></td>
<td>Clitellum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A₂</td>
<td>All. terrestris mit</td>
<td>31. X. 93</td>
<td>Schnürt nach Verweilen auf der Hand hinteres Viertel ab. b tot nach 125 Tagen ohne Regeneration. a kriecht aus dem Topfe aus und stirbt.</td>
</tr>
<tr>
<td></td>
<td>Clitellum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A₄</td>
<td>All. chlorotica</td>
<td>28. XI. 93</td>
<td>Schnürt sich nach kurzem Verweilen auf der Hand in der Mitte quer durch. b lebt 5 Monate ohne Regeneration. a bekommt nach 9 Monaten (Aug. 94) eine Regenerationsknospe, regeneriert die verlorene hintere Hälfte vollkommen und stirbt nach 1 1/2 Jahren (12. V. 94).</td>
</tr>
<tr>
<td>147</td>
<td>L. rubellus, 8 cm lang</td>
<td>28. VI. 94</td>
<td>Nach kurzem Verweilen auf der Hand werden 25 Schwanzsegmente abgeschnürt. b geht nach kurzer Zeit zu Grunde. a wird am 18. VII. 94 nochmals halbiert und stirbt am 24. VII. 94.</td>
</tr>
<tr>
<td></td>
<td>mit Clitellum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>291</td>
<td>All. terrestris, 9 cm</td>
<td>30. XI. 94</td>
<td>Sollte operiert werden, fällt vom Tisch zur Erde und schnürt sich dort nach kurzer Zeit durch in einen vorderen Teil von 7 cm Länge und einen hinteren von 2 cm Länge. b lebt bis Anfang Febr. 95 ohne Regeneration. a wird vorn operiert, regeneriert dort, hinten aber nicht und stirbt am 6. VII. 95 an den Folgen einer zweiten Operation.</td>
</tr>
<tr>
<td></td>
<td>lang, ohne Clitellum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aus diesen Beobachtungen ersehen wir:

1) daß es sich in diesen Fällen um eine durchaus freiwillige Teilung oder Abschnürung handeln muß;

2) daß dieselbe in den beschriebenen Fällen nie vor der Mitte des Körpers erfolgt ist, im hinteren Teile aber an keiner bestimmten Stelle;
3) daß das Stück a nachher lebensfähig ist und den Verlust durch Regeneration ersetzen kann;

4) daß das Stück b im allgemeinen ohne Regeneration nach kürzerer oder längerer Zeit zu Grunde geht.

II. Ursache Verletzung. Beispiele:

1) All. terrestris, 12 cm lang, ohne Clit. Kontrollnummer (K.-Nr.) D₂.
 Am 21. XI. 93 werden in einer Entfernung von ca. 3 cm vom Schwanzende auf eine Strecke von 15 Segmenten die beiden ventralen Borstenreihen mit Leibeswand und Hautmuskelschlauch entfernt. Am 22. XI. hat sich der Wurm vor der Stelle quer durchgeschnürt. Die hintere verletzte Partie geht bald zu Grunde; an der vorderen werden auf der rechten Seite, etwa 3 cm vom Vorderende entfernt, die Dorsalborsten auf etwa 10 Segmente weggescniitten. Diese Wunde verheilt rasch, und das Stück wird am 29. XI. 93 getötet.

2) All. terrestris, 7 cm, ohne Clit. K.-Nr. G₂.
 Am 23. XI. 93 werden linke Ventralborsten 3 cm vom Hinterende auf 12 Segmenten entfernt. Die Wunde verheilt; doch war der Wurm offenbar schon infiziert; am 29. XI. schnürt er sich vor der Wendstelle durch. Die hintere Partie stirbt bald, die vordere am 5. XII. 93.

3) Lumbr. rubellus, 8 cm, ohne Clit. K.-Nr. 5.
 Der Wurm war am 16. I. 94 der 7 vordersten Segmente beeraubt worden, hatte 3 wieder regeneriert und wurde am 10. IV. 94 zum Zwecke besserer Beobachtung hinten mit einer Pincette belastet. Plötzlich ließ er ein 1 1/2 cm langes Stück vom Schwanzende, das eben beblas tet war, zurück und kroch davon. Das Stück b ging bald zu Grunde; das vordere lebte bis zum 24. VII. 94, starb infolge großer Hitze.
 Dieser Fall, der mir von besonderem Interesse scheint, würde sich vielleicht besser in die erste Kategorie einreihen.

4) All. caliginosa, 8 cm. ohne Clit. K.-Nr. 6.
 Vom Schwanzende werden 18 Segmenten abgenommen; von der Wendstelle aus wird ein durch 5 Segmenten nach vorn zu gehender Medianschnitt gemacht, am 16. I. 94. 4 Tage später hat das Vorderstück die verletzten Segmente vollständig abgeschnürt und die neue Wunde verheilt. Es lebt noch 55 Tage in reinem Wasser.
5) *All. terrestris*, 15 cm, ohne Clit. K.-Nr. 163.

Wird am 10. VII. 94 auf eine Strecke von 2 cm vom Hinterende aus median durchschnitten; im gleichen Momente schnürt er sich wenige Segmente vor dem vorderen Ende des Schnittes glatt durch. Die Operation wird am großen Stück wiederholt; sofort bilden sich Einschnürungen, ohne daß es aber zur Trennung käme; am folgenden Tage wird das Stück jedoch ohne jegliche Verletzung gefunden, so daß die Wundstelle offenbar amputiert wurde. Das Individuum geht durch Zufall verloren.

6) *All. terrestris*, 10 cm, mit Clit. K.-Nr. 245.

Am 1. XI. 94 waren die 5 vordersten Segmente abgenommen worden; die Wunde verheilte in einigen Tagen; am 10. XI. 94 hatte sich der Wurm in der Mitte durchgeschnürt, und gleich dahinter zeigte sich der Hautmuskelschlauch infolge Verletzung zu Tage tretend (wahrscheinlich Biß!). Die hintere Hälfte stirbt bald, die vordere nach etwa 8 Tagen.

7) *L. Herculeus*, 15 cm, mit Clit. K.-Nr. 399.

Am 3. VII. 95 wurden diesem Exemplare die 10 ersten Segmente abgenommen; das Hauptstück soll durch einen leichten Schnitt am Hinterende gezeichnet werden; im gleichen Momente zerspringt (charakteristischer Ausdruck!) das Stück in 2 Teile einen vorderen von 71 Segmenten und einen hinteren von 26 Segmenten; am letzteren war Segment 6—10 (von vorn gerechnet) auf der linken Seite angeschnitten. b geht nach wenigen Tagen, a nach 1 Woche zu Grunde.

Das Genauere s. folg. Seite.

Die Würmer wurden nachher in einen Topf mit Erde gebracht und am folgenden Tage wieder untersucht. Sie hatten sich
<table>
<thead>
<tr>
<th>K.-Nr.</th>
<th>Species</th>
<th>Länge etc.</th>
<th>Durchschnittene Segmente</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>433</td>
<td>All. terrestris</td>
<td>13 cm, ohne Clit.</td>
<td>20 (in allen Fällen immer die letzten)</td>
<td>Bald erfolgt 5 Segmente weiter vorn Einschnürung, zunächst ziemlich schwach.</td>
</tr>
<tr>
<td>434</td>
<td>All. terrestr.</td>
<td>15 cm, ohne Clit.</td>
<td>34</td>
<td>Kaum war der Schnitt gemacht, schnürte sich der Wurm 6 Segm. davor stark ein; es trat Kot aus, und das verletzte Stück fiel ab. Blutverlust nicht bemerkbar. Am vorderen, großen Teile schloß sich die Wunde, und nach wenigen Minuten hat das neue Hinterende vollkommen die Form wie bei einem unverletzten Wurm.</td>
</tr>
<tr>
<td>435</td>
<td>All. terrestr.</td>
<td>16 cm, mit Clit.</td>
<td>18</td>
<td>4 Segmente weiter vorn schwache Einschnürung, nach 10 Min. Durchbruch bis auf den Darm.</td>
</tr>
<tr>
<td>436</td>
<td>All. terrestr.</td>
<td>16 cm, ohne Clit.</td>
<td>28</td>
<td>Zwischen 4. und 5. Segm. vom Schnittende nach vorn Einschnürung, dann auch zwischen 6. u. 7. u. zwischen 8. u. 9.</td>
</tr>
<tr>
<td>437</td>
<td>L. Hercul.</td>
<td>11 cm, ohne Clit.</td>
<td>13</td>
<td>Bruch bis auf den Darm erfolgt sofort zwischen 7. u. 8. Segm. davor.</td>
</tr>
<tr>
<td>439</td>
<td>L. Hercul.</td>
<td>10 cm, ohne Clit. (jung)</td>
<td>24</td>
<td>Einschnürung nach 1 Min. zwischen 2. u. 3. Segm. davor.</td>
</tr>
<tr>
<td>440</td>
<td>All. terrestr.</td>
<td>12 cm, ohne Clit.</td>
<td>28</td>
<td>Einschnürung zwischen 3. u. 4. Segm. und bald darauf Bruch bis auf den Darm.</td>
</tr>
<tr>
<td>441</td>
<td>All. terrestr.</td>
<td>14 cm, ohne Clit.</td>
<td>1 1/2 cm vom Hinterende weg</td>
<td>Bruch sofort bis zum Darm 1 Segm. davor.</td>
</tr>
<tr>
<td>442</td>
<td>L. Hercul.</td>
<td>11 cm, ohne Clit. (jung)</td>
<td>27</td>
<td>Einschnürung zwischen 2. u. 3. Segm davor.</td>
</tr>
</tbody>
</table>
alle glatt durchgeschnürt, und von verletzten Teilen war an ihnen nichts mehr zu sehen; die letzteren lagen separat. Die All. terrestris besaßen vollkommen das Aussehen normaler Individuen; bei den L. Herculeus zeigte sich dagegen das neue Hinterende nicht abgeflacht und verbreitert wie gewöhnlich, sondern cylindrisch und abgestutzt. Aus den Beobachtungen geht auch hervor, daß mit Bezug auf die Lage der Abschnürungsstelle kein bestimmtes Gesetz herrscht.

Die unter Rubrik II, Ursache Verletzungen, angeführten Fälle berechtigen uns zu den gleichen Schlüssen, die wir schon unter I gezogen. Dazu finden wir weiter:

1) Nie trat Selbstamputation ein, wenn die Wunde im vorderen Teile des Körpers lag.

2) Wurde ein Tier durch einen senkrecht zur Längsachse des Körpers geführten Querschnitt operiert, so konnte niemals Amputation konstatiert werden, gleichgültig, wo die Schnittstelle lag.

3) Wurde in der hinteren Hälfte durch einen zur Längsachse schiefer oder mit ihr parallel verlaufenden Schnitt eine Wunde herbeigeführt, die sich über mehrere Segmente erstreckte, so trat stets Selbstamputation des verletzten Teiles ein.

War dagegen vorn längs oder schief geschnitten worden, so starb das Tier, oder es trat Regeneration von der schiefer liegenden Wundstelle aus ein. (Letztere Beobachtungen siehe hinten!)

4) Es ist bemerkenswert, daß in den unter 6), 7) S. 214 angeführten Fällen die Autotomie bei Individuen sich zeigte, denen die vordersten Nervencentren, zum mindesten Ober- und Unterschlundganglion fehlten.

Alle bis jetzt behandelten Fälle müssen wohl zweifellos als „Selbstverstummelung“ gedeutet werden; allerdings ist dieses Vermögen bei den Regenwürmern nicht so ausgeprägt vorhanden, wie wir es bei vielen anderen Tieren, bei denen es längst beschrieben ist, kennen. Man kann viele Würmer in die Hand nehmen, bis einmal einer sich dabei zerschnürt; nur bei der Amputation infolge von Verletzung scheint es sich um eine in allen Fällen mit ziemlicher Sicherheit auftretende Erscheinung zu handeln. Hier liegt der für das Individuum daraus resultierende Nutzen auf der Hand: an Stelle der großen Wunde, welche langsam heilt, sich infolge dessen leicht infiziert und so das Leben des Wurmes in Gefahr bringt, wird eine kleine Wundstelle geschaffen, die außerordentlich rasch verheilt. Daher wäre es auch zwecklos, zu amputieren, wenn durch einen Querschnitt ein Teil des Körpers ent-
fernt wird. Vor allem kommt hier die Frage der Regeneration in Betracht, und es sei vorgreifend gesagt, daß nach meinen Beobachtungen wie nach den früheren konstatiert werden kann, daß die Neubildung des Schwanzes relativ leicht vor sich geht, während im vorderen Abschnitt des Körpers bloß nach Wegnahme einer geringen Anzahl vorderster Segmente rasche und sichere Regeneration eintritt. So erscheint es zweckmäßig, wenn hintere Partien abgeschnürt werden, um damit diesen oder jenen Vorteil zu erreichen; denn solche Teile werden mit großer Wahrscheinlichkeit wieder ersetzt; zwecklos aber dürfte es sein, vordere Teile, die aus einer größeren Anzahl von Segmenten bestehen, zu amputieren; denn sie würden vermutlich nicht regeneriert. Damit stimmen die angeführten Beobachtungen, wonach nie Autotomie in den vorderen Abschnitten des Körpers vorkam.

Ob jene Teilungsvorgänge, als deren Ursache „Unbehagen“ bezeichnet wurde, für das Tier von direktem Nutzen sind, ist fraglich. Oder sollte ein kürzeres Individuum leichter der Gefahr entrinnen?

Mit diesen Beobachtungen steht die Thatgabe im Einklang, daß häufig Stücke von 2 oder mehr cm Länge, oder wiederum kürzere von Hinterenden von Regenwürmern gefunden werden, welche Teile meist noch leben und aus diesem oder jenem Grunde abgeschnürt worden sein mögen. Ähnliche Vorkommnisse dürfen wohl auch vorausgesetzt werden, wenn Individuen von nur halber Länge etc. gefunden werden.

Es sei hier gleich daran erinnert, daß SPALLANZANI bemerkt, er habe Regenerate bekommen, wenn er einen Wurm der Länge nach vom Hinterende aus ein Stück weit geteilt habe. „Les portions divisées périssent, le reste pousse une nouvelle queue."

III. und IV. Ursachen Absterben und Wirkung chemischer Agentien.

Neben den obigen, unzweideutigen Fällen fanden sich ähnliche Vorgänge bei Regenwürmern, die krank und im Absterben begriffen waren. Diese schnürten einzelne Stücke ab, und vielmals war zu beobachten, daß es sich um die am meisten infizierten Partien handelte. Solcher Fälle wurden 28 notiert. Die betreffenden Individuen hatten sich an den verschiedensten Stellen des Körpers und meist mehrfach eingeschnürt; doch auch hier lagen die Amputationsstellen stets im hinteren Teile des Körpers. Daß es sich dabei nicht um ein bloßes Zerfallen handelte, beweist der Umstand, daß die Stücke meist bei der Beobachtung noch lebend

Bd. XXX. N. F. XXIII.
und unter sich im Zusammenhang gefunden wurden. Doch hatte der Prozeß hier keinen weiteren Erfolg; denn es ist mir kein Fall bekannt, wo eines der Teilstücke mit dem Leben davonkam; dennoch kann man sich des Eindruckes nicht erwehren, daß bei dem Vorgang durch Abschnüren des meist erkrankten Teiles der andere gerettet werden soll.

Endlich erfolgte auch Autotomie infolge Wirkung chemischer Agentien; dieselbe war entweder eine direkte oder aber indirekt, insofern das Individuum zunächst vergiftet wurde und dann, wie oben, beim Absterben die Erscheinung auftrat. Folgende Fälle gelangten hier zur Beobachtung:

1) Wirkung von Chloralhydrat (ca. 3%). Am 9. XI. 93 wird eine All. terrestris in eine solche Lösung gebracht und schnürt darin 2 Schwanzstücke ab. Der Wurm wurde nicht weiter beobachtet.

Die übrigen Fälle beziehen sich auf die Einwirkung von Chloroform.

2) All. terrestris, K.-Nr. 45. Am 13. II. 94 werden 14 vorderste Segmente abgeschnitten, nachdem das Tier zuvor chloroformiert worden war. Bald darauf wurden 50 Schwanzsegmente amputiert; diese gehen in wenigen Tagen zu Grunde; das vordere Stück lebt, nachdem es zu regenerieren begonnen, bis zum 2. VI. 94.

3—5) Am 25. I. 94 wird bei 3 All. caliginosa beobachtet, daß sie sich nach Chloroformierung mehrfach durchschnüren bis auf den Darm. Nicht weiter beobachtet.

6) Am 15. II. 94 teilt sich 1 All. caliginosa aus dem gleichen Grunde in eine vordere und hintere Hälfte.

7) All. terrestris schnürt am 29. I. 94 nach Chloroformwirkung ihr hinteres Viertel bis auf den Darm durch; am folgenden Tage sind beide Teile ganz getrennt; sie gehen im Laufe einer Woche zu Grunde.

8) All. terrestris, K.-Nr. 34, schnürt sich aus demselben Grunde an 2 Orten der hinteren Hälfte ein; alle 3 Stücke, in die das Individuum nach 3 Tagen zerfallen, sterben nach kurzer Zeit. 3. IV. 94.

9) All. terrestris, K.-Nr. 70, schnürt sich während des Chloroformierens an 12 Stellen im hinteren Drittel des Körpers bis auf den Darm durch. Alles tot am 9. IV. 94.

Es muß erwähnt werden, daß Alkohol nie eine solche Wirkung hervorrief, trotzdem derselbe vorzugsweise, allerdings sehr ver-
dünnt, zum Töten der Tiere angewandt wurde; ebensowenig vermochten dies Chromsäure, Salpetersäure etc.

Was schließlich jene Fälle anbetrifft, die unter „Ursache unbekannt“, ihrer 7, aufgeführt sind, so konnte bei diesen bloß konstatiert werden, daß Stücke, die sich in der Nähe von Individuen, die nicht mehr vollständig waren, fanden, von letzteren offenbar amputiert worden waren, ohne daß der Fall auf Krankheit oder Verletzung zurückgeführt werden konnte. Darunter fand sich auch ein L. Herculeus, bei dem die Abschnürungsstelle 20 Segmente hinter dem Clitellum lag.

Soweit meine Beobachtungen. Sie wurden nur so gelegentlich gesammelt, und es ist klar, daß hier umfassenderes statistisches Material wünschenswert erscheint, um weitere Schlüsse, die für die Kenntnis der Regenerationserscheinungen beim Regenwurm nicht unwichtig sind, ziehen zu können. Es liegt auch sehr nahe, anzunehmen, daß durch die Autotomie diesem Tiere ein Mittel an die Hand gegeben ist, unter Zurücklassung eines Teiles seines Körpers den Feinden zu entrinnen. Darüber ist aber gar nichts bekannt.

Was den Vorgang der Abschnürung selbst anbetrifft, handelt es sich dabei um eine starke Kontraktion der Muskulatur an der betreffenden Stelle. Je nach der Stärke derselben erfolgt der Durchbruch plötzlich, explosionsartig, wie dies ein paar Mal beobachtet wurde, unter Ausspritzen eines Teiles des Darminhaltes, oder aber es ist der Prozeß ein allmäßiger und nimmt, wie an verschiedenen angeführten Beispielen zu ersehen, mehrere Tage in Anspruch. Gewöhnlich erfolgt zunächst nur eine Durchschnürung bis auf den Darm; dieser zieht dann als verbindende Schnur noch längere Zeit das hintere Stück nach, bis es einmal an einem Hindernis abgerissen wird.

Der Bruch erfolgt, wie wenigstens in verschiedenen Fällen sicher festgestellt wurde, zwischen zwei Segmenten, allein nicht an einer bestimmten Stelle des Körpers, abgesehen von der erwähnten Beschränkung auf die hintere Hälfte. Bei All. terrestris, wo die Segmente namentlich hinten enger sind, ist es oft schwer zu unterscheiden, ob die Bruchstelle in einem oder zwischen zwei Segmenten liege. Nachher schließt sich am Hauptstück die Wundstelle fast momentan, ein Blutverlust findet kaum statt, und in
wenigen Minuten zeigt sich das neue Hinterende ganz in der Form wie beim unverletzten, normalen Wurme.

Selbstverständlich dürfen wir bei den Vorgängen nicht etwa wie bei Lumbriculus und anderen Oligochäten an eine Art ungeschlechtlicher Fortpflanzung denken; das geht schon daraus hervor, daß das amputierte kleinere oder hintere Stück im allgemeinen nicht fähig ist, den vorderen Teil zu regenerieren.

Über diese Selbstamputation bei den Regenwürmern ist mir aus der Litteratur nichts bekannt geworden. FRIEDLÄNDER (24) scheint einmal Ähnliches bemerkt zu haben. Er schreibt S. 202:

„Beiläufig will ich noch erwähnen, daß von den Würmern ohne Unterschlundganglion 3 Stücke von im ganzen 4 einige Tage nach der Operation eine Reihe der letzten Segmente verloren, indem sich diese einfach ablösten oder auch bei ganz geringer Unvorsichtigkeit bei der Handhabung der Tiere abrissen; ich weiß nicht, ob diese Erscheinung bloß auf Zufall beruhte.

Gewisse Polychäten stoßen sehr leicht bei allerlei starken Reizen die hintersten Segmente ab, Regenwürmer aber kaum."

Vergleichen wir diese Vorgänge mit entsprechenden bei Verwandten der Regenwürmer, so findet sich, daß dort der Trennungsprozeß offenbar ganz ähnlich verläuft. Für LUMBRICULUS beschreibt ihn RANDOLPH (45) folgendermaßen (S. 321): „Immediately upon the separation of the worm into two parts, or perhaps before the separation and consequent upon the stimulus that causes it, a strong contraction of the muscles takes place. In cases of normal division I think the separation is probably brought about by violent muscular contraction... The contraction is most marked in the longitudinal muscles, and the effect is to draw over at their free ends the other layers of the body-wall and of the wall of the alimentary canal to which they are attached. The outer wall is curved inward, and the wall of the intestine outward, so as to almost or quite shut in the coelomic cavity of the end somite. The flow of blood from the broken ends of the vessels is very quickly checked, a result possibly of the great contraction which may be imagined to extend also to the walls of the blood vessels."

BLOW (12) läßt aus seinen Beobachtungen bei Lumbriculus ersehen, daß der Bruch in den meisten Fällen mitten in einem Segment erfolgt, hier und da aber auch zwischen 2 Segmenten. Wie schon erwähnt, habe ich die Bruchstelle bei L. Herculeus und All. terrestris mehrmals sicher zwischen 2 Segmenten konstatiert; ob sie nicht auch in einem Segment liegen kann, wage
ich aber weder zu bejahen noch zu verneinen. Bei Lumbriculus scheint in diesem Punkt keine bestimmte Regel zu herrschen.

Bei Meeresanneliden ist nach Quatrefages (44) (S. 121, T. I) die Trennung im Segmente das Gewöhnliche.

Da es nur meine Absicht war, auf dieses Vorkommen der Autotomie bei Regenwürmern aufmerksam zu machen, und der Vorgang nicht Hauptobjekt meiner Untersuchung, kann ich es mir ersparen, auf die Arbeiten, welche von einer Selbstverstümmelung bei anderen Tieren sprechen, einzutreten. Es sei nur auf die neueste Publikation von Fredericq (22) über diesen Gegenstand verwiesen; in derselben findet sich eine ziemlich vollständige Zusammenstellung der einschlägigen Litteratur.

Ohne auf die Streitfrage, ob es sich bei dem Vorgange der Autotomie um reine Reflexe oder um eine „Verquickung von freiem Willen resp. Instinkt und Reflex“ (Frenzel 23) handelt, einzugehen, sei nochmals darauf aufmerksam gemacht, daß unter den zur Beobachtung gelangten Würmern mehrere sind, die nach Verlust der vordersten Nervencentren selbstamputierten. Ähnliches ist bei verschiedenen anderen Tieren (Krabben, Heuschrecken, Eidechsen u. a.) nachgewiesen worden.

Karl Hescheler,

Regeneration der 4 oder 5 vordersten Segmente.

Die Tiere wurden jede Woche 2 mal kontrolliert; infolgedessen mußte ich davon absehen, Versuche mit großen Massen anzustellen, wenn ich nicht enorm viel Zeit mit der Kontrolle verlieren wollte. Ich zog deshalb vor, wenige Individuen zu gleicher Zeit zu operieren und die Versuche öfters zu wiederholen; so konnte ich auch die Vorgänge im einzelnen genauer beobachten und mußte zugleich nicht Gefahr laufen, daß alles auf einmal wegstarb, was beim Experimentieren mit großen Mengen, wie ich mich überzeugen konnte, hier und da der Fall ist. Ich wiederhole nochmals, daß die Versuche, die hier beschrieben werden, vom Herbst 1893 zum Herbst 1895 in einer ununterbrochenen Folge erstreckten.

Einzelne Individuen, die als Schnittobjekte für frühe Regenerationsstadien ausersehen waren, wurden auch in Wasser gehalten.
Bei der Gelegenheit will ich gleich erwähnen, daß Regenwürmer wochenlang in Gefäßen, wo sie die ganze Zeit unter Wasser getaucht leben müssen, gehalten werden können. So z. B.
1 All. caliginosa (K.-Nr. 6), die halbiert wurde. Die hintere Hälfte lebte 41 Tage in reinem Brunnenwasser, die vordere 55, wurde dann in Erde gebracht und starb dort nach 3 Tagen (16. I. 94—12. III. 94),
1 L. rubellus (K.-Nr. 74) lebte 11 Tage in Wasser (14. III. 94),
1 All. terrestris (,, 75) ,, 45 ,, ,, ,, (14. III. 94),
1 L. rubellus (,, 252) ,, 48 ,, ,, ,, (2. XI. 94),
1 All. terrestris (,, 253) ,, 48 ,, ,, ,, (2. XI. 94).

Nahrung, Pflanzen etc. wurden keine hinzugebracht, das Wasser selbst fast jeden Tag gewechselt.

RÉDI (47) berichtet, daß er Regenwürmer bis 20 Tage in Wasser untergetaucht gehalten habe, und daß sie nach dieser Zeit noch munter weiterlebten.

PERRIER (43) erzählt (S. 372):
„Nous avons actuellement (20 april 1874) vivants, dans notre laboratoire du Muséum, plusieurs Lombrics de grande taille, envoyés d’Hyères par M. le professeur DESHAYES, et qui n’ont cessé d’être submergés au fond d’un grand bocal depuis le 23 décembre 1873.“

DARWIN (17), der auch auf obige Angabe aufmerksam macht, ctiert ferner MORREN (De Lumbrici terrestris historia naturali), welcher beobachtet hat, daß Würmer im Sommer ein Untertauchen von 15—20 Tagen ertrugen, daß sie aber im Winter bei einer solchen Behandlung starben.

Auch FIELDE (20) hielt einzelne Individuen im Winter ohne Nahrung 11—14 Tage unter Wasser.

Es wurden im genannten Zeitraume im ganzen 167 Würmern 5, in einzelnen Fällen 4 vorderste Segmente abgeschnitten. Die Individuen verteilen sich auf folgende Species:

<table>
<thead>
<tr>
<th>Species</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbricus rubellus</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>castaneus</td>
</tr>
<tr>
<td></td>
<td>Herculeus</td>
</tr>
<tr>
<td>Allolobophora foetida</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>caliginosa</td>
</tr>
<tr>
<td></td>
<td>terrestris</td>
</tr>
<tr>
<td></td>
<td>cyanea</td>
</tr>
<tr>
<td>Gesamt</td>
<td>167</td>
</tr>
</tbody>
</table>
Tabelle I.

Von diesen starben eines natürlichen Todes:

<table>
<thead>
<tr>
<th></th>
<th>von 25 L. rubellus</th>
<th>von 1 L. castaneus</th>
</tr>
</thead>
<tbody>
<tr>
<td>nach 2—9 Tagen</td>
<td></td>
<td>nach 6 Tagen</td>
</tr>
<tr>
<td>nach 21 Tag.</td>
<td>12</td>
<td>106 1 —</td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>wenig regener.</td>
</tr>
<tr>
<td>„ 64 „</td>
<td>324 1 3</td>
<td></td>
</tr>
<tr>
<td>„ 65 „</td>
<td>97 1 3</td>
<td></td>
</tr>
<tr>
<td>„ 70 „</td>
<td>376 1 3 mit A!</td>
<td></td>
</tr>
<tr>
<td>„ 75 „</td>
<td>377 1 4</td>
<td></td>
</tr>
<tr>
<td>insgesamt</td>
<td>17</td>
<td>insgesamt 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>von 15 L. Herculeus</th>
<th>von 29 Alloloboph. foetida</th>
</tr>
</thead>
<tbody>
<tr>
<td>nach 7 Tagen</td>
<td></td>
<td>nach 10 Tag.</td>
</tr>
<tr>
<td>„ 14—21 „</td>
<td>386 1 —</td>
<td>„ 18 „ 393 1 kleine</td>
</tr>
<tr>
<td></td>
<td>387—389 8</td>
<td>30 Knospe</td>
</tr>
<tr>
<td>„ 30 „</td>
<td>158 1 undeutl. segm.</td>
<td>„ 21 „ 424 1 2</td>
</tr>
<tr>
<td>„ 35 „</td>
<td>390 1 —</td>
<td>„ 51 „ 392 1 2</td>
</tr>
<tr>
<td>„ 60 „</td>
<td>114 1 4</td>
<td></td>
</tr>
<tr>
<td>„ 64 „</td>
<td>113 1 3</td>
<td></td>
</tr>
<tr>
<td>insgesamt</td>
<td>13</td>
<td>insgesamt 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>von 13 All. caliginosa</th>
<th>von 82 All. terrestris</th>
</tr>
</thead>
<tbody>
<tr>
<td>nach 19 Tag.</td>
<td></td>
<td>nach 5 Tagen</td>
</tr>
<tr>
<td>„ 29 „</td>
<td>177 1 undeutl. seg.</td>
<td>99 1 3 —</td>
</tr>
<tr>
<td>„ 67 „</td>
<td>223 1 2</td>
<td>217 3 —</td>
</tr>
<tr>
<td></td>
<td>227</td>
<td>„ 9 „ 110 1 —</td>
</tr>
<tr>
<td>„ 29 „</td>
<td>69 1 —</td>
<td>„ 14 „ 143 2 —</td>
</tr>
<tr>
<td>„ 67 „</td>
<td>223 1 2</td>
<td>„ 19 „ 245 2 undeutl. seg.</td>
</tr>
<tr>
<td></td>
<td>227</td>
<td>„ 19 „ 176 2</td>
</tr>
<tr>
<td>„ 53 „</td>
<td>59 1 3</td>
<td>„ 53 „ 176 2</td>
</tr>
<tr>
<td>„ 76 „</td>
<td>327 1 3</td>
<td>„ 76 „ 327 1 3</td>
</tr>
<tr>
<td>„ 79 „</td>
<td>379 1 4</td>
<td>„ 79 „ 379 1 4</td>
</tr>
<tr>
<td>„ 84 „</td>
<td>328 1 3</td>
<td>„ 84 „ 328 1 3</td>
</tr>
<tr>
<td>„ 93 „</td>
<td>321 1 4</td>
<td>„ 93 „ 321 1 4</td>
</tr>
<tr>
<td>insgesamt</td>
<td>4</td>
<td>insgesamt 13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>von 2 All. cyanea</th>
</tr>
</thead>
<tbody>
<tr>
<td>nach 5 Tagen</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 60 Individuen.

1) K.-Nr. = Kontrollnummer.
Die Angabe „mit A!“ bedeutet, daß im Regenerate Anomalien der Segmentierung aufgetreten sind.

Tabelle II.
Von den übrigen 107, die getötet wurden, lebten nach der Operation:

<table>
<thead>
<tr>
<th>von 25 L. rubellus</th>
<th>von 15 L. Herculeus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stunden bis</td>
<td></td>
</tr>
<tr>
<td>6 Tage</td>
<td>131-135</td>
</tr>
<tr>
<td>53 „</td>
<td>60</td>
</tr>
<tr>
<td>76 „</td>
<td>256</td>
</tr>
<tr>
<td>insgesamt</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>von 29 All. foetida</th>
<th>von 13 All. caliginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stunden bis</td>
<td></td>
</tr>
<tr>
<td>5 Tage</td>
<td>212</td>
</tr>
<tr>
<td>11 „</td>
<td>151</td>
</tr>
<tr>
<td>12 „</td>
<td>211</td>
</tr>
<tr>
<td>13 „</td>
<td>149</td>
</tr>
<tr>
<td>15 „</td>
<td>153</td>
</tr>
<tr>
<td>17 „</td>
<td>179</td>
</tr>
<tr>
<td>19 „</td>
<td>150</td>
</tr>
<tr>
<td>27 „</td>
<td>142</td>
</tr>
<tr>
<td>28 „</td>
<td>152</td>
</tr>
<tr>
<td>30 „</td>
<td>180</td>
</tr>
<tr>
<td>64 „</td>
<td>284-286</td>
</tr>
<tr>
<td>leben noch nach 2 Monaten</td>
<td>418-423</td>
</tr>
<tr>
<td>insgesamt</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>von 82 All. terrestris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stunden bis 11 Tage</td>
</tr>
<tr>
<td>12 „</td>
</tr>
<tr>
<td>14 „</td>
</tr>
<tr>
<td>18 „</td>
</tr>
<tr>
<td>21 „</td>
</tr>
<tr>
<td>22 „</td>
</tr>
</tbody>
</table>
von 82 All. terrestris

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23 Tage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>184</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>187</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>25 1/2</td>
<td>214</td>
<td>3—4 mit A!</td>
</tr>
<tr>
<td>27</td>
<td>O₂</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>O₃</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>P₅</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>34</td>
<td>4—5 mit A!</td>
</tr>
<tr>
<td>62</td>
<td>O₁</td>
<td>undeutl. segm.</td>
</tr>
<tr>
<td></td>
<td>P₁</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>P₅</td>
<td>4</td>
</tr>
<tr>
<td>83</td>
<td>246</td>
<td>3 3/4</td>
</tr>
<tr>
<td>247</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>248</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>84</td>
<td>P₂</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>O₄</td>
<td>5 mit A!</td>
</tr>
<tr>
<td>90</td>
<td>116</td>
<td>4</td>
</tr>
<tr>
<td>3 1/2 Monate</td>
<td>325</td>
<td>1</td>
</tr>
<tr>
<td>4 1/2</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>7 1/2</td>
<td>P₆</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>O₆</td>
<td>4</td>
</tr>
<tr>
<td>lebt noch (3 1/2 Mon.)</td>
<td>378</td>
<td>1</td>
</tr>
</tbody>
</table>

insgesamt | 69 |

Aus Tabelle I geht zunächst hervor, daß von 167 Individuen dieser Versuchsreihe 60, also mehr als ein Drittel, kürzere oder längere Zeit nach der Operation zu Grunde gingen; nun ist aber das Verhältnis in Wirklichkeit ein wesentlich anderes, da von den in Tabelle II aufgeführten, zum Zwecke weiterer Untersuchung getöteten Exemplaren diejenigen eigentlich in Abzug gebracht werden müssen, welche kurz nach der Operation konserviert wurden. So wäre die Sterblichkeitsziffer noch eine bedeutend höhere. Andererseits ist die Sache doch nicht so schlimm, da das Absterben derjenigen, welche eines natürlichen Todes dahingingen, nachdem sie bereits zu regenerieren begonnen hatten, wiederum nicht auf Rechnung der ausgeführten Operation zu setzen ist. Von dem Standpunkte aus betrachtet, liegen die Verhältnisse besonders bei All. terrestris sehr günstig; dort sind eigentlich nur 6 in den ersten Tagen nach der Operation zu Grunde gegangen; böser sieht es freilich bei L. rubellus und Herculeus aus. Für All. foetida muß erwähnt werden, daß jene 7, welche im Verlaufe
der ersten 10 Tage starben, die ersten waren, die von dieser Species operiert wurden; sie verteiltern sich auf zwei verschiedene Versuche, und schon nahm ich an, daß bei dieser Art das Regenerationsvermögen sehr schlecht entwickelt sei, als mich weitere Versuche gerade vom Gegenteil überzeugten, ein Beweis, wie man in diesen Fragen mit seinen Schlüssen sehr vorsichtig sein muß. L. castaneus und All. cyanea kommen nicht weiter in Betracht; die Fälle sind nur der Vollständigkeit halber angeführt.

Prozentzahlen wollen wir hier keine aufstellen; die Tabellen geben auch so einen ungefähren Einblick in die bei vorliegenden Versuchen waltenden Verhältnisse. Verglichen mit den nachfolgenden, zeigen sie vor allem, daß bei Wegnahme dieser wenigen vorderen Segmente die Aussichten auf Regeneration bei fast allen untersuchten Arten sehr günstige sind.

Weiter konstatieren wir, daß in den seltensten Fällen die volle Zahl der abgeschnittenen Segmente regeneriert wird, und daß bei den Regeneraten sehr häufig Segmentanomalien auftreten. Beide Tatsachen wollen wir später einläßlich besprechen. Zur Demonstration derselben wird unten eine Tabelle folgen, welche die in Betracht kommenden Fälle zusammenstellt (Tab. IV).

Über den Einfluß verschiedener einwirkender Faktoren, über die Schnelligkeit, mit der die Regenerate auftreten etc., wollen wir uns vorderhand jedes Urteils enthalten.

Zunächst ziehen wir aus obigen zwei Tabellen jene Fälle aus, in denen den Versuchstieren weniger als 5 Segmente abgeschnitten wurden:

<table>
<thead>
<tr>
<th>Species</th>
<th>K.-Nr.</th>
<th>Leben nach der Operation</th>
<th>Abgeschnittene Segmente</th>
<th>Regenerierte Segmente</th>
<th>Enthalten in Tabelle</th>
<th>Zeit der Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. rubellus</td>
<td>60</td>
<td>53 Tage</td>
<td>4</td>
<td>4</td>
<td>I</td>
<td>5. III. 94</td>
</tr>
<tr>
<td>—</td>
<td>324</td>
<td>64</td>
<td>4</td>
<td>3</td>
<td>I</td>
<td>18. I. 95</td>
</tr>
<tr>
<td>—</td>
<td>256</td>
<td>76</td>
<td>4 (1/2)</td>
<td>3 (1/2)</td>
<td>II</td>
<td>7. XI. 94</td>
</tr>
<tr>
<td>All. foetida</td>
<td>151</td>
<td>11</td>
<td>4 (1/2)</td>
<td>3 (1/2)</td>
<td>II</td>
<td>5. II. 94</td>
</tr>
<tr>
<td>—</td>
<td>393</td>
<td>18</td>
<td>4</td>
<td>—</td>
<td>I</td>
<td>11. VI. 95</td>
</tr>
<tr>
<td>—</td>
<td>424</td>
<td>21</td>
<td>4</td>
<td>—</td>
<td>I</td>
<td>20. VII. 95</td>
</tr>
<tr>
<td>All. caliginosa</td>
<td>294</td>
<td>16(1/4) Std.</td>
<td>4</td>
<td>—</td>
<td>II</td>
<td>3. XIII. 94</td>
</tr>
<tr>
<td>—</td>
<td>295</td>
<td>24</td>
<td>4</td>
<td>—</td>
<td>II</td>
<td>3. XIII. 94</td>
</tr>
<tr>
<td>All. terrestris</td>
<td>126</td>
<td>45</td>
<td>4</td>
<td>—</td>
<td>II</td>
<td>22. V. 94</td>
</tr>
<tr>
<td>—</td>
<td>125</td>
<td>88</td>
<td>4</td>
<td>—</td>
<td>II</td>
<td>22. V. 94</td>
</tr>
<tr>
<td>—</td>
<td>186</td>
<td>21 Tage</td>
<td>4 (1/4)</td>
<td>3 (1/4)</td>
<td>II</td>
<td>18. VII. 94</td>
</tr>
<tr>
<td>—</td>
<td>214</td>
<td>25(1/2)</td>
<td>4</td>
<td>3—4 mit A!</td>
<td>II</td>
<td>10. VIII. 94</td>
</tr>
<tr>
<td>—</td>
<td>246</td>
<td>83</td>
<td>4 (3/4)</td>
<td>3 (3/4)</td>
<td>II</td>
<td>1. XI. 94</td>
</tr>
</tbody>
</table>
Tabelle IV.

Abgeschnitten 5 Segmente. Fälle, bei denen ein segmentiertes Regenerat auftrat, zusammengestellt aus Tabellen I und II.

<table>
<thead>
<tr>
<th>Species</th>
<th>K.-Nr.</th>
<th>Lebend nach der Operation</th>
<th>Regenerierte Segmente</th>
<th>Enthalten in Tabelle</th>
<th>Zeit der Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. rubellus</td>
<td>257</td>
<td>76 Tage</td>
<td>4—5 mit A!</td>
<td>II</td>
<td>7. XI. 94</td>
</tr>
<tr>
<td>—</td>
<td>377</td>
<td>75 "</td>
<td>4</td>
<td>I</td>
<td>6. V. 95</td>
</tr>
<tr>
<td>—</td>
<td>376</td>
<td>70 "</td>
<td>3—4 mit A!</td>
<td>I</td>
<td>6. V. 95</td>
</tr>
<tr>
<td>—</td>
<td>97</td>
<td>65 "</td>
<td>3</td>
<td>I</td>
<td>5. IV. 94</td>
</tr>
<tr>
<td>L. Herculeus</td>
<td>114</td>
<td>60 "</td>
<td>4</td>
<td>I</td>
<td>17. IV. 94</td>
</tr>
<tr>
<td>—</td>
<td>183</td>
<td>37 "</td>
<td>3</td>
<td>II</td>
<td>16. VII. 94</td>
</tr>
<tr>
<td>—</td>
<td>113</td>
<td>64 "</td>
<td>3</td>
<td>I</td>
<td>17. IV. 94</td>
</tr>
<tr>
<td>—</td>
<td>258</td>
<td>76 "</td>
<td>3</td>
<td>II</td>
<td>7. XI. 94</td>
</tr>
<tr>
<td>All. foetida</td>
<td>153</td>
<td>15 "</td>
<td>4</td>
<td>II</td>
<td>5. VII. 94</td>
</tr>
<tr>
<td>—</td>
<td>150</td>
<td>19 "</td>
<td>4</td>
<td>II</td>
<td>5. VII. 94</td>
</tr>
<tr>
<td>—</td>
<td>142</td>
<td>27 "</td>
<td>4</td>
<td>II</td>
<td>26. VI. 94</td>
</tr>
<tr>
<td>—</td>
<td>152</td>
<td>28 "</td>
<td>4</td>
<td>II</td>
<td>5. VII. 94</td>
</tr>
<tr>
<td>—</td>
<td>418</td>
<td>lebt noch</td>
<td>4</td>
<td>II</td>
<td>20. VII. 95</td>
</tr>
<tr>
<td>—</td>
<td>180</td>
<td>30 Tage</td>
<td>3—4 mit A!</td>
<td>II</td>
<td>16. VII. 94</td>
</tr>
<tr>
<td>—</td>
<td>284</td>
<td>64 "</td>
<td>3</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>285</td>
<td>64 "</td>
<td>3</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>286</td>
<td>64 "</td>
<td>3</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>419</td>
<td>lebt noch</td>
<td>3</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>420</td>
<td>"</td>
<td>3</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>421</td>
<td>"</td>
<td>3</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>422</td>
<td>"</td>
<td>3</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>423</td>
<td>"</td>
<td>3</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>392</td>
<td>51 Tage</td>
<td>2 (?)</td>
<td>I</td>
<td>11. VI. 95</td>
</tr>
<tr>
<td>All. caligin.</td>
<td>225</td>
<td>36 "</td>
<td>5</td>
<td>II</td>
<td>23. VIII. 94</td>
</tr>
<tr>
<td>—</td>
<td>117</td>
<td>97 "</td>
<td>5</td>
<td>II</td>
<td>17. IV. 94</td>
</tr>
<tr>
<td>—</td>
<td>255</td>
<td>76 "</td>
<td>4</td>
<td>II</td>
<td>7. XI. 94</td>
</tr>
<tr>
<td>All. terestris</td>
<td>154</td>
<td>22 "</td>
<td>5</td>
<td>II</td>
<td>6. VII. 94</td>
</tr>
<tr>
<td>—</td>
<td>248</td>
<td>83 "</td>
<td>5</td>
<td>II</td>
<td>1. XI. 94</td>
</tr>
<tr>
<td>—</td>
<td>O₄</td>
<td>85 "</td>
<td>5 mit A!</td>
<td>II</td>
<td>8. XI. 93</td>
</tr>
<tr>
<td>—</td>
<td>155</td>
<td>18 "</td>
<td>4—5 mit A!</td>
<td>II</td>
<td>6. VII. 94</td>
</tr>
<tr>
<td>—</td>
<td>34</td>
<td>56 "</td>
<td>4—5 mit A!</td>
<td>II</td>
<td>6. II. 94</td>
</tr>
<tr>
<td>—</td>
<td>P₄</td>
<td>71/₃ Mon.</td>
<td>4—5 mit A!</td>
<td>II</td>
<td>9. XI. 93</td>
</tr>
<tr>
<td>—</td>
<td>187</td>
<td>24 Tage</td>
<td>4</td>
<td>II</td>
<td>18. VII. 94</td>
</tr>
<tr>
<td>—</td>
<td>P₁</td>
<td>62 "</td>
<td>4</td>
<td>II</td>
<td>9. XI. 93</td>
</tr>
<tr>
<td>—</td>
<td>P₃</td>
<td>62 "</td>
<td>4</td>
<td>II</td>
<td>9. XI. 93</td>
</tr>
<tr>
<td>—</td>
<td>379</td>
<td>79 "</td>
<td>4</td>
<td>I</td>
<td>6. V. 95</td>
</tr>
<tr>
<td>—</td>
<td>247</td>
<td>83 "</td>
<td>4</td>
<td>I</td>
<td>1. XI. 94</td>
</tr>
</tbody>
</table>

Anm. Bei All. foetida, laufende Nr. 23, wurde ein Fragezeichen gesetzt, weil die Segmentierung, die bei dem Individuum sehr langsam verlief, vermutlich noch nicht vollendet war; sonst steht dieser Fall, wo an Stelle von 5 nur 2 Segmente regeneriert wurden, einzig da.
Über Regenerationsvorgänge bei Lumbriciden.

<table>
<thead>
<tr>
<th>Species</th>
<th>K.-Nr.</th>
<th>Lebten nach der Operation</th>
<th>Regenerierte Segmente</th>
<th>Enthalten in Tabelle</th>
<th>Zeit der Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 All. terrestris</td>
<td>116</td>
<td>90 Tage</td>
<td>4</td>
<td>II</td>
<td>17. IV. 94</td>
</tr>
<tr>
<td>39 —</td>
<td>321</td>
<td>93 "</td>
<td>4</td>
<td>I</td>
<td>17. I. 95</td>
</tr>
<tr>
<td>40 —</td>
<td>325</td>
<td>3 1/2 Mon.</td>
<td>4</td>
<td>II</td>
<td>18. I. 95</td>
</tr>
<tr>
<td>41 —</td>
<td>O₅</td>
<td>9 "</td>
<td>4</td>
<td>II</td>
<td>8. XI. 93</td>
</tr>
<tr>
<td>42 —</td>
<td>378</td>
<td>lebt noch</td>
<td>4</td>
<td>II</td>
<td>6. V. 95</td>
</tr>
<tr>
<td>43 —</td>
<td>35 4 1/2 Mon. 3—4 mit A!</td>
<td></td>
<td></td>
<td>II</td>
<td>6. II. 94</td>
</tr>
<tr>
<td>44 —</td>
<td>184</td>
<td>23 Tage</td>
<td>3</td>
<td>II</td>
<td>18. VII. 94</td>
</tr>
<tr>
<td>45 —</td>
<td>P₅</td>
<td>37 "</td>
<td>3</td>
<td>II</td>
<td>9. XI. 93</td>
</tr>
<tr>
<td>46 —</td>
<td>59 53</td>
<td>"</td>
<td>3</td>
<td>I</td>
<td>5. III. 94</td>
</tr>
<tr>
<td>47 —</td>
<td>327</td>
<td>76 "</td>
<td>3</td>
<td>I</td>
<td>18. I. 95</td>
</tr>
<tr>
<td>48 —</td>
<td>328</td>
<td>84 "</td>
<td>3</td>
<td>I</td>
<td>18. I. 95</td>
</tr>
</tbody>
</table>

Abnahme größerer vorderer Partien.
Lassen wir nun die Resultate jener Fälle folgen, bei denen 6—14 vorderste Segmente abgeschnitten wurden.

Tabelle V.

<table>
<thead>
<tr>
<th>Segmente abgeschn.</th>
<th>Species</th>
<th>K.-Nr.</th>
<th>Segmente regeneriert</th>
<th>Operiert am</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All. foetida</td>
<td>181</td>
<td>4</td>
<td>16. VII. 94</td>
<td>nach 44 Tagen getötet.</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>282</td>
<td>4</td>
<td>19. XI. 94</td>
<td>nach 64 Tagen zum zweiten Mal operiert.</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>283</td>
<td>4</td>
<td>19. XI. 94</td>
<td>do.</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>380</td>
<td>kleine Knospe</td>
<td>6. V. 95</td>
<td>stirbt nach 23 Tagen.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>391</td>
<td>"</td>
<td>11. VI. 95</td>
<td>" " 18 "</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>426</td>
<td>3</td>
<td>20. VII. 95</td>
<td>" " lebt noch.</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>427</td>
<td>3</td>
<td>20. VII. 95</td>
<td>do.</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>318</td>
<td>3</td>
<td>17. IV. 94</td>
<td>nach 97 Tagen getötet.</td>
</tr>
<tr>
<td>8</td>
<td>All. caliginosa</td>
<td>249</td>
<td>kleine Knospe</td>
<td>1. XI. 94</td>
<td>stirbt nach 16 Tagen.</td>
</tr>
<tr>
<td>9</td>
<td>—</td>
<td>300</td>
<td>—</td>
<td>6. XII. 94</td>
<td>nach 1 Stunde getötet.</td>
</tr>
<tr>
<td>11</td>
<td>—</td>
<td>326</td>
<td>4</td>
<td>18. I. 95</td>
<td>" 3 1/2 Mon.</td>
</tr>
<tr>
<td>13</td>
<td>L. rubellus</td>
<td>3</td>
<td>4</td>
<td>16. I. 94</td>
<td>" 37 "</td>
</tr>
<tr>
<td>16</td>
<td>—</td>
<td>270</td>
<td>kleine Knospe</td>
<td>15. XI. 94</td>
<td>" " 20 Tagen.</td>
</tr>
<tr>
<td>17</td>
<td>—</td>
<td>323</td>
<td>3</td>
<td>17. I. 95</td>
<td>" " 69 "</td>
</tr>
<tr>
<td>18</td>
<td>All. foetida</td>
<td>210</td>
<td>3</td>
<td>10. VIII. 94</td>
<td>verloren nach 41 Tagen.</td>
</tr>
<tr>
<td>19</td>
<td>—</td>
<td>425</td>
<td>3—4 mit A!</td>
<td>20. VII. 95</td>
<td>" " lebt noch.</td>
</tr>
<tr>
<td>20</td>
<td>All. caliginosa</td>
<td>226</td>
<td>ca. 5 mit vielen A!</td>
<td>23. VIII. 94</td>
<td>nach 44 Tagen getötet.</td>
</tr>
<tr>
<td>21</td>
<td>All. terrestris</td>
<td>22</td>
<td>—</td>
<td>25. I. 94</td>
<td>stirbt nach 21 Tagen ohne Regenerat.</td>
</tr>
<tr>
<td>Segmenten abgesch.</td>
<td>Species</td>
<td>K.-Nr.</td>
<td>Segmente regeneriert</td>
<td>Operiert am</td>
<td>Bemerkungen</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>22</td>
<td>All. terrestris</td>
<td>297</td>
<td>—</td>
<td>3. XII. 94</td>
<td>nach 24 Stdn. getötet.</td>
</tr>
<tr>
<td>23</td>
<td>—</td>
<td>322</td>
<td>4</td>
<td>17. I. 95</td>
<td>stirbt nach 3 Monaten.</td>
</tr>
<tr>
<td>25</td>
<td>—</td>
<td>271</td>
<td>kleine Knospe</td>
<td>15. XI. 94</td>
<td>stirbt nach 26 Tagen.</td>
</tr>
<tr>
<td>26</td>
<td>—</td>
<td>273</td>
<td>""</td>
<td>15. XI. 94</td>
<td>"" "" ""</td>
</tr>
<tr>
<td>27</td>
<td>—</td>
<td>298</td>
<td>—</td>
<td>3. XII. 94</td>
<td>nach 21 Stdn. getötet.</td>
</tr>
<tr>
<td>28</td>
<td>—</td>
<td>320</td>
<td>5</td>
<td>17. I. 95</td>
<td>stirbt nach 3 1/2 Mon.</td>
</tr>
<tr>
<td>29</td>
<td>L. rubellus</td>
<td>82</td>
<td>kleine Knospe</td>
<td>15. III. 94</td>
<td>stirbt nach 23 Tagen.</td>
</tr>
<tr>
<td>30</td>
<td>All. terrestris</td>
<td>64</td>
<td>unsegm. Knospe</td>
<td>7. III. 94</td>
<td>"" 36</td>
</tr>
<tr>
<td>31</td>
<td>—</td>
<td>68</td>
<td>6</td>
<td>7. III. 94</td>
<td>nach 3 1/2 Mon. getötet.</td>
</tr>
<tr>
<td>32</td>
<td>—</td>
<td>86</td>
<td>3</td>
<td>15. III. 94</td>
<td>stirbt nach 3 Monaten.</td>
</tr>
<tr>
<td>33</td>
<td>L. rubellus</td>
<td>83</td>
<td>kleine Knospe</td>
<td>15. III. 94</td>
<td>"" 23 Tagen.</td>
</tr>
<tr>
<td>34</td>
<td>—</td>
<td>272</td>
<td>""</td>
<td>15. XI. 94</td>
<td>"" 20</td>
</tr>
<tr>
<td>35</td>
<td>—</td>
<td>274</td>
<td>""</td>
<td>15. XI. 94</td>
<td>"" 20</td>
</tr>
<tr>
<td>36</td>
<td>All. terrestris</td>
<td>26</td>
<td>—</td>
<td>25. I. 94</td>
<td>"" 21</td>
</tr>
<tr>
<td>37</td>
<td>—</td>
<td>87</td>
<td>4</td>
<td>15. III. 94</td>
<td>ohne Regenerat.</td>
</tr>
<tr>
<td>38</td>
<td>—</td>
<td>66</td>
<td>—</td>
<td>7. III. 94</td>
<td>"" 7 Tagen.</td>
</tr>
<tr>
<td>39</td>
<td>—</td>
<td>144</td>
<td>ca. 5 mit A!</td>
<td>26. VI. 94</td>
<td>nach 43 Tagen getötet.</td>
</tr>
<tr>
<td>40</td>
<td>—</td>
<td>4</td>
<td>a undeutl. segment.</td>
<td>1. V. 95</td>
<td>Gefunden ohne d. 10 Segmente, lebte noch 56 Tge.</td>
</tr>
<tr>
<td>41</td>
<td>All. terrestris</td>
<td>275</td>
<td>kleine Knospe</td>
<td>15. XI. 94</td>
<td>stirbt nach 20 Tagen.</td>
</tr>
<tr>
<td>42</td>
<td>L. rubellus</td>
<td>85</td>
<td>""</td>
<td>15. III. 94</td>
<td>"" 23</td>
</tr>
<tr>
<td>43</td>
<td>All. terrestris</td>
<td>67</td>
<td>unsegm.</td>
<td>7. III. 94</td>
<td>"" "" 3 1/2 Mon.</td>
</tr>
<tr>
<td>44</td>
<td>—</td>
<td>88</td>
<td>undeutl. segment.</td>
<td>15. III. 94</td>
<td>"" 86 Tagen.</td>
</tr>
<tr>
<td>45</td>
<td>—</td>
<td>236</td>
<td>—</td>
<td>24. VIII. 94</td>
<td>"" 8</td>
</tr>
<tr>
<td>46</td>
<td>—</td>
<td>251</td>
<td>4</td>
<td>1. XI. 94</td>
<td>gefunden, ohne d. 11 Segm., lebte noch 5 Mon.</td>
</tr>
<tr>
<td>47</td>
<td>All. foetida</td>
<td>170</td>
<td>—</td>
<td>14. VII. 94</td>
<td>stirbt nach 14 Tagen ohne Regenerat.</td>
</tr>
<tr>
<td>48</td>
<td>All. caliginosa</td>
<td>244</td>
<td>—</td>
<td>24. VIII. 94</td>
<td>stirbt nach 7 Tagen.</td>
</tr>
<tr>
<td>49</td>
<td>All. terrestris</td>
<td>65</td>
<td>3</td>
<td>7. III. 94</td>
<td>"" 3 1/2 Mon.</td>
</tr>
<tr>
<td>50</td>
<td>—</td>
<td>89</td>
<td>5</td>
<td>15. III. 94</td>
<td>"" 3 Mon.</td>
</tr>
<tr>
<td>51</td>
<td>—</td>
<td>263</td>
<td>7</td>
<td>13. XI. 94</td>
<td>nach 5 Mon. getötet.</td>
</tr>
<tr>
<td>52</td>
<td>L. rubellus</td>
<td>84</td>
<td>kleine Knospe</td>
<td>15. III. 94</td>
<td>stirbt nach 23 Tagen.</td>
</tr>
<tr>
<td>53</td>
<td>—</td>
<td>267</td>
<td>""</td>
<td>13. XI. 94</td>
<td>"" 44</td>
</tr>
<tr>
<td>54</td>
<td>All. caliginosa</td>
<td>194</td>
<td>—</td>
<td>30. VII. 94</td>
<td>"" 8</td>
</tr>
<tr>
<td>55</td>
<td>All. terrestris</td>
<td>90</td>
<td>4</td>
<td>15. III. 94</td>
<td>"" 3 Monaten.</td>
</tr>
<tr>
<td>56</td>
<td>—</td>
<td>260</td>
<td>undeutl.</td>
<td>13. XI. 94</td>
<td>nach 5 Mon. getötet.</td>
</tr>
<tr>
<td>58</td>
<td>—</td>
<td>21</td>
<td>3</td>
<td>24. I. 94</td>
<td>"" 79</td>
</tr>
<tr>
<td>59</td>
<td>—</td>
<td>22</td>
<td>kleine Knospe</td>
<td>24. I. 94</td>
<td>"" 29</td>
</tr>
<tr>
<td>60</td>
<td>—</td>
<td>101</td>
<td>—</td>
<td>5. IV. 94</td>
<td>"" 2</td>
</tr>
<tr>
<td>61</td>
<td>—</td>
<td>122</td>
<td>kleine Knospe</td>
<td>10. V. 94</td>
<td>"" 1 Monat.</td>
</tr>
<tr>
<td>62</td>
<td>—</td>
<td>198</td>
<td>—</td>
<td>30. VI. 94</td>
<td>"" 10 Tagen.</td>
</tr>
<tr>
<td>63</td>
<td>All. terrestris</td>
<td>45</td>
<td>undeutl. segment.</td>
<td>13. II. 94</td>
<td>"" 3 Monaten.</td>
</tr>
</tbody>
</table>
Über Regenerationsvorgänge bei Lumbriciden.

Um einen Überblick über die Verteilung dieser Fälle auf die einzelnen Species zu erlangen, stellen wir sie in folgender Tabelle entsprechend zusammen.

Tabelle VI.

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Abgeschnittene Segmente</th>
<th>Regeneriert</th>
<th>Anzahl</th>
<th>Abgeschnittene Segmente</th>
<th>Regeneriert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>unsegment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knospe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knospe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knospe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knospe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knospe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knospe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3—4</td>
<td></td>
<td>mit A!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All. foetida</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All. caliginosa</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td>5 mit A!</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>All. terrestris</td>
<td></td>
<td></td>
<td>6</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>unsegmentiert</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>undeutl. segment.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>14</td>
<td>undeutl. segm.</td>
</tr>
</tbody>
</table>
Neben der auch hier festzustellenden Thatsache, daß stets weniger Segmente regeneriert werden als abgeschnitten, sei namentlich auch auf die Fälle undeutlicher Segmentierung bei Individuen, die sehr lange beobachtet wurden, aufmerksam gemacht.

Die abgeschnittenen Segmente an und für sich wurden ebenfalls kontrolliert und festgestellt, daß sie alle im Laufe einer Woche, seltener nach 9—10 Tagen starben.

Einer größeren Anzahl von Individuen wurden die ersten 15 Segmente abgeschnitten aus dem bereits angeführten Grunde, festzustellen, ob die Geschlechtsorgane regeneriert werden. 61 solcher Fälle liegen vor, die sich folgendermaßen verteilen:

- Lumbr. rubellus 10
- L. Herculeus 1
- All. foetida 2
- All. caliginosa 12
- All. terrestris 36

Tabelle VII.

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>K.-Nr.</th>
<th>Regeneriert</th>
<th>Operiert am</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2—10 Tage</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>VI</td>
<td></td>
<td>7. XI. 93</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>XIII</td>
<td></td>
<td>24. XI. 93</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>XV</td>
<td></td>
<td>24. XI. 93</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>XIV</td>
<td></td>
<td>24. XI. 93</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>8</td>
<td></td>
<td>18. I. 94</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>I</td>
<td></td>
<td>6. XI. 93</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>V</td>
<td></td>
<td>7. XI. 93</td>
</tr>
<tr>
<td>1 Monat</td>
<td>1</td>
<td>262</td>
<td></td>
<td>13. XI. 94</td>
</tr>
<tr>
<td>43</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>wenig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 1/2 Monate</td>
<td>5</td>
<td>46</td>
<td>4</td>
<td>13. II. 94</td>
</tr>
<tr>
<td>47</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>II undeutl. 3</td>
<td></td>
<td>6. XI. 93</td>
</tr>
<tr>
<td>261</td>
<td></td>
<td>kleine Knospe</td>
<td></td>
<td>13. XI. 94</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>333</td>
<td>4</td>
<td>22. I. 94</td>
</tr>
</tbody>
</table>

Tabelle VII. All. terrestris lebten nach Abnahme der 15 vordersten Segmente:

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>K.-Nr.</th>
<th>Regeneriert</th>
<th>Operiert am</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>II undeutl. 3</td>
<td></td>
<td>6. XI. 93</td>
</tr>
<tr>
<td>261</td>
<td></td>
<td>kleine Knospe</td>
<td></td>
<td>13. XI. 94</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>333</td>
<td>4</td>
<td>22. I. 94</td>
</tr>
</tbody>
</table>

All. caliginosa lebten nach Abnahme der 15 vordersten Segmente:

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>K.-Nr.</th>
<th>Regeneriert</th>
<th>Operiert am</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Tage</td>
<td>10</td>
<td></td>
<td></td>
<td>Sommer 94</td>
</tr>
<tr>
<td>1 1/2 Monate</td>
<td>2</td>
<td>265</td>
<td>Knospe</td>
<td>13. XI. 94</td>
</tr>
<tr>
<td>266</td>
<td></td>
<td></td>
<td></td>
<td>13. XI. 94</td>
</tr>
</tbody>
</table>
All. *foetida* lebten nach Abnahme der 15 vordersten Segmente:

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>K.-Nr.</th>
<th>Regeneriert</th>
<th>Operiert am</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Tage</td>
<td>1</td>
<td>169</td>
<td>-</td>
<td>18. VII. 94</td>
</tr>
<tr>
<td>6 Monate</td>
<td>1</td>
<td>340</td>
<td>kleine Knospe</td>
<td>22. I. 95</td>
</tr>
</tbody>
</table>

L. *Herculeus* lebte nach Abnahme der 15 vordersten Segmenten:

| 3 Tage | 1 | 124 | - | 16. V. 94 |

L. *rubellus* lebten nach Abnahme der 15 vordersten Segmenten:

| 2—7 Tage | 9 | - | - | 20. I. 94 u. Sommer 94 |
| 50 | 1 | 268 | kleine Knospe | 13. XI. 94 |

5 starben infolge Chloroformwirk.

Nur All. *terrestris* zeigt Fälle von ausgebildeten, segmentierten Regeneraten, und zwar bei 36 Individuen nur 5 mal.

Wenn wir die Tabellen V—VII durchmustern, so zeigen sie deutlich, daß die Regenerationsfähigkeit entsprechend dem steigenden Verlust an vorderen Segmenten abnimmt. Die Sterblichkeitsziffer wird höher; das Auftreten und die weitere Ausbildung der Regenerate verlangsamt sich oder, besser gesagt, variiert sehr individuell (den letzteren Punkt besprechen wir später genauer); stets werden weniger Segmente regeneriert, als abgeschnitten wurden, und zwar, das ist von Wichtigkeit, steigt die Zahl der neugebildeten Segmente, die Beschränkung vorausgesetzt, nicht irgendwie proportional der Zahl der abgeschnittenen Ringe; meist werden 4 regeneriert.

Diese Verhältnisse gelten nun in erster Linie für All. *terrestris*; von den anderen Species sind zu wenig Beobachtungen vorhanden; doch darf aus einzelnen Fällen mit einiger Sicherheit geschlossen werden, daß auch für sie das Gleiche gilt, daß zum mindesten auch hier eine Abnahme des Regenerationsvermögens mit steigendem Verlust an vorderen Segmenten zu konstatieren ist.

Was die Stücke, die aus den 15 ersten Segmenten bestanden, anbetrifft, so wurde festgestellt, daß sie meist innerhalb der ersten Woche starben; 1 von All. *terrestris* lebte 36 Tage, 2 von All. *terrestris* 40 Tage, ohne aber Zeichen von Regenerationserscheinungen zu außer.

Um die Grenze des Regenerationsvermögens, soweit vordere Partien der Regenwürmer in Betracht kommen, aufzufinden, wurden weiterhin größere Stücke abgeschnitten. Darüber sprechen die Tabellen VIII—X.

*E.*** XXX. N. F. XXIII.***
<table>
<thead>
<tr>
<th>Abgeschn. Segmente</th>
<th>Species</th>
<th>K.-Nr.</th>
<th>Operiert am</th>
<th>Stück a</th>
<th>Stück b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>L. rubellus</td>
<td>277</td>
<td>15. XI. 94</td>
<td>" " 7 " "</td>
<td>tot nach 7 Tagen ohne Regenerat.</td>
</tr>
<tr>
<td>3</td>
<td>All. foetida</td>
<td>345</td>
<td>23. I. 95</td>
<td>" " 7 " "</td>
<td>tot nach 1 Monat ohne Regenerat.</td>
</tr>
<tr>
<td>4</td>
<td>" terrestr.</td>
<td>342</td>
<td>23. I. 95</td>
<td>" " 7 " "</td>
<td>tot nach 1 Monat ohne Regenerat.</td>
</tr>
<tr>
<td>5</td>
<td>L. rubellus</td>
<td>137</td>
<td>13. VI. 94</td>
<td>" " 1 Tag</td>
<td>bekam nach 14 Tagen kleine Knospe.</td>
</tr>
<tr>
<td>7</td>
<td>" caligin.</td>
<td>237</td>
<td>24. VIII. 94</td>
<td>" " 7 " "</td>
<td>tot nach 7 Tagen ohne Regenerat.</td>
</tr>
<tr>
<td>8</td>
<td>" terrestr.</td>
<td>138</td>
<td>13. VI. 94</td>
<td>" " 6 " "</td>
<td>" " 24 " bekam nach 14 Tagen kleine Knospe.</td>
</tr>
<tr>
<td>9</td>
<td>" " " " " "</td>
<td>188</td>
<td>18. VII. 94</td>
<td>" " 1 Tag</td>
<td>tot nach 7 Tagen ohne Regenerat.</td>
</tr>
<tr>
<td>10</td>
<td>" " " " " "</td>
<td>199</td>
<td>31. VII. 94</td>
<td>" " 7 Tagen</td>
<td>" " 1 Monat ohne Regenerat.</td>
</tr>
<tr>
<td>11</td>
<td>" " " " " "</td>
<td>264</td>
<td>13. XI. 94</td>
<td>" " 9 " "</td>
<td>" " 1 Monat ohne Regenerat.</td>
</tr>
<tr>
<td>12</td>
<td>" " " " " "</td>
<td>276</td>
<td>15. XI. 94</td>
<td>" " 7 " "</td>
<td>" " 1 Monat ohne Regenerat.</td>
</tr>
<tr>
<td>13</td>
<td>L. rubellus</td>
<td>136</td>
<td>13. VI. 94</td>
<td>" " 1 Tag</td>
<td>bekam nach 1 Monat kleine Knospe.</td>
</tr>
<tr>
<td>14</td>
<td>All. foetida</td>
<td>238</td>
<td>24. VIII. 94</td>
<td>" " 7 " "</td>
<td>bekam nach 1 Monat kleine Knospe.</td>
</tr>
<tr>
<td>15</td>
<td>" caligin.</td>
<td>278</td>
<td>15. XI. 94</td>
<td>" " 7 " "</td>
<td>bekam nach 1 Monat kleine Knospe.</td>
</tr>
<tr>
<td>16</td>
<td>" terrestr.</td>
<td>343</td>
<td>23. I. 95</td>
<td>" " 7 " "</td>
<td>bekam nach 1 Monat kleine Knospe.</td>
</tr>
<tr>
<td>17</td>
<td>All. terrestr.</td>
<td>189</td>
<td>18. VII. 94</td>
<td>" " 1 Tag</td>
<td>bekam nach 1 Monat kleine Knospe.</td>
</tr>
<tr>
<td>18</td>
<td>" foetida</td>
<td>241</td>
<td>24. VIII. 94</td>
<td>" " 7 Tagen</td>
<td>bekam nach 1 Monat kleine Knospe.</td>
</tr>
<tr>
<td>19</td>
<td>" terrestr.</td>
<td>146</td>
<td>26. VI. 94</td>
<td>" " 1 Tag</td>
<td>bekam nach 1 Monat kleine Knospe.</td>
</tr>
<tr>
<td>20</td>
<td>" " " " " "</td>
<td>200</td>
<td>31. VII. 94</td>
<td>" " 1 Tag</td>
<td>bekam nach 1 Monat kleine Knospe.</td>
</tr>
<tr>
<td>21</td>
<td>L. rubellus</td>
<td>8015. III. 94</td>
<td>" " 18 Tage verloren nach 1 Mon.</td>
<td>bekam nach 12 Tagen kleine Knospe, ca. 1 mm lang.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>" " " " " "</td>
<td>279</td>
<td>15. XI. 94</td>
<td>" " 7 " "</td>
<td>bekam nach 12 Tagen kleine Knospe, ca. 1 mm lang.</td>
</tr>
<tr>
<td>23</td>
<td>All. terrestr.</td>
<td>201</td>
<td>31. VII. 94</td>
<td>" " 10 " "</td>
<td>bekam nach 12 Tagen kleine Knospe, ca. 1 mm lang.</td>
</tr>
<tr>
<td>24</td>
<td>" caligin.</td>
<td>202</td>
<td>3. VIII. 94</td>
<td>" " 8 " "</td>
<td>bekam nach 12 Tagen kleine Knospe, ca. 1 mm lang.</td>
</tr>
<tr>
<td>25</td>
<td>" terrestr.</td>
<td>341</td>
<td>23. I. 95</td>
<td>" " 8 " "</td>
<td>bekam nach 12 Tagen kleine Knospe, ca. 1 mm lang.</td>
</tr>
<tr>
<td>26</td>
<td>All. foetida</td>
<td>344</td>
<td>23. I. 95</td>
<td>" " 10 " "</td>
<td>bekam nach 12 Tagen kleine Knospe, ca. 1 mm lang.</td>
</tr>
<tr>
<td>27</td>
<td>" caligin.</td>
<td>203</td>
<td>3. VIII. 94</td>
<td>" " 8 " "</td>
<td>bekam nach 12 Tagen kleine Knospe, ca. 1 mm lang.</td>
</tr>
<tr>
<td>28</td>
<td>" terrestr.</td>
<td>280</td>
<td>15. XI. 94</td>
<td>" " 7 " "</td>
<td>bekam nach 12 Tagen kleine Knospe, ca. 1 mm lang.</td>
</tr>
<tr>
<td>29</td>
<td>" terrestr.</td>
<td>281</td>
<td>15. XI. 94</td>
<td>" " 7 " "</td>
<td>bekam nach 12 Tagen kleine Knospe, ca. 1 mm lang.</td>
</tr>
</tbody>
</table>
Am 2. V. 95 wurde ein größerer Versuch in der Weise angestellt, daß 25 Exemplaren von Regenwürmern 16—30 vorderste Segmente abgeschnitten wurden, nämlich:

10 All. terrestris,
8 „ foetida,
2 „ caliginosa,
5 Lumbr. rubellus.

Die Stücke a und b setzte ich in eine Kiste mit Erde und kontrollierte sie erst nach 1 Monat, da angenommen werden durfte, daß eine häufiger erfolgende Kontrolle die Versuche ungünstig beeinflusse. Allein das Resultat war ganz entsprechend dem vorherigen.

Am 4. VI. 95 waren noch lebend:

von Stücken a keines,
" " b 2 All. terrestris
1 „ caligin.
3 „ foetida
alle ohne Regeneration.

Am 29. VI. 95 lebte noch
1 All. foetida ohne Regeneration.
Am 31. VII. 95 war alles tot.

Von den in Tabelle VIII angeführten Individuen hatten 9 einen Monat oder mehr nach der Operation überdauert und 2 davon zu regenerieren begonnen; außerdem zeigte eines, das nach 24 Tagen starb, eine kleine Knospe.

Im ganzen erstreckten sich diese Versuche der Abnahme von 16—30 vorderster Segmente auf

L. rubellus	10
All. foetida	14
„ caligin.	7
„ terrestris	23
54	

Wegnahme größerer Stücke ist in den folgenden Tabellen besprochen, zunächst Fälle, bei denen es sich mehr oder weniger um Halbierung des Individuums handelt. Dabei wird zunächst nur das Schicksal des hinteren Stückes b betrachtet, das die vordere Hälfte ergänzen sollte.
<table>
<thead>
<tr>
<th>Species</th>
<th>K.-Nr.</th>
<th>Art der Operation</th>
<th>Operiert am</th>
<th>Stück b</th>
</tr>
</thead>
<tbody>
<tr>
<td>All. terrestris</td>
<td>XII</td>
<td>a b</td>
<td>20. XI.</td>
<td>37 38 1) stirbt nach 3 Mon., ohne Regen. zu haben.</td>
</tr>
<tr>
<td>mit Clitellum</td>
<td></td>
<td></td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>L. rubellus 7 cm mit Clit.</td>
<td>397</td>
<td>a b</td>
<td>15. VI.</td>
<td>42 43 stirbt nach 3 Mon. ohne Regeneration.</td>
</tr>
<tr>
<td>All. terrestris 9 cm mit Clit.</td>
<td>402</td>
<td>a b</td>
<td>95</td>
<td>43 44 stirbt nach 7 Tagen</td>
</tr>
<tr>
<td>L. rubellus 7 cm mit Clit.</td>
<td>400</td>
<td>a b</td>
<td>95</td>
<td>43 44</td>
</tr>
<tr>
<td>All. terrestris 14 cm mit Clit.</td>
<td>396</td>
<td>a b</td>
<td>15. VI.</td>
<td>44 45</td>
</tr>
<tr>
<td>L. rubellus 8 cm mit Clit.</td>
<td>384</td>
<td>a b</td>
<td>6. V.</td>
<td>44 45 stirbt nach 9 Tagen</td>
</tr>
<tr>
<td>All. terrestris 9 cm mit Clit.</td>
<td>403</td>
<td>a b</td>
<td>3. VII.</td>
<td>49 50</td>
</tr>
<tr>
<td>L. Herculeus 12 cm mit Clit.</td>
<td>395</td>
<td>a b</td>
<td>15. VI.</td>
<td>55 56</td>
</tr>
<tr>
<td>All. terrestris 15 cm mit Clit.</td>
<td>401</td>
<td>a b</td>
<td>95</td>
<td>57 58</td>
</tr>
<tr>
<td>All. terrestris 13 cm ohne Clit.</td>
<td>398</td>
<td>a b</td>
<td>15. VI.</td>
<td>101 102 ohne Regenerat.</td>
</tr>
<tr>
<td>All. terrestris 14 cm ohne Clit.</td>
<td>394</td>
<td>a b</td>
<td>95</td>
<td>147 148 halbiert</td>
</tr>
<tr>
<td>All. chlorotica</td>
<td>XII</td>
<td></td>
<td>28. XI.</td>
<td>93 5 Mon. ohne Regenerat.</td>
</tr>
<tr>
<td>A 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td>III. 94</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td>VII. 94</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td></td>
<td></td>
<td>1 lebt 1 Monat ohne Regenerat.</td>
<td></td>
</tr>
<tr>
<td>316</td>
<td></td>
<td></td>
<td>XII. 94</td>
<td></td>
</tr>
<tr>
<td>13-22 All. terrestris</td>
<td>413-417</td>
<td></td>
<td>22. I.</td>
<td>lebt 41 Tage in Wasser ohne Regenerat.</td>
</tr>
<tr>
<td>289a</td>
<td></td>
<td></td>
<td>I. 95</td>
<td></td>
</tr>
<tr>
<td>316</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 All. caliginosa 8 cm ohne Clit.</td>
<td>6</td>
<td></td>
<td>14. III.</td>
<td>stirbt nach 41 Tagen ohne Regenerat.</td>
</tr>
<tr>
<td>24 All. caliginosa 7 cm mit Clit.</td>
<td>79</td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>25-27 All. foetida</td>
<td>205</td>
<td></td>
<td>3. VIII.</td>
<td>94 st erben in 7 Tagen.</td>
</tr>
<tr>
<td>206</td>
<td></td>
<td></td>
<td>3. I. 95</td>
<td></td>
</tr>
<tr>
<td>318</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Diese Zahlen bezeichnen das letzte Segment des Stückes a und das erste Segment des Stückes b, vom Vorderende des ganzen Wurmes aus gezählt.
<table>
<thead>
<tr>
<th>Species</th>
<th>K.-Nr.</th>
<th>Art der Operation</th>
<th>Operiert am</th>
<th>Stück b</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. rubellus</td>
<td>76</td>
<td>halbiert</td>
<td>14. III. 94</td>
<td>stirbt nach 34 Tagen ohne Regenerat.</td>
</tr>
<tr>
<td>8 cm ohne Clit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. rubellus</td>
<td>77</td>
<td></td>
<td>14. III. 94</td>
<td>tot nach 24 Tagen ohne Regenerat.</td>
</tr>
<tr>
<td>6 cm ohne Clit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All. terrestris</td>
<td>A_1</td>
<td>$a \ b$</td>
<td>$3\over 4$</td>
<td>93</td>
</tr>
<tr>
<td>ohne Clit.</td>
<td></td>
<td></td>
<td>$1\over 4$</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>All. terrestris</td>
<td>halbiert</td>
<td>31. X. 93</td>
<td>stirbt nach 4 Mon. ohne Regenerat.</td>
</tr>
<tr>
<td>mit Clit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 L. rubellus</td>
<td>383</td>
<td></td>
<td>6. V. 95</td>
<td>stirbt nach 12 Tagen.</td>
</tr>
<tr>
<td>8 cm mit Clit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle X.

Individuen, die in 3 Stücke zerlegt wurden:

<table>
<thead>
<tr>
<th>Species</th>
<th>K.-Nr.</th>
<th>Art der Operation</th>
<th>Operiert am</th>
<th>Stücke b und c</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. rubellus</td>
<td>80</td>
<td>$a \ b \ c$</td>
<td>15. III. 94</td>
<td>b, siehe Tab. VIII No. 21, bekam Knospe!</td>
</tr>
<tr>
<td>6 cm mit Clit.</td>
<td></td>
<td>2 cm 2 cm 2 cm</td>
<td></td>
<td>c stirbt nach 11/2 Mon. ohne Regeneration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All. terrestris</td>
<td>81</td>
<td>$a \ b \ c$</td>
<td>15. III. 94</td>
<td>b stirbt nach 3 Mon. ohne Regeneration vorn, dagegen hinten, a. später!</td>
</tr>
<tr>
<td>12 cm mit Clit.</td>
<td></td>
<td>4 cm 4 cm 4 cm</td>
<td></td>
<td>c stirbt nach 3 Mon. ohne Regeneration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All. terrestris</td>
<td>192</td>
<td>dreigeteilt</td>
<td>18. VII. 94</td>
<td>b u. c werden nach 10 Tag. nicht mehr gefunden.</td>
</tr>
<tr>
<td>4 cm, 3 cm, jung</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All. caligin.</td>
<td>204</td>
<td></td>
<td>3. VIII. 94</td>
<td>b u. c nach 4 Tagen tot.</td>
</tr>
<tr>
<td>6 cm mit Clit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Herculeus</td>
<td>399</td>
<td>$a \ b \ c$</td>
<td>3. VII. 95</td>
<td>b nach 7 Tagen tot.</td>
</tr>
<tr>
<td>15 cm mit Clit.</td>
<td></td>
<td>47 71 26 Segmente</td>
<td></td>
<td>c " 3 "</td>
</tr>
<tr>
<td>All. terrestris</td>
<td>381</td>
<td>$a \ b \ c$</td>
<td>6. V. 95</td>
<td>Die Zerlegung in a u. b erfolgt erst am 26. VI. 95. b bekommt am 3. VII. 95 kleine Knospe, entwickelt sich aber nicht weiter, stirbt 2 Monate später. c stirbt nach 21/2 Mon. ohne Regeneration.</td>
</tr>
<tr>
<td>15 cm mit Clit.</td>
<td></td>
<td>43 90 52 Segmente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. rubellus</td>
<td>147</td>
<td>$a \ b \ c$</td>
<td>28. VI. 94</td>
<td>b nach 7 Tagen tot.</td>
</tr>
<tr>
<td>8 cm mit Clit.</td>
<td></td>
<td>3 cm 3 cm 2 cm</td>
<td></td>
<td>c " 3 "</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Schließlich wurden auch besondere Versuche angestellt, um die Behauptung von Fielde zu prüfen (siehe S. 206 dieser Arbeit), daß hintere Partien von 30—40 Segmenten durch Einschieben von „Halbsegmenten“ wachsen.

Im ganzen verwendete ich zu dieser Beobachtung 17 Individuen (All. terr., caligin. und L. rub.), von denen jedes zuerst halbiert und die hintere Hälfte sodann in 2, 3 oder 4 Stücke mit 20—40 Segmenten zerlegt wurde. Alle diese letzteren Partien gingen im Verlaufe einer Woche gewöhnlich zu Grunde; eins von 39 Segmenten lebte 2 Monate, eins von 54 Segmenten 3 \(\frac{1}{2} \) Monate. Letzteres (All. terr., K.-Nr. 382) zeigte auch Anfang von Regeneration. Im übrigen konnte ein solches Einschieben von Halbsegmenten nie beobachtet werden; daneben kommen auch für diesen Punkt die Stücke b und c der Tab. IX und X in Betracht, bei welchen auch darauf geachtet wurde, und auch mit vollständig negativem Resultat. Ob die Stücke, welche Miss Fielde durch die Hand gingen, nicht solche Anomalien der Segmentierung schon vor der Operation besaßen?

Im Anschlusse an diese Beobachtungen sei erwähnt, daß hier und da Stücke, aus hinteren Partien von Regenwürmern bestehend, für sich gefunden und auch weiter beobachtet wurden; ich habe 7 solcher Fälle notiert; die Teile lebten 2 Monate in 4 Fällen, 20 Tage in 2, und \(3 \frac{1}{2} \) Monate in 1, ohne daß sie während dieser Zeit Zeichen von Regeneration geäußert hätten.

Dies sind meine Versuche, die von der Regeneration des Vorderendes oder, wenn man sich so ausdrücken darf, des Kopfes der Regenwürmer handeln. Aus denselben kann man nicht auf eine bestimmte Grenze dieses Vermögens schließen; die Regenerationsfähigkeit nimmt aber, das geht klar und deutlich hervor, schon im Bereiche der vordersten Segmente ab, und nach Verlust der 15 ersten Ringe tritt nur in wenigen Fällen Neubildung auf. Hier liegt auch bei meinen Versuchen die Grenze, von wo aus noch deutliche Regenerate hervorkamen; an Stellen, die weiter hinten liegen, waren solche nicht mehr zu beobachten; allein dort traten in einigen Fällen unzweifelhafte Regenerationsknospen auf, welche sich allerdings nicht weiter entwickelten; so

Tab. VIII, Nr. 8 vom 19. Segment aus,

<table>
<thead>
<tr>
<th>Tab. VIII</th>
<th>Nr. 8 vom 19. Segment aus,</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII</td>
<td>11 19.</td>
</tr>
<tr>
<td>VIII</td>
<td>21 24.</td>
</tr>
<tr>
<td>IX</td>
<td>5 45.</td>
</tr>
<tr>
<td>X</td>
<td>7 44.</td>
</tr>
</tbody>
</table>
Endlich der oben citierte Fall, wo 54 hinterste Segmente eine solche Knospe zeigten; es fehlten hier etwa 2/3 oder vielleicht 100 Segmente des Wurmes. Im ganzen also 6 Fälle auf 126 Beobachtungen (jene 17, wo die hintere Hälfte mehrfach geteilt wurde, nur als je eine gerechnet), ein deutlicher Beweis, daß wir es hier nicht mit der Regel, sondern mit Ausnahmen zu thun haben. Dies wird bestärkt durch die Thatsache, daß eine Menge solcher Stücke Monate lang der Kontrolle unterlagen, ohne daß sie während Regeneration aufwiesen.

Jedenfalls hat dieser Ersatz größerer vorderer Partien, wenn er wirklich vorkommt, für die Tiere keinen hohen praktischen Wert, da er offenbar auch im Freien nur sehr selten und nach langer Zeit eintritt. Es war deshalb wohl auch gerechtfertigt, diese Thatsache in Zusammenhang zu bringen mit der „Selbstamputation“, wie wir vorgreifend bereits gethan haben, und wo darin eine Übereinstimmung gefunden wurde, daß die „Autotomie“ nur in der hinteren Hälfte beobachtet werden konnte.

Bei meinen Untersuchungen ging natürlich eine Menge Würmer durch die Hand, welche nicht operiert wurden; bei allen wurde auf allfällig nachzuweisende Regenerate geachtet. Unter den gewiß mehr als 1000 Exemplaren (500 allein wurden operiert) fand sich ein einziges Mal eines, an dem ein regeneriertes Vorderende nachzuweisen war:

Am 10. VIII. 94 erhielt ich 1 Exemplar All. terrestris von 15 cm Länge und ohne Clitellum, das vorn 3 deutlich durch geringere Größe und hellere Färbung als regeneriert nachweisbare Segmente besaß; in der That hatten ihm auch nur die 3 ersten Segmente gefehlt, wie an der Lage der männlichen Geschlechtsöffnungen zu erkennen war.

Nun wollen wir aber daraus nicht den Schluß ziehen, daß diese Neubildung des Kopfes in der Natur wirklich so selten vor sich gehe; denn bei vielen Arten, namentlich rubellus, Herculeus, foetida etc., erlangen die neuen Segmente sehr bald den Charakter der alten, und so vermögen wir sie nicht mehr zu unterscheiden, falls sie auch zur Beobachtung gelangen.

Hingegen besteht doch ein auffallender Unterschied gegenüber der Häufigkeit, mit welcher regenerierte Hinterenden nachzuweisen sind.

Weiteres wollen wir aus diesen Versuchen vorderhand nicht ersehen; auf den Einfluß verschiedener Faktoren der Regeneration, auf die Thatsache, daß weniger Segmente entstehen, als abge-
nommen wurden, auf das Auftreten von Anomalien etc. werden wir später eintreten.

Das können wir aber wohl noch feststellen, daß mit Rückblick auf die Ausdehnung des Regenerationsvermögens, soweit es den Ersatz vorderer Partien betrifft, bei den untersuchten Species kein wesentlicher Unterschied besteht, wenn auch die Versuche in der großen Mehrzahl sich auf All. terrestris beziehen.

Erinnern wir uns jetzt wiederum der Angaben älterer Autoren. Jedenfalls sind durch die vorliegenden Versuche alle jene Aussagen bestätigt, welche behaupten, daß wenige Segmente des Kopfes, bis 8 oder 9, regeneriert werden können (Dugès, Quatrefages, Baudelot, Horst, Fielde); ebenso hat auch Spallanzani recht mit der Angabe, daß kein zu großes Stück des Vorderendes abgenommen werden dürfte, wenn sichere Regeneration dieser Partie eintreten soll; andererseits aber darf man nach den vorliegenden Erfahrungen auch jene Autoren nicht der Unwahrheit bezichtigen, welche der Regenerationsfähigkeit keine Grenze setzen (Bonnet, Réaumur, Ginanni, Sangiovanni); sie mögen mehr Glück bei ihren Versuchen gehabt haben, und daß in einzelnen Fällen auch an weit hinten am Körper gelegenen Stellen noch Regenerationserscheinungen zum Ersatz vorderer Partien auftreten können, dafür wurde soeben der Beweis geleistet.

Ich erinnere daran, daß Spallanzani von allen Autoren der einzige ist, welcher beobachtet oder wenigstens beschrieben hat, daß weniger Segmente am Regenerate auftreten als abgeschnitten wurden.

Regeneration von Hinterenden.

Die Regeneration hinterer Partien am Regenwurm bietet ein wesentlich anderes Bild als die des Kopfes. Während es sich bei letzterer im allgemeinen nur um Regenerate von unbedeutender Länge und aus wenigen Segmenten bestehend handelt, liegt beim Hinterende meist das gerade Gegenteil vor.

Ich hatte am 3. IV. 94 zum ersten Male Gelegenheit, die Neubildung einer hinteren Partie von Anfang an zu verfolgen. Ein Exemplar von All. terrestris, 10 cm lang und ohne Clitellum, K.-Nr. 65, wurde am 7. III. 94 der vordersten 12 Segmente be- raubt; nachdem hier bereits die Regeneration begonnen hatte, nahm ich am obgenannten Tage ein sonderbares Anhängsel am
Hinterende wahr; es zählte etwa 4 mm Länge und kaum 1 mm Breite, war undeutlich erkennbar segmentiert und hing wie ein junger Wurm aus dem Anus des alten heraus. Zuerst wußte ich nicht, was davon zu halten. Der Anhang wuchs aber rasch in die Länge und Breite; es war kein Zweifel mehr; es handelte sich um Ersatz verloren gegangener Teile, welcher Verlust stattgefunden hatte, bevor der Wurm in meine Hände gelangte. Nach etwa 4 Wochen war dieses Regenerat so breit wie die alten Segmente und bestand aus 12 Ringen. Ein solches Anhängsel ist in Fig. 1 dargestellt.

Diese Art und Weise der Regeneration einmal konstatiert, war mir jetzt klar, warum Würmer oft sehr lange Schwanzenden von durchweg hellerer Farbe als der übrige Körper zeigen, Partien, von denen man ursprüngens zum vornherein annehmen konnte, daß sie kürzlich regeneriert worden waren.

Außer dem oben beschriebenen Falle kamen mir noch 7 andere ähnliche unter die Augen; auch hier hatte keine Operation am Hinterende stattgefunden:

1) All. terrestris, 10 cm lang ohne Clit., wird am 6. VII. 94 mit einem Anhängsel gefunden, wie dies beim ersten Male beobachtet worden war. Das Exemplar wurde der ersten 5 Segmente beraubt, regenerierte diese in 22 Tagen, und zu gleicher Zeit nahm das Schwanzanhängsel an Länge und Breite zu. Die beiden Regenerationsvorgänge störten sich also gar nicht.

K.-Nr. 154. Hinten ca. 20 Segmenten regeneriert.

2) All. terrestris, 10 cm lang ohne Clit., K.-Nr. 159, zeigt am 10. VII. 94 ein Regenerat am Hinterende, das schon weiter vorgeschritten ist und eine ziemliche Länge besitzt. Auch Verlust und Wiederersatz vorderer Segmente zu gleicher Zeit.

3) All. terrestris, 8 cm ohne Clit., K.-Nr. 174. Am 16. VII. 94 werden die 5 ersten Segmente abgeschnitten. Am 30. VII. 94, nachdem vorn die Regeneration begonnen, tritt plötzlich im Zwischenraum von 2 Tagen ein Schwanzanhängsel von 1/2 cm Länge und 3/4 mm Breite auf. Die Segmentierung ist noch undeutlich zu erkennen; an Schnitten werden mindestens 50 Segmente festgestellt. Siehe Fig. 1.

4) All. terrestris, 12 cm ohne Clit., K.-Nr. 196, gefunden am 30. VII. 94 mit Anhang.

5) All. terrestris, 11 cm ohne Clit., K.-Nr. 200, gefunden am 31. VII. 94 mit Anhang.

6) All. terrestris, 6 cm ohne Clit., K.-Nr. 307, am 19. XII. 94
mit einem Anhang von 7 mm Länge und $1/2$ mm Breite gefunden; Segmentierung nicht genau zu erkennen; dagegen wird auf der Rückenseite eine regelmäßige Blutcirculation beobachtet, und das Anhängsel selbst zeigt eine selbständige Bewegung, unabhängig vom alten Teile.

7) All. terrestris, 8 cm mit schwach ausgebildetem Cilitellum, K.-Nr. 404, am 8. VII. 95 mit sehr dünnem Anhang, der etwa 4 mm lang ist und aus einer undeutlich erkennbaren, großen Zahl von Segmenten besteht, gefunden.

Außer diesen Fällen, wo wir also nur indirekt, mit Rücksicht auf die Kürze der Exemplare allerdings mit großer Sicherheit, darauf schließen können, daß zuvor Teile verloren gegangen sind, kamen auch einige zur Beobachtung, wo die Würmer an der regenerierenden Stelle selbst operiert worden waren.

1) All. chlorotica, K.-Nr. A 3, zerfällt am 28. XI. 93 durch Selbstamputation in 2 Hälften; die vordere lebt 9 Monate, ohne deutliche Zeichen von Ersatz des verlorenen Teiles zu zeigen; plötzlich tritt Ende August 1894 ein Schwanzanhang von 1 cm Länge mit vielen Segmenten auf; dieser gleich 1 Monat später vollkommen der alten vorderen Hälfte; er besteht aus 20 Segmenten. Der Wurm lebt noch bis zum 11. V. 95, im ganzen also $11/2$ Jahre und bekommt im Frühjahr 95 ein Cilitellum.

2) All. terrestris, K.-Nr. 81. Wird am 15. III. 94 in 3 Teile zerlegt, siehe Tab. X, No. 2. Stück b bekommt am 10. IV. 94 ein Regenerat am Hinterende, das sich nicht so schnell entwickelt wie in den früheren Fällen, doch gleich anfangs 3 mm Länge besitzt und aus einer Reihe von Segmenten besteht. Das Stück stirbt am 20. VI.; der Anhang hat eine Länge von 7 mm erreicht.

Hier regenerierte also ein Mittelstück, das aus ungefähr 40 bis 50 Segmenten bestand.

3) All. terrestris, K.-Nr. 381. Dreigeteilt; Stück a, bestehend aus 43 Segmenten, zeigt am 20. VII. 95 eine Knospe am Hinterende von 1 mm Länge; sie entwickelt sich aber nicht weiter, und das Stück stirbt am 7. VIII. 95.

Nun waren ja aber alle in den Tabellen IX und X aufgeführten Exemplare, sowie jene, welche zur Kontrolle jener bekannten Angabe von Fielde operiert wurden, der hinteren Partien beraubt worden; was geschah mit den vorderen Teilen, haben sie nicht regeneriert? Bevor wir diese Frage beantworten, wollen wir noch einen anderen Punkt berühren.
Über Regenerationsvorgänge bei Lumbriciden.

243

Aus der Art und Weise, wie die Regenerate des Schwanzes auftreten und wie sie sich weiter entwickeln, können wir also mit Sicherheit schließen, daß es sich um regenerierte Partien handelt, wenn ein Individuum größere oder kleinere Strecken mit hellerer Färbung, vielleicht noch von geringerer Breite aufweist. Ein solches Exemplar sehen wir in Fig. 2 dargestellt. Es wurde nun auch darauf Obacht gegeben, wie häufig solche Individuen sich finden. Ich zahle natürlich nur jene Fälle auf, wo zugleich die Anzahl der regenerierten und nicht regenerierten Würmer notiert worden ist.

Im November und Dezember 1894 fanden sich unter 24 All. terrestris 17 mit regenerierten Hinterenden, im August 1895 unter 32 derselben Species 19; dagegen fand unter etwa 200 All. terrestris, die anfangs Mai 1895 kontrolliert wurden, keine einzige ein Regenerat.

Zunächst wird auffallen, daß bis dahin fast nur von All. terrestris die Rede war; nun, auch bei All. caliginosa wurden häufig solche regenerierte Teile beobachtet, da aber die Zahl der daraufhin untersuchten Individuen geringer ist, will ich nichts Genaueres angeben. Dagegen ist bei All. foetida, L. rubellus und L. Hercules zu konstatieren, daß mir nie ein Exemplar in die Hände kam, bei dem man an der helleren Farbe des Hinterendes auf Regeneration hätte schließen können, ausgenommen ein Individuum von L. rubellus, gefunden am 12. IV. 94, das einen deutlich regenerierten Schwanz besaß. Nun besteht aber kein Zweifel, daß auch diese Species ihre Hinterenden auf die oben beschriebene Art neu bilden können (für All. foetida konnte ich dies sicher konstatieren; siehe hinten Einfluß der Temperatur); allein vermutlich nehmen hier die neuen Teile so schnell die Pigmentierung an, daß sie bald nicht mehr von den alten zu unterscheiden sind, während eben dieser Prozeß bei All. terrestris und caliginosa viel langsamer verläuft. Doch ist klar, daß es hier weiteren statistischen Materials und ausgedehnterer Untersuchungen bedarf, um zu sicheren Resultaten zu gelangen.

Es wird ferner auffallen, daß unter der großen Zahl von Regenwürmern, die anfangs Mai gesammelt worden waren, kein einziger mit erkennbarem Regenerat sich fand, während die letzteren Individuen im Herbst sich in der Mehrzahl befinden. Wo mit hängt dies zusammen? Einmal sind die Würmer im Frühjahr und Sommer am ehesten Verletzungen ausgesetzt, da sie sich ja im Winter tief in die Erde verkriechen; allein es ist auch denkbar, daß solche, welche in den kälteren Monaten Teile ihres
Körpers verloren, die Regeneration auf die heiße Jahreszeit auf-
sparen, was sie ohne Schaden thun können, da ja die verloren ge-
gangenen Teile keine Organe enthalten, die nicht in den über-
lebenden ebenfalls vorhanden wären. Der oben erwähnte Fall von
All. chlorotica, die den Schwanz erst im Sommer des folgenden
Jahres ersetzte, sowie andere Beobachtungen sprechen direkt für
diese Annahme, Beobachtungen, welchen zufolge Regenwürmer, die
über den Winter in Vorratskisten aufbewahrt und denen später
keine neuen Individuen beigesellt wurden, im folgenden Sommer
mit kürzlich regenerierten Teilen gefunden worden waren.

Über die Länge der regenerierten Teile in ihrem Verhältnisse
zur alten wurden bis jetzt keine Angaben gemacht; in den
meisten Fällen betrug die absolute Länge des Regenerates 1—3 cm,
im allgemeinen etwa $\frac{1}{3}$ oder $\frac{1}{4}$ der Gesamtlänge. Einmal wurde
eine All. terrestris von 12 cm Länge gefunden, die mindestens die
hintere Hälfte regeneriert hatte; mehrmals kamen mir auch Indi-
viduen in die Hände, wo mehrmalige Regeneration vorlag und
ein neues Regenerat aus dem vorhergehenden gesproßt war, das
jüngste immer an der hellsten Färbung erkennbar: eine Stufen-
leiter von regenerierten Partien, wie sie Spallanzani schon be-
schreibt.

Über die Grenze des Regenerationsvermögens, soweit es den
Ersatz hinterer Partien betrifft, kann ich keine genauen Angaben
machen, da in allen den Fällen, die zur Beantwortung dieser Frage
herangezogen werden können, nur negative Resultate vorliegen,
wie aus dem folgenden ersichtlich ist. Vergleiche über den Punkt
übrigens auch die Angaben der älteren Autoren, wie sie am Ende
des historischen Abschnittes zusammengestellt sind!

Wir haben uns oben gefragt: was geschah denn mit dem
Stücke a eines halbierten Wurmes, oder wie verhielten sich die
Hinterenden der Stücke a und b eines dreigeteilten? Darüber
gaben uns die Tabellen IX und X keinen Aufschluß.

Zunächst wurde bereits erwähnt, daß 6—15 vorderste Seg-
mente für sich meist im Verlaufe einer Woche zu Grunde gingen;
15 Segmente lebten einmal noch 36, einmal 40 Tage nach der
Operation; alle Stücke, bestehend aus 16—30 vordersten Seg-
menten, gingen im Verlaufe von 14 Tagen zu Grunde.

Ich will es unterlassen, eine Ergänzung zu den Tabellen IX
und X zu geben und das Schicksal der Stücke ausführlich zu be-
schreiben, die in Hinsicht auf die Regeneration des Hinterendes
von Interesse sind. Es genügt, festzustellen, daß mit Ausnahme
Über Regenerationsvorgänge bei Lumbriciden.

Die Beantwortung dieser Frage besitzt ihre Schwierigkeiten; denn es gehört nicht gerade zum Angenehmsten, an einem lebenden Wurm eine große Anzahl von Segmenten zu zählen. Ich versuchte deshalb, eine Stelle in der Nähe des Hinterendes durch Tinktion mit Farbstoffen hervorzuheben, allein alle diese Flecke verschwanden nach kurzer Zeit; kleine Verwundungen, die als Zeichen angebracht wurden, führten meist Selbstamputation herbei; schließlich habe ich mich dazu bequemt, mehrere Individuen während längerer Zeit auf ihre Segmentzahl zu prüfen; ein Fehler bei der Zählung ist um so eher ausgeschlossen, als ich diese Kontrolle gewöhnlich jede Woche, meist zweimal, vornahm, und in einzelnen Fällen nach dem Tode des Individuums die Richtigkeit der Angabe bestätigt werden konnte. So stehen mir 10 Beobachtungen zu Gebote, und alle stimmen darin überein, daß die Zahl der Segmente bei diesen Stücken, denen also hintere Partien fehlten, während mehr oder weniger langer Zeit dieselbe geblieben ist, und dies sowohl im Sommer wie im Winter. In anderen Fällen freilich, wo eine genaue Untersuchung nicht vorliegt, muß eine solche langsame Regeneration als möglich bezeichnet werden, und es sei also vorläufig dahingestellt, ob die Hinterenden bloß auf jene zuerst beschriebene, rasche und sprungweise Art regeneriert werden, oder ob daneben noch eine allmäßige Hinzufügung neuer Segmente vorkommt.

Es sei schließlich noch betont, daß in verschiedenen Fällen beobachtet wurde, daß Regeneration am Vorder- und Hinterende unabhängig von einander vor sich gehen, sei es, daß sie gleichzeitig erfolgen, sei es, daß eine von beiden überhaupt ausbleibt.

Sehen wir uns noch bei den früheren Autoren um: Réaumur sagt, daß ein neues Hinterende allmäßig gebildet werde; ob er wirklich eine solche langsame Regeneration beobachtet hat, oder ob der Ausdruck nicht wörtlich zu nehmen ist, muß dahingestellt bleiben. Bonnet dagegen ist der erste, welcher das Auftreten
Karl Hescheler,

eines solchen Regenerates in Form eines Anhängsels beschreibt. Wenn man seine Auslassungen hierüber vergleicht mit der oben gegebenen Beschreibung, so wird man eine vollständige Übereinstimmung der Beobachtungen feststellen können: „L'appendice vermiforme qui observé de plus près paraissoit être un petit ver qui poussoit à l'extrémité du grand“ ist ein solches Anhängsel, bestehend aus vielen Segmenten, wie ich es wiederholt beobachten konnte. Dies sah Bonnet im August.

Vandelli hat vermutlich Ähnliches gesehen, wenn er sagt, daß die Vorderenden „in praeciso extremo XIV parvos annulos subpallidos adeptae erant; haec aucta pars tenuis et acuta erat etc.“ Alle diese Regenerationsvorgänge spielen sich im Sommer ab.

Sangiovanni dagegen beschreibt die neuen Teile, welche am Hinterende entstehen, als durchsichtig, aber von nächstem Durchmesser wie die alten; sie bestehen aus 5—6 Ringen, und im Laufe eines Monates kommen 10 weitere hinzu. Diese Art der Regeneration ist offenbar eher eine langsamer, jedenfalls nicht jener anderen beschriebenen entsprechend. Auch diese Vorgänge fallen in den Sommer.

Newport bemerkt, daß im Herbst außerordentlich häufig Würmer mit regenerierten Hinterenden gefunden werden.

Regeneration auf schiefer Schnittfläche.

Bei allen bis dahin beschriebenen Operationen war durch einen geraden Schnitt quer zur Hauptachse des Tieres ein Teil abgetrennt worden. Nun wurden aber auch schiefe Schnitte ausgeführt, die sich über mehrere Segmente erstreckten. Im hinteren Teile des Wurmes hatten dieselben, wie wir sahen, stets Amputation des angeschnittenen Stückes zur Folge, so daß hier keine weiteren Erfahrungen vorliegen; dagegen ging die Regeneration in den vorderen Partien des Tieres von der schießen Schnittfläche aus vor sich.

Als Übergang zu diesen Versuchen können noch jene Fälle angezogen werden, wo ein Segment nur halb abgeschnitten wurde, wie dies hier und da vorkam; in allen Fällen wurde dasselbe wieder ergänzt; siehe Tab. III, K.-Nr. 256, 151, 186, 246, sowie Fig. 3 u. 4.

In der Tabelle XI bedeuten die Zahlen unter „Art der Operation“ immer die Nummer des Segmentes, von vorn gezählt.
<table>
<thead>
<tr>
<th>Species</th>
<th>K.-Nr.</th>
<th>Art der Operation</th>
<th>Operiert am</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 All. terrestris</td>
<td>159</td>
<td>rechts a</td>
<td>10. VII. 94</td>
<td>b bekommt nach 14 Tagen eine Knospe unter rechtem Winkel zur Schnittfläche, streckt sich bald gerade nach vorn. Getötet nach 46 Tagen. Hat die angescnittenen Segmente ergänzt u. davor 3 neue statt 4. S. Fig. 5 u. 6.</td>
</tr>
<tr>
<td>10 cm ohne Clit.</td>
<td></td>
<td>rechts b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>links</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>(von oben gesehen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 All. terrestris</td>
<td>160</td>
<td>rechts a</td>
<td>10. VII. 94</td>
<td>b nach 4 Tagen tot.</td>
</tr>
<tr>
<td>8 cm ohne Clit.</td>
<td></td>
<td>rechts b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>links</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>(von oben gesehen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 L. rubellus</td>
<td>161</td>
<td>oben b</td>
<td>10. VII. 94</td>
<td>b nach 4 Tagen tot.</td>
</tr>
<tr>
<td>9 cm mit Clit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>(von rechts gesehen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 All. terrestris</td>
<td>231</td>
<td>rechts a</td>
<td>24. VIII. 94</td>
<td>b nach 5 Tagen tot.</td>
</tr>
<tr>
<td>11 cm mit Clit.</td>
<td></td>
<td>rechts b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>links</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>(von oben gesehen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 All. caliginosa</td>
<td>232</td>
<td></td>
<td>24. VIII. 94</td>
<td>b nach 5 Tagen tot.</td>
</tr>
<tr>
<td>8 cm mit Clit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>do</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 All. caliginosa</td>
<td>233</td>
<td></td>
<td>24. VIII. 94</td>
<td>b nach 5 Tagen tot.</td>
</tr>
<tr>
<td>8 cm mit Clit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>do</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 All. terrestris</td>
<td>291</td>
<td>rechts a</td>
<td>30. XI. 94</td>
<td>Bekommt nach 20 Tagen Knospe unter rechtem Winkel zur Schnittfläche; alte Segmente ergänzt mit A! ca. 4 neue mit A! Getötet nach 61/3 Mon. Siehe Fig. 7—9.</td>
</tr>
<tr>
<td>9 cm ohne Clit.</td>
<td></td>
<td>rechts b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>links</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>(von oben gesehen)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In den 4 Fällen, in welchen Regeneration eintrat, fand einmal normale Ergänzung der angeschnittenen Segmente statt, dreimal traten dabei Anomalien auf, in einem Fall wurde einfach ein unsegmentiertes Stück eingeschoben; es ist dabei nicht anzunehmen, daß nach so langer Zeit nachträglich noch Segmentierung eingetreten wäre; der Wurm zeigte schon 3 Monate vor seinem Tode dieses Aussehen.

Lassen wir die schief angeschnittenen und ergänzten Segmente außer Betracht, so haben wir davor wieder das bekannte Verhalten, daß bei Wegnahme vorderer Segmente gewöhnlich nie mehr die volle Zahl reproduziert wird. Hier

für 4 Segmente regeneriert 3,
" 6 " " 4,
" 8 " " 3-4,
" 5 " " 4.

Die Thatsache, daß die Regenerate zuerst unter einem Winkel von 90° aus der Schnittfläche herauswuchsen, ist in voller Übereinstimmung mit dem von Barfurth (2) bei Regeneration des Schwanzes von Amphibienlarven konstatierten Verhalten, welches er in dem Satze zusammenfaßt:

Die Achse des Regenerationsstückes steht senkrecht auf der Schnittebene.

Barfurth sucht die darauf folgende Geradstreckung vor allem auf die Wirkung der funktionellen Anpassung und der Schwerkraft zurückzuführen, giebt aber daneben auch einer ordnenden Wirkung des Organismus selbst als eingreifendem Faktor Raum.
In den vorliegenden Fällen beim Regenwurm fallen die beiden ersten Faktoren wohl ganz außer Betracht; funktionelle Anpassung könnte nur wirken, soweit es sich um die Nahrungsaufnahme handelt, von der aber erst die Rede sein kann, wenn die Streckung nach vorn bereits erfolgt ist. So bleibt als vor allem wirkend die innere richtende Kraft des Organismus.

Wir wollen jetzt auf einzelne Faktoren eintreten, die bei den Regenerationsvorgängen beständig einwirken, und zwar nur an Beispielen, die den Ersatz des Vorderendes betreffen.

1. Einfluß der Species.

Wir haben bereits konstatiert, daß der Umfang des Regenerationsvermögens in der vorderen Region bei den einzelnen Arten kein wesentlich verschiedener ist. Anders verhält es sich in Hinsicht auf die Schnelligkeit der Regeneration bei Abnahme gleich großer Stücke. Um einen Vergleich ziehen zu können, müssen andere beeinflussende Faktoren, vor allem Jahreszeit, Temperatur, Alter etc. außer Betracht fallen.

Nehmen wir zunächst Beispiele vom Sommer 1894:

Operiert am 6. VII. 94 All. terrestris, K.-Nr. 154—157.
 Eintritt der Regeneration nach 6 Tagen (ich bezeichne damit das erste Erscheinen eines äußerlich deutlich erkennbaren Regenerates),
 Eintritt der Segmentierung nach 18—21 Tagen.

Operiert am 10. VIII. 94 All. terrestris, K.-Nr. 213 u. 214.
 Eintritt der Regeneration nach 12 Tagen,
 " Segmentierung " 26

Operiert am 23. VIII. 94 All. caliginosa, K.-Nr. 223—227.
 Eintritt der Regeneration nach 6 Tagen,
 " Segmentierung " 26

Operiert am 5. VII. 94 All. foetida, K.-Nr. 149—153.
 Eintritt der Regeneration nach 4 Tagen,
 " Segmentierung " 11—13

Operiert am 16. VII. 94 All. foetida, K.-Nr. 179—181.
 Eintritt der Regeneration nach 4 Tagen,
 " Segmentierung " 16

Operiert am 10. VIII. 94 All. foetida, K.-Nr. 210—212.
 Eintritt der Regeneration nach 6 Tagen,
 " Segmentierung " 20

Bd. XXX. N. F. XXIII.
Winter 1893/94:
Operiert am 8. XI. 93 und 9. XI. 93 All. terrestris, K.-Nr. O₁—O₅ und P₁—P₅.
Eintritt der Regeneration nach 13 Tagen,
" Segmentierung " 37
Operiert am 6. II. 94 All. terrestris, K.-Nr. 31—35.
Eintritt der Regeneration nach 20 Tagen,
" Segmentierung " 34
Operiert am 17. IV. 94 All. terrestris, K.-Nr. 115 u. 116.
Eintritt der Regeneration nach 12 Tagen,
" Segmentierung " 25
Operiert am 17. IV. 94 All. caliginosa, K.-Nr. 117 u. 118.
Eintritt der Regeneration nach 10 Tagen,
" Segmentierung " 25
Operiert am 16. I. 94 Lumbr. rubellus, K.-Nr. 3—5.
Eintritt der Regeneration nach 7 Tagen,
" Segmentierung " 32
Operiert am 5. IV. 94 Lumbr. rubellus, K.-Nr. 97.
Eintritt der Regeneration nach 7 Tagen,
" Segmentierung " 30

Winter 1894/95:
Operiert am 1. XI. 94 All. terrestris, K.-Nr. 245—249.
Eintritt der Regeneration nach 14 Tagen,
" Segmentierung " 37
Operiert am 7. XI. 94 All. caliginosa, K.-Nr. 254 u. 255.
Eintritt der Regeneration nach 20 Tagen,
" Segmentierung " 34
Operiert am 19. XI. 94 All. foetida, K.-Nr. 282—286.
Eintritt der Regeneration nach 12 Tagen,
" Segmentierung " 34
Operiert am 7. XI. 94 Lumbr. rubellus, K.-Nr. 256 u. 257.
Eintritt der Regeneration nach 20 Tagen,
" Segmentierung " 34

Es handelt sich hier um Tiere, die ausgewachsen waren und denen 5—7 vorderste Segmente abgeschnitten wurden. Die Resultate vom Sommer 1894 erwähne ich hier aus einem später zu besprechenden Grunde nicht.

Aus den Angaben vom Sommer 1894 erhellt, daß
All. terrestris und All. caliginosa ungefähr gleich schnell regenerieren, daß hingegen All. foetida, sowohl was den Beginn als den weiteren Verlauf der Regeneration betrifft, bedeutend rascher vorgeht.
Aus den Resultaten der beiden Winter ist zu ersehen, daß bei allen beobachteten Arten im allgemeinen der Verlauf ein nählicher ist, abgesehen davon, daß foetida und rubellus die Regeneration schneller beginnen. Der Winter scheint also den Unterschied auszugleichen.

Von Lumbr. rubellus stehen mir vom Sommer zu wenig positive Resultate zu Gebote, um sichere Schlüsse ziehen zu können; doch konnte ich konstatieren, daß diese Species rascher Regenerate aufweist als All. terrestris und caliginosa; im ganzen nimmt sie wohl eine Mittelstellung zwischen diesen beiden und All. foetida ein.

Schließlich Lumbr. Herculeus. Darüber folgendes:

Operiert am 17. IV. 94 L. Herculeus, K.-Nr. 113 und 114.
1) Eintritt der Regeneration nach 16 Tagen,
2) " Segmentierung " 32 "

Operiert am 16. VII. 94, K.-Nr. 183.
1) nach 10 Tagen,
2) " 26 "

Operiert am 7. XI. 94, K.-Nr. 258.
1) nach 20 Tagen,
2) " 34 "

Diese Resultate stimmen im wesentlichen mit denen von All. terrestris und caliginosa.

Wir erinnern uns, daß schon Réaumur bemerkt, daß von den verschiedenen Arten der Regenwürmer 2 schneller regenerieren, ohne daß wir aus seinen Angaben ersehen, welche er damit meint.

2. Einfluß der Jahreszeit und der Temperatur.

Aus den oben zusammengestellten Beispielen geht bereits klar hervor, welch großen Einfluß Sommer und Winter auf die Regenerationsgeschwindigkeit ausüben.

Im Sommer regenerieren alle der untersuchten Species schneller als im Winter, am bedeutendsten ist der Unterschied bei All.
foetida, da der Winter die Differenzen überhaupt verwischt. Auch der allmäßige Übergang im Frühjahr ist aus den Angaben zu ersehen.

Die Temperatur spielt dabei eine Hauptrolle; das geht aus folgendem hervor:

Am 10. VIII. 94 wurden 3 All. foetida und 2 All. terrestris operiert; sie begannen zu regenerieren, die foetida früher, wie gewöhnlich; nach etwa 14 Tagen aber verlangsamt sich der Vorgang sichtbar, zu gleicher Zeit war ein starker Temperatursturz eingetreten, sobald aber die kalte Witterung ein Ende hatte, ging die Regeneration wieder rasch vor sich. So erklärt sich jener späte Eintritt der Segmentierung bei All. foetida, K.-Nr. 210—212 (20 Tage gegenüber 12—16).

Ich lasse jetzt einige Resultate vom Sommer 1895 folgen:
Operiert am 6. V. 95 All. terrestris, K.-Nr. 378 u. 379.
1) Eintritt der Regeneration nach 12 Tagen,
2) " Segmentierung " 30 ",

Operiert am 11. VI. 95 All. foetida, K.-Nr. 391—393.
1) nach 10 Tagen,
2) " 35 ",

Operiert am 20. VII. 95 All. foetida, K.-Nr. 418—422.
1) nach 10 Tagen,
2) " 22 ",

Operiert am 6. V. 95 Lumbr. rubellus, K.-Nr. 376 u. 377.
1) nach 12 Tagen,
2) " 30 ",

Diese Angaben decken sich in ihren Werten fast mit denen des Winters. Woher diese Verzögerung? Ich finde die Erklärung hierin: In diesem Sommer waren die Töpfe, in denen die Versuchstiere gehalten wurden, in die Nähe großer Aquarien gestellt worden; infolgedessen befanden sie sich an einem Ort mit relativ bedeutend niedrigerer Temperatur. Genaue Beobachtungen während einiger Wochen ergaben, daß die Differenz der Temperatur dieser Stelle und der anderer Laboratoriumsräume am Mittag oft bis 6 ° C betrug, und daß an jenem Orte das Thermometer überhaupt selten über 20 ° C zeigte. Um vollständige Klarheit über diesen Punkt zu erlangen, wurden gleichzeitig mit den All. foetida, K.-Nr. 418—422, 5 andere, von gleicher Größe und in gleicher Weise operiert, der gewöhnlichen Zimmertemperatur ausgesetzt. Sie zeigten
1) nach 4 Tagen Auftreten der Regenerationsknospen,
2) " 14 " Eintritt der Segmentierung,

d. h. die uns bekannten Verhältnisse des Sommers; sie waren also den anderen um eine ganze Woche voraus.
Den Einfluß der Temperatur beurteilen zu können, hatte ich im Winter 94/95 folgende Versuche angestellt:

1) Die operierten Tiere wurden in den mit Erde gefüllten Gefäßen in einem Thermostaten bei einer konstanten Temperatur von 35 °C gehalten. Es waren 3 All. terr., 1 Lumbr. rubellus, 1 All. foetida. Alle starben nach 2 Tagen, 10. XII. 94.

3) 5 All. foetida wurden am 20. I. 95, nachdem ihnen 5—7 vorderste Segmente abgeschnitten worden waren, einer konstanten Temperatur von 29—30 °C ausgesetzt; davon sterben 2 nach 3 Tagen, 1 nach 6, die beiden anderen zeigen nach 4 und 6 Tagen eine kleine Regenerationsknospe und nach 12 resp. 15 Tagen Beginn der Segmentierung. Sie verbringen im ganzen 65 Tage im Thermostaten und werden dann zu einer zweiten Operation verwendet. Einem derselben, K.-Nr. 331, waren 6 1/2 Segmente abgeschnitten worden, und dabei zeigte sich am 6. Segmente rechterseits eine Anomalie; das Tier regenerierte 5 1/2 Segmente ohne jede Anomalie.

5) 3 All. terrestris, 1 All. caliginosa und 1 All. foetida werden am 3. I. 95 halbiert und die vorderen Hälften dem Thermostaten (29—30 °C) übergeben. Nach 4 Tagen sterben 2 All. terr. und 1 All. calig.; 1 terrestris und 1 foetida lebten im Wärmeofen, jene 65 Tage, diese 3 Monate. All. terrestris zeigte keine Regenerationserscheinungen, All. foetida dagegen bekam nach 10 Tagen eine Schwanzknospe, die sich rasch entwickelte, gleich aus vielen Segmenten bestand, ganz wie es uns von der Regeneration der Hinterenden bekannt ist. Nach 1 Monat waren 40 neue Segmente zu zählen.
Diese Versuche zeigen, daß bei All. foetida der Verlauf der Regenerationsvorgänge ganz dem in der heißen Jahreszeit entsprach, während bei den zwei anderen Species die bloße Erhöhung der Temperatur diese Wirkung nicht hervorbrachte.

Warum dieser Unterschied? Ich glaube, wir finden die Erklärung in der verschiedenen Lebensweise dieser Arten. All. foetida lebt vor allem im warmen Mist, an Orten, wo sehr hohe Temperaturen, oft über 30° herrschende; die anderen ziehen sich dagegen bekanntlich sowohl bei sehr niedrigen wie sehr hohen Temperaturen in die Erde zurück, wo sie etwa in mittlerer Jahrestemperatur des betreffenden Ortes sich befinden.

So läßt sich wohl sagen, daß die Regenerationsgeschwindigkeit mit dem bekannten Unterschied im Sommer und Winter nicht als bloße Funktion der Temperatur betrachtet werden darf, sondern abhängt von einem Optimum der Lebensbedingungen, das sich selbst wieder aus verschiedenen Faktoren zusammensetzt.

Welchen Einfluß die Jahreszeit bei der Regeneration der Hinterenden ausübt, haben wir schon besprochen.

Es zeigte sich, daß kein bemerkbarer Unterschied mit Rücksicht auf das Auftreten und die Ausbildung der Regenerate bestand, ob 4 oder 8 oder eine zwischen diesen liegende Zahl von vordersten Segmenten abgeschnitten wurde, und zwar bei allen Species, die in den Kreis der Untersuchung gezogen wurden. Diese Übereinstimmung kann um so mehr mit Recht betont werden, weil vielfach die Individuen, denen verschieden lange Stücke weggenommen waren, im gleichen Topfe gehalten wurden 1).

Weniger als 4 Segmente wurden im allgemeinen nicht abgeschnitten; das Verhalten bei Operation von 1, 2 und 3 ersten Segmenten kann ich daher nicht beurteilen; einige solcher Fälle kommen noch bei der „mehrmaligen Regeneration“ zur Sprache.

Für Abnahme von 9 Segmenten stehen uns 4 Fälle zu Gebote (siehe Tabelle V):

2 All. terrestris, K.-Nr. 64 u. 68, operiert am 7. III. 94.
1) Beginn der Regeneration nach 7 Tagen,
2) „ Segmentierung „ 27 „ (K.-Nr. 68),
 „ „ „ noch nicht nach 36 Tagen
 (K.-Nr. 64).

1) Vergleiche die gegenteilige Angabe von Ducès, S. 204.
Regenerationsvorgänge bei Lumbriciden.

1 All. terrestris, K.-Nr. 86, operiert am 15. III. 94.
 1) nach 10 Tagen,
 2) 46
 10 Segmente abgeschnitten:

All. terrestris, K.-Nr. 87, operiert am 15. III. 94.
 1) nach 10 Tagen,
 2) 46

All. terrestris, K.-Nr. 144, operiert am 26. VI. 94.
 1) nach 9 Tagen,
 2) 25

All. terrestris, K.-Nr. a, gefunden am 1. V. 95.
 1) nach 14 Tagen (?),
 2) 52
 11 Segmente abgeschnitten:

All. terrestris, K.-Nr. 88, operiert am 15. III. 94.
 1) nach 10 Tagen,
 2) 46

All. terrestris, K.-Nr. 251, gefunden am 1. XI. 94.
 1) nach 12 Tagen (?),
 2) 26
 12 Segmente abgeschnitten:

All. terrestris, K.-Nr. 65, operiert am 7. III. 94.
 1) nach 7 Tagen,
 2) 27 (nachher aber sehr langsamer Fortgang der Regeneration).

All. terrestris, K.-Nr. 89, operiert am 15. III. 94.
 1) nach 10 Tagen,
 2) 58

All. terrestris, K.-Nr. 263, operiert am 13. XI. 94.
 1) nach 10 Tagen,
 2) 67
 13 Segmente abgeschnitten:

All. terrestris, K.-Nr. 90, operiert am 15. III. 94.
 1) nach 10 Tagen,
 2) 46

All. terrestris, K.-Nr. 260, operiert am 13. XI. 94.
 1) nach 28 Tagen,
 2) 3½ Monaten.

L. rubellus, K.-Nr. 267, operiert am 13. XI. 94.
 1) nach 28 Tagen,
 2) 44 noch nicht.
14 Segmente abgeschnitten:

All. terrestris, K.-Nr. 45, operiert am 13. II. 94.
1) nach 10 Tagen,
2) " 65 " (undeutlich).

L. rubellus, K.-Nr. 20 u. 21, operiert 24. I. 94.
1) nach 14 Tagen,
2) " 56 "

Vergleichen wir diese Zahlen mit den für die gleiche Jahreszeit und Species bei Abnahme von 5 Segmenten gegebenen Werten, so ergiebt sich, daß vom Verlust von 9 Segmenten an etwa die Regenerationsgeschwindigkeit sich verlangsamt und zwar ungefähr proportional der größeren Einbuße an Ringen; zugleich bemerken wir aber eine auffällige individuelle Variation, die sich um so mehr steigert, je größer der Verlust an Segmenten ist. Das Gleichie gibt sich auch bei Abnahme von 15 Segmenten kund, wie wir aus nachfolgender Tabelle ersehen:

Tabelle XII.

<table>
<thead>
<tr>
<th>Species</th>
<th>Operiert am</th>
<th>Beginn der Regeneration</th>
<th>Beginn der Segmentierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>All. terrestris</td>
<td>13. II. 94</td>
<td>nach 10 Tagen.</td>
<td>nach 49—60 Tagen.</td>
</tr>
<tr>
<td>(K.-Nr. 43—47)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All. terrestris</td>
<td>6. XI. 93</td>
<td>" 82 "</td>
<td>" 4 Monaten.</td>
</tr>
<tr>
<td>(K.-Nr. II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All. terrestris</td>
<td>13. XI. 94</td>
<td>" 3½ Mon.</td>
<td></td>
</tr>
<tr>
<td>(K.-Nr. 261)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All. terrestris</td>
<td>22. I. 95</td>
<td>" 32 Tagen</td>
<td>nach 3 Monaten.</td>
</tr>
<tr>
<td>(K.-Nr. 338)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All. caliginosa</td>
<td>13. XI. 94</td>
<td>" 40 "</td>
<td></td>
</tr>
<tr>
<td>(K.-Nr. 265 u. 266)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All. foetida</td>
<td>22. I. 95</td>
<td>" 3½ Mon.</td>
<td></td>
</tr>
<tr>
<td>(K.-Nr. 340)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbr. rubellus</td>
<td>13. XI. 94</td>
<td>" 17 Tagen</td>
<td></td>
</tr>
<tr>
<td>(K.-Nr. 268)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Was jene Fälle endlich anbetrifft, wo nach Wegnahme größerer vorderer Partien noch Regenerationsknospen auftraten, so verweise ich auf Tabellen VIII—X, wo die betreffenden Daten bereits angegeben sind. Sie stehen im Einklang mit dem bereits Gesagten.

Wir hatten früher keine bestimmte Grenze für die Regeneration vorderer Partien bestimmen können, aber doch festgestellt, daß in der Gegend des 15. Segmentes die Regenerationsfähigkeit in einer solchen Weise abgenommen hat, daß Regenerationsknospen,
die von weiter hinten hervorsprossen, nur noch als Ausnahmen zu betrachten sind. Ich will bei dieser Gelegenheit noch einmal die Gründe zusammenstellen, die für diese Annahme sprechen:

1) Bei Abnahme 15 vorderster Segmente tritt nur noch in einer geringen Anzahl von Fällen vollkommene Regeneration ein.
2) Darüber hinaus konnten bei unseren Versuchen bloß noch unvollkommene Regenerate beobachtet werden.
4) Es wird in allen Fällen nur eine beschränkte Zahl vorderster Segmente regeneriert, gewöhnlich 3 oder 4 (beobachtetes Maximum 7, Tabelle V, Nr. 51), und hier zeigt sich keine Progression entsprechend dem größeren Verluste.

4. Einfluß des Alters der Individuen.

Junge Tiere. Wir berücksichtigen nur solche Individuen, denen 4—8 erste Segmente abgenommen wurden. Es gingen von diesen Versuchsobjekten relativ viele zu Grunde, so daß nur wenig brauchbare Beispiele bleiben.

1) All. terrestris, 6 cm lang, K.-Nr. 59, operiert 5. III. 94.
 1) Beginn der Regeneration nach 4 Tagen,
 2) „ Segmentierung „ 26 „
2) L. rubellus, 5 cm lang, K.-Nr. 60, operiert 5. III. 94.
 1) nach 4 Tagen,
 2) „ 16 „
3) All. terrestris, 6 cm lang, K.-Nr. 184, operiert 18. VII. 94.
 1) nach 6 Tagen,
 2) „ 20 „
4 u. 5) All. terrestris, 5 u. 3 cm lang, K.-Nr. 186 u. 187, operiert 18. VII. 94.
 1) nach 6 Tagen,
 2) „ 16 „
6—9) All. terrestris, 4—6 cm lang, K.-Nr. 319—322, operiert 17. I. 95.
 1) nach 10 Tagen,
 2) „ 38 „
10) L. rubellus, 5 cm lang, K.-Nr. 323, operiert 17. I. 95.
 1) nach 10 Tagen,
 2) „ 38 „
Karl Hescheler,

11) L. rubellus, 4 cm lang, K.-Nr. 324, operiert 18. I. 95.
 1) nach 12 Tagen,
 2) " 37 ",

12—15) All. terrestris, 5—7 cm lang, K.-Nr. 325—328, operiert 18. I. 95.
 1) nach 12 Tagen,
 2) " 37 ",

Für den Sommer sind vor allem Nr. 3—5 charakteristisch; sie wurden ungefähr gleichzeitig mit All. foetida, K.-Nr. 179—181 (siehe unter Einfluß der Species) operiert und regenerierten gleich schnell wie diese. Für All. terrestris ist daher zu konstatieren, daß junge Tiere im Sommer schneller regenerieren als alte.

Die Beispiele vom Winter, 6—15, zeigen, daß kein Unterschied besteht zwischen alten und jungen Tieren, abgesehen davon, daß die Regenerate bei letzteren vielleicht etwas früher erscheinen. Der Winter übt also auch in dieser Beziehung einen ausgleichenden Einfluß aus.

Es handelt sich bei diesen Versuchen übrigens nicht um ganz junge Exemplare; bei solchen dürften wohl die Differenzen noch größere sein.

Die Ergebnisse über den Einfluß verschiedener Faktoren auf die Regeneration stimmen mit den bei anderen Tiergruppen gemachten Erfahrungen überein, soweit es wenigstens Alter, Jahreszeit und Temperatur betrifft. Erwähnt sei, daß Caullery (13) erst kürzlich auch für Ascidien (Circinalium concrescens) festgestellt hat, daß die Geschwindigkeit der Regeneration in weitem Umfange von der Temperatur abhängig ist.

Was die Ernährung betrifft, von der im allgemeinen gilt, daß sie ohne Einfluß auf diese Vorgänge sei, kann aus den vorliegenden Versuchen kein Schluß gezogen werden, da alle Objekte in Lauberde gezüchtet wurden, also wohl stets reichlich Nahrung zur Verfügung hatten. Doch kommt eine Nahrungsaufnahme bei den Experimenten, bei welchen vordere Segmente weggenommen wurden, für die frühen Stadien der Regeneration eigentlich gar nicht in Betracht.

Es bleiben uns noch Fälle mehrmaliger Regeneration des vorderen Teiles zu besprechen.
Unter der Rubrik „Operationen“ beziehen sich die Zahlenangaben immer auf die Segmente des intakten Tieres. Waren z. B. das erste Mal 5 Segmente abgeschnitten und 3 regeneriert worden, und es heißt nun bei der 2. Operation 7/8, so bedeutet dies nicht, daß jetzt 7 Segmente abgeschnitten wurden, sondern, daß die Operationsstelle hinter dem 7. der ursprünglichen Segmente liegt, d. h. in Wirklichkeit sind 3 regenerierte und 2 alte Segmente weggenommen worden.

<table>
<thead>
<tr>
<th>Species</th>
<th>Operationen</th>
<th>Intervall der Operat.</th>
<th>Regenerationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>All. terrestris 1. Operation 6. II. 94</td>
<td>5 6</td>
<td>56 Tage</td>
<td>1. Regeneration nach 34 Tag. Segmentierg., regeneriert 4 Segmente.</td>
</tr>
<tr>
<td>11 cm mit Clit. K.-Nr. 34</td>
<td>2. Operation 3. IV. 94</td>
<td>7 8</td>
<td>2. Regeneration stirbt nach 6 Tagen (Chloroform!).</td>
</tr>
<tr>
<td>10 cm ohne Clit. K.-Nr. 70</td>
<td>2. Operation 4. IV. 94</td>
<td>7 8</td>
<td>2. Regeneration stirbt nach 5 Tagen (Chloroform!).</td>
</tr>
<tr>
<td>8 cm mit Clit. K.-Nr. 3</td>
<td>2. Operation 4. IV. 94</td>
<td>9 10</td>
<td>2. Regeneration stirbt nach 3 Tagen (Chloroform!).</td>
</tr>
<tr>
<td>4 All. terrestris 2. Operation 20. VI. 94</td>
<td>7 8</td>
<td></td>
<td>2. Regeneration lebt 24 Tage ohne zu regenerieren.</td>
</tr>
<tr>
<td>Species</td>
<td>Operation</td>
<td>Intervall der Operat.</td>
<td>Regeneration</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>12 cm ohne Clit.</td>
<td>17. IV. 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.-Nr. 116</td>
<td>- 5 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Operation</td>
<td>7 8</td>
<td>2. Regeneration stirbt nach 8 Tagen.</td>
</tr>
<tr>
<td></td>
<td>16. VII. 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 7 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 cm, mit Clit.</td>
<td>17. IV. 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.-Nr. 117</td>
<td>- 5 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Operation</td>
<td></td>
<td>2. Regeneration Knospe nach 10 Tagen, stirbt „15“</td>
</tr>
<tr>
<td></td>
<td>23. VII. 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 61/2 61/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 1/2 cm mit Clit.</td>
<td>17. IV. 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.-Nr. 118</td>
<td>- 6 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Operation</td>
<td>47 Tage</td>
<td>2. Regeneration Beg. der Regen. n. 10 Tag., ” „Segment. „ 21 regeneriert 3 1/2 Segm.</td>
</tr>
<tr>
<td></td>
<td>23. VII. 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 61/2 61/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. IX. 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 9 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 cm mit Clit.</td>
<td>8. XI. 93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.-Nr. O 5</td>
<td>- 5 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. VIII. 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 6 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 cm mit Clit.</td>
<td>7. XI. 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.-Nr. 254</td>
<td>- 5 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22. I. 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 6 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. IV. 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4 regen. 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Operation</td>
<td>Intervall der Operat.</td>
<td>Regeneration</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>10. All. caliginosa</td>
<td>1. Operation</td>
<td>7. XI. 94</td>
<td>1. Regeneration</td>
</tr>
<tr>
<td>7 cm mit Clit.</td>
<td></td>
<td>5 6</td>
<td>Beg. der Regen. n. 20 Tag,</td>
</tr>
<tr>
<td>K.-Nr. 255</td>
<td>2. Operation</td>
<td>22. I. 95</td>
<td>„ Segment. „ 34 „</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 7</td>
<td>regeneriert 4 Segm.</td>
</tr>
<tr>
<td>7 cm ohne Clit.</td>
<td></td>
<td>4 1/2 4 1/2</td>
<td>nach 9 Tagen tot.</td>
</tr>
<tr>
<td>K.-Nr. 256</td>
<td>2. Operation</td>
<td>22. I. 95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Operation</td>
<td>3. IV. 95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 1/2 1 1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>reg. reg. operiert im</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>regen. Teile</td>
<td></td>
</tr>
<tr>
<td>8 cm ohne Clit.</td>
<td></td>
<td>5 6</td>
<td>Beg. der Regen. n. 20 Tag,</td>
</tr>
<tr>
<td>K.-Nr. 257</td>
<td>2. Operation</td>
<td>22. I. 95</td>
<td>„ Segment. „ 34 „</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 7</td>
<td>regeneriert 4 Segm.</td>
</tr>
<tr>
<td></td>
<td>3. Operation</td>
<td>3. IV. 95</td>
<td>2. Regeneration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 12</td>
<td>monströse Ausstülzung an</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>der Schnittstelle.</td>
</tr>
<tr>
<td>12 cm ohne Clit.</td>
<td></td>
<td>5 6</td>
<td>Beg. der Regen. n. 15 Tag,</td>
</tr>
<tr>
<td>K.-Nr. 258</td>
<td>2. Operation</td>
<td>22. I. 95</td>
<td>„ unsegm. Knospe, stirbt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 7</td>
<td>nach 49 Tagen.</td>
</tr>
<tr>
<td></td>
<td>3. Operation</td>
<td>3. IV. 95</td>
<td>1. Regeneration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 8</td>
<td>Beg. der Regen. n. 20 Tag,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>„ Segment. „ 34 „</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>regeneriert 3 Segm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Regeneration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>monströse Ausstülzung an</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>der Schnittstelle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Regeneration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beg. der Regen. n. 15 Tag,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>„ unsegm. Knospe, stirbt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nach 53 Tagen.</td>
</tr>
<tr>
<td>Species</td>
<td>Operationen</td>
<td>Intervall der Operat.</td>
<td>Regenerationen</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>2. Operation</td>
<td>64 Tage</td>
<td>3. Regeneration Beg. der Regen. n. 7 Tag., "Segment. " 40, regeneriert 3 Segm., also 2 mehr als abgeschnitten!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76 Tage</td>
<td>4. Regeneration nach 4 Tagen tot.</td>
</tr>
<tr>
<td></td>
<td>3. Operation III. 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 cm ohne Clit.</td>
<td>4. Operation VI. 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.-Nr. 246</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Operation VI. 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 cm ohne Clit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.-Nr. 247</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Operation</td>
<td>63 Tage</td>
<td>2. Regeneration stirbt nach 1 Monat ohne zu regenerieren.</td>
</tr>
<tr>
<td>Species</td>
<td>Operationen</td>
<td>Intervall der Operat.</td>
<td>Regenerationen</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Species</td>
<td>Operationen</td>
<td>Intervall der Operat.</td>
<td>Regenerationen</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>2, 1 7 reg. reg. im regen. Teile oper.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Operation 10, VII, 95</td>
<td>63 Tage</td>
<td>5. Regeneration bekommt nach 7 Tagen eine Knospe, stirbt nach 10 Tagen.</td>
</tr>
<tr>
<td></td>
<td>11 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 cm ohne Clit.</td>
<td>2. Operation 22, I, 95</td>
<td></td>
<td>2. Regeneration Beg. der Regen. n. 8 Tag., "Segment", 40 regeneriert 3 Segm.</td>
</tr>
<tr>
<td>K.-Nr. 286</td>
<td>6 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2, 1 7 reg. reg. im regen. Teile oper.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 1/2 9 1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.-Nr. 331</td>
<td>4 1 1/2 6 1/2 reg. reg. im regen. Teile oper.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>57 Tage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Operationen</td>
<td>Intervall der Operat.</td>
<td>Regenerationen</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>23 All. foetida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 cm ohne Clit.</td>
<td>1. Operation</td>
<td>20. I. 95</td>
<td>Regenerierte 3 Segm. (1 mehr als zuvor!)</td>
</tr>
<tr>
<td></td>
<td>3. Operation</td>
<td>22. V. 95</td>
<td>Nach 7 Tagen Knospe, nach 11 Tagen tot.</td>
</tr>
<tr>
<td></td>
<td>4. Operation</td>
<td>20. VII. 95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 9</td>
<td></td>
</tr>
<tr>
<td>24 All. foetida</td>
<td>1. Operation</td>
<td>27. XII. 94</td>
<td>Regeneriert 4 Segm.</td>
</tr>
<tr>
<td>5 cm ohne Clit.</td>
<td>2. Operation</td>
<td>26. III. 95</td>
<td>Nach 7 Tagen Knospe, nach 11 Tagen tot.</td>
</tr>
<tr>
<td>K.-Nr. 311</td>
<td>3. Operation</td>
<td>22. V. 95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Operationen</th>
<th>Intervall der Operat.</th>
<th>Regenerationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 All. foetida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 cm ohne Clit.</td>
<td>1. Operation</td>
<td>20. I. 95</td>
<td>Regenerierte 3 Segm. (1 mehr als zuvor!)</td>
</tr>
<tr>
<td></td>
<td>3. Operation</td>
<td>22. V. 95</td>
<td>Nach 7 Tagen Knospe, nach 11 Tagen tot.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 9</td>
<td></td>
</tr>
<tr>
<td>24 All. foetida</td>
<td>1. Operation</td>
<td>27. XII. 94</td>
<td>Regeneriert 4 Segm.</td>
</tr>
<tr>
<td>5 cm ohne Clit.</td>
<td>2. Operation</td>
<td>26. III. 95</td>
<td>Nach 7 Tagen Knospe, nach 11 Tagen tot.</td>
</tr>
<tr>
<td>K.-Nr. 311</td>
<td>3. Operation</td>
<td>22. V. 95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 9</td>
<td></td>
</tr>
</tbody>
</table>

Über Regenerationsvorgänge bei Lumbriciden. 265
<table>
<thead>
<tr>
<th>Species</th>
<th>Operationen</th>
<th>Intervall der Operat.</th>
<th>Regenerationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 All. terrestris</td>
<td>1. Operation</td>
<td>18. I. 95</td>
<td>1. Regeneration</td>
</tr>
<tr>
<td>7 cm ohne Clit.</td>
<td></td>
<td>5 6</td>
<td>regeneriert 4 Segm.</td>
</tr>
<tr>
<td>K.-Nr. 325</td>
<td>2. Operation</td>
<td>4. V. 95</td>
<td>2. Regeneration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 6</td>
<td>nach 7 Tagen tot.</td>
</tr>
<tr>
<td></td>
<td>reg. reg.</td>
<td>im reg. Teile</td>
<td>operiert</td>
</tr>
</tbody>
</table>

Von diesen 25 Individuen haben regeneriert:

2 mal
1 All. terrestris (8),
2 „ caliginosa (6, 7),
1 „ foetida (24)

im ganzen 4

3 mal
2 „ terrestris (14, 15),
1 „ caliginosa (9),
4 „ foetida (18, 19, 21, 22),
2 Lumbr. rubellus (11, 12),
1 „ Hercules (13)

im ganzen 10

4 mal
1 All. foetida (23),

5 mal
1 „ „ (20),

überhaupt mehrmals 16 Individuen;
nur 1 mal regenerierten 9, nämlich:

6 All. terrestris (1, 2, 4, 5, 16, 25),
1 „ caliginosa (10),
1 „ foetida (17),
1 Lumbr. rubellus (3).

Es ist hierbei zu beachten, daß in den ersten 3 Fällen bei der zweiten Operation Chloroformbetäubung angewandt wurde, um das abzuschneidende Regenerat schön ausgestreckt zu erhalten; die nachteilige Einwirkung, welche sich darauf zeigte, hieß mich aber im weiteren von dieser Behandlung absehen.

Vergleichen wir die Daten über die Geschwindigkeit der Regeneration mit den oben bei Einfluß der Species und Jahreszeit aufgestellten (siehe übrigens auch jeweilen die Angaben bei der ersten Regeneration), so ergiebt sich, daß
bei der 2. Regeneration

der Vorgang sich wesentlich verlangsamt, weniger, was die Zeit
des ersten Auftretens der Regenerationsknospe als ihre weitere
Ausbildung anbelangt;

bei der 3. Regeneration

diese Verzögerung noch eine weit beträchtlichere ist.

Wir stellen die Fälle zum Beweise nochmals zusammen und
sehen dabei ab von jenen, wo die Operation im regenerierten
Teile stattfand.

2. Regeneration.

Nr. 7 All. caliginosa, Segmentierung nach 21 Tagen im Juli,
 8 ' terrestris, noch nicht nach 30 Tagen
 9 ' caliginosa, nach 47 Tagen im Febr.,
 11 Lumbr. rubellus, 37 ' ' '
 14 All. terrestris, 45 ' ' '
 15 ' ' 45 ' ' '
 18 ' foetida, 40 ' ' '
 19 ' ' 40 ' ' '
 20 ' ' 40 ' ' '
 21 ' ' 40 ' ' '
 24 ' ' 35 ' im April.

3. Regeneration.

Nr. 9 All. caliginosa, Segmentierung nach 43 Tagen im April,
 12 Lumbr. rubellus, noch nicht nach 49 Tagen
 13 ' Herculeus, ' ' nach 53 Tagen
 15 All. terrestris, ' ' nach 50 Tagen im April,
 18 ' foetida, noch nicht nach 21/2 Mon.
 19 ' ' nach 45 Tagen im April,
 23 ' ' 35 ' Juni.

Dabei erinnern wir uns, daß es für die Regenerations-
geschwindigkeit gleichgültig ist, ob 4 oder 8 vorderste Segmente
abgeschnitten werden, so daß also eine Verzögerung ihren Grund
nicht in der Zahl der abgeschnittenen Segmente hat.

Ziehen wir die Anzahl der regenerierten Segmente in Bet-
tracht und berücksichtigen dabei, daß im allgemeinen weniger
Segmente regeneriert werden, als verloren gingen, so ist

18*
bei Nr. 7 All. caliginosa bei der 2. Regeneration keine Abnahme zu bemerken,

2. Regen. keine Abnahme,

3. Abnahme um 1 Segm.,

2. keine Abnahme,

3.

2.

2.

2.

11 L. rubellus

Abnahme um 1 Segm.,

2. keine Abnahme,

3.

11 L. caliginosa bei der

2. Regeneration keine Abnahme,

3. Abnahme um 1 Segm.,

2. keine Abnahme,

3.

2.

2.

2.

14 All. terrestris

2.

3. eine Zunahme,

2. keine Abnahme,

3. Abnahme um 1 Segm.,

2. keine Abnahme,

3.

2.

2.

15

2.

3. Abnahme um 1 Segm.

3. Abnahme um 1 Segm.

(aber 1 altes mehr abgeschnitten),

2. Regen. keine Abnahme,

3.

2.

2.

3.

18 foetida

2.

2.

2.

19

2.

2.

2.

2.

11 L. rubellus

3. Zunahme um 1 Segm.

11 L. caliginosa bei der

2. Regeneration keine Abnahme,

3. Abnahme um 1 Segm.,

2. keine Abnahme,

3.

2.

2.

20

3.

2.

3.

21

2.

3.

2.

2.

22

2. Abnahme um 2 Segm.

2.

3. Abnahme um 1 Segm.

(vielleicht Zeit zu kurz),

3.

2.

2.

2.

23

3.

2.

2.

2.

24

3.

2.

2.

2.

Es läßt sich also nicht konstatieren, daß die Intensität des Regenerationsvermögens, was den Umfang des Regenerates betrifft, mit steigender Zahl der Regenerations abnimmt. Bei Nr. 9 und 15 wurden allerdings nur 3 Segmente bei der 3. Regeneration geliefert anstatt 4 wie bei der 2.; allein wir haben früher gesehen, daß 3 und 4 Segmente diejenigen Zahlen sind, welche an den Regeneraten am häufigsten sich finden, sich also wohl ersetzen können. Bei Nr. 22 und 23 ist die Abnahme vielleicht auf Rechnung einer zu kurzen Beobachtungszeit zu bringen; einzig Nr. 24 zeigt eine wirkliche Abnahme an Segmenten. Dagegen war sogar in 3 Fällen bei der nächstfolgenden Regeneration eine größere Zahl von neuen Segmenten zu notieren als zuvor, Nr. 14, 19 und 22.

Dabei fällt 19 auch wieder außer Betracht aus dem genannten Grunde, daß 3 und 4 Segmente sich gegenseitig wohl ersetzen
können, ohne daß Ab- oder Zunahme vorliegen muß; zudem war auch hier bei der 3. Operation ein Segment mehr abgeschnitten worden.

Die Fälle Nr. 14 und 22 verdienen dagegen genauere Betrachtung.

Nr. 14 All. terr. 1. Regen. 4\(\frac{3}{4}\) abgeschnitten,
3\(\frac{3}{4}\) regeneriert,
2. „ 5 abgeschnitten (3\(\frac{3}{4}\) neue, 1\(\frac{1}{4}\) alte),
3 regeneriert,
3. „ 1 abgeschnitten (1 neues),
3 regeneriert.

Es besaß Nr. 14:

nach der 2. Regeneration an Stelle der vordersten 6 Segmente 3,

Nr. 22 All. foet. 1. Regen. 6\(\frac{1}{2}\) abgeschnitten,
5\(\frac{1}{2}\) regeneriert,
2. „ 4 abgeschnitten (4 neue),
2 regeneriert,
3. „ 2 abgeschnitten (2 neue),
3 regeneriert.

Es besaß Nr. 22:

nach der 2. Regeneration an Stelle der vordersten 6\(\frac{1}{2}\)
Segmente 3\(\frac{1}{2}\),
nach der 3. Regeneration an Stelle der vordersten 6\(\frac{1}{2}\)
Segmente 4\(\frac{1}{2}\).

In beiden Fällen ist Zunahme bei Regeneraten zu bemerken, die aus selbst regeneriertem Gewebe hervorsproßten. Es scheint dies bemerkenswert.

Verschiedene Male, es ist dies in der Tabelle stets besonders erwähnt, wurde also versucht, Regenerate aus Regeneraten zu bekommen, und es zeigte sich, daß diese Regeneration nicht nur ebenso leicht wie aus altem Gewebe vor sich geht, sondern daß das Vermögen sich dabei noch steigern kann, wie oben dargethan wurde. Ein Vergleich, um zu ersehen, ob in diesen Fällen die Geschwindigkeit der Regeneration eine veränderte ist, läßt sich nicht leicht ziehen, da es sich dabei meist nur um ganz kleine Partien handelt. Doch will ich immerhin die Fälle mit den nötigen Angaben zusammenstellen:
Mehrmalige Regeneration hinterer Körperabschnitte wurde experimentell nicht nachzuweisen versucht, dagegen ist bereits erwähnt worden, daß sich einige Male Exemplare fanden, bei denen kein Zweifel bestand, daß Regenerate des Schwanzes aus bereits vorhandenen regenerierten Partien herausgewachsen waren.

Von früheren Autoren hat einzig SPALLANZANI (50) mehrmalige Regeneration desselben Körpersteiles bei Regenwürmern beschrieben; er selbst macht darüber keine bestimmte Angabe; BONNET dagegen berichtet, daß jener 3-malige Regeneration des Kopfes beobachtet habe.

Wir kommen noch auf zwei Punkte zu sprechen, die bei der Regeneration des Kopfes aufgefallen sind, nämlich:

1) daß weniger Segmente regeneriert werden, als verloren gingen;
2) daß bei den Regeneraten sehr häufig Abnormitäten in der Segmentierung auftreten.
1) Was den ersten Punkt anbetrifft, so interessiert vor allem, welchen Segmenten die regenerierten entsprechen. Im Maximum wurden 7 beobachtet auf 12 abgeschnittene, gewöhnlich werden aber nur mehr 3 oder 4 erzeugt, so auch, wenn 15 abgenommen wurden. Obschon hier von inneren Vorgängen bei der Regeneration, wie sie nur an Schnitten untersucht werden können, ganz abgesehen wird, will ich doch so viel verraten, daß bei flüchtigem Durchmustern der Präparate sofort klar wurde, daß diese regenerierten Segmente stets den vordersten entsprechen, d. h. wenn auf 15 abgeschnittene 4 regeneriert werden, so sind dies die 4 ersten eines intakten Wurmes.

Daraus folgt nun der wichtige Schluß, daß die Geschlechtsorgane nicht wieder ersetzt werden können, wenn das eben Festgestellte als Regel gilt; denn diese Teile liegen in der Region vom 9. bis 15. Segmente. Von jenem Exemplare, das 7 Segmente regeneriert hat, besitze ich keine Schnitte; ist auch hier das Gesagte zutreffend, so wurden selbst in dem Fall die Geschlechtsorgane nicht wieder ergänzt.

Ich halte den Einwand, daß nachträglich noch mehr Segmente gebildet und die Würmer noch geschlechtsreif werden können, für eine Reihe von Fällen als sicher ausgeschlossen, da die Individuen so lange nach erfolgter Regeneration ohne weitere Veränderung lebten, daß man die Regenerate als endgültig differenziert annehmen durfte. Eine solche vollendete Differenzierung der neu gebildeten Gewebe war auch an verschiedenen Präparaten klar zu erkennen.

Diese Eigenschaft der Regenwürmer, nur ein sehr begrenztes Regenerat des Vorderendes liefern zu können, scheinen sie mit keinem ihrer Verwandten zu teilen. Allerdings ist darüber nur wenig bekannt. Von L um b ric ulus weiß B ü l o w (12) zu berichten, daß er im allgemeinen stets die Kopfsegmente (10) in ihrer vollen Zahl ergänzt, und über den näher verwandten C r i o d r i l u s l a c u m vernehmen wir von C o l l i n (15) folgendes: „Seltener hatte ich Gelegenheit, zu sehen, daß der Kopfteil regeneriert wurde: so bildeten sich bei einem Wurm, welcher die ersten 11 Segmente verloren hatte, dieselben in genau der selben Anzahl wieder.“

2) Auftreten von A b n o r m i tä t e n. Erst seit wenigen Jahren wurden die Anomalien der Segmentierung bei den Chàtopoden einer genaueren Beobachtung gewürdigt; C o r i (16), M o r g a n (35), B u c h a n a n (11) haben sich über diesen Punkt ausgesprochen.
Karl Hescheler,

Cori führt die Entstehung dieser Anomalien auf die erste Entwicklung des Annelids zurück; Morgan ist derselben Ansicht, bringt aber einen guten Teil der Abnormitäten auf Rechnung der Regeneration. Einmal ist das Verhältnis der normalen zu den nicht normal segmentierten Würmern bei Embryonen und erwachsenen Individuen ein anderes, dort weniger abnormale als hier, folglich müssen die Anomalien auch später noch auftreten können. Dann erwähnt er einen Fall, wo unter 525 Regenwürmern 40 mit regenerierten Hinterenden gezählt wurden, und von den Regeneraten waren bloß 2 normal segmentiert.

Cori bemerkt, daß diese Störungen am häufigsten im mittleren Teile des Körpers zu finden seien, Morgan dagegen beschreibt eine Reihe solcher Anomalien vor dem 15. Segment (speziell für All. foetida).

Meine Beobachtungen bestätigen die Richtigkeit der Ansicht, daß abnormale Segmentierung von der Regeneration herkommen kann, und im weiteren auch die ebenfalls von Morgan gemachte Annahme, daß eine Verschiebung der männlichen Geschlechtsöffnungen auf ein vor dem 15. gelegenes Segment auf Verlust und nachherige Wiedererzeugung vorderer Segmente zurückzuführen sei. Das letztere ergibt sich aus der That, daß vorn weniger Segmente regeneriert werden, als verloren gingen; z. B. seien 14 vordere Segmente abgeschnitten worden und dafür 4 regeneriert, dann werden die männlichen Öffnungen nachher im 5. Segment liegen; oder es wurden 7 entfernt und 3 regeneriert, dann finden sich diese Teile auf dem 11. Segment.

Bei der Gelegenheit will ich erwähnen, daß mir einmal ein Exemplar von All. terrestris in die Hände gelangte, das beide männlichen Geschlechtsöffnungen verdoppelt hatte; sie lagen auf dem 15. und 16. Segmente.

Bei der Regeneration vorderer Partien auf Grund senkrecht zur Längsachse des Tieres ausgeführter Operationen wurden im ganzen 12 Fälle von Anomalien, die sich auf folgende Species verteilen:

All. terrestris 7 All. foetida 2
" caliginosa 1 L. rubellus 2

beobachtet. Segmentierte Regenerate lagen überhaupt 80 vor. Das Verhältnis ist daher 3:20; übrigens konnte ich auch bei den Hinterenden, sofern sie regeneriert waren, keine solche Häufigkeit von Anomalien konstatieren, wie sie Morgan einmal beobachtet hat; allerdings untersuchte ich vor allem All. terrestris, während
es sich in jenem Falle um All. foetida handelt. Eine genaue Kon-
trolle über die Häufigkeit der Abnormitäten an regenerierten
Hinterenden habe ich nicht geführt; einmal waren unter 19 All.
terrestris mit regeneriertem Schwanzende 3 mit Segmentanomalien.

Wenn wir einen Blick werfen auf die Tabellen I—VII und
die Verteilung der Anomalien ins Auge fassen, so muß auffallen,
daß die größte Zahl derselben in den Fällen vorkam, wo jeweilen
am meisten Segmente regeneriert wurden, gleichgültig wie viel ab-
geschnitten waren; namentlich in Tabelle IV ist dies in die
Augen springend.

Anomalien treten sowohl im Sommer wie im Winter auf; da-
gegen könnte die eben erwähnte Thatsache doch in Verbindung
gebracht werden mit der von Cori geäußerten Ansicht, daß ein
rascheres Wachstum, gewissermaßen eine überhastete Arbeit, die
Störungen bedinge.

Was die Art der Anomalien betrifft, unterscheiden Cori und
Morgan 2 Gruppen, die letzterer als „split metamermism“
und „spiral metamermism“ bezeichnet. Beide Arten konnte
ich an den Regeneraten vorfinden.

Wir wollen zum Schluß noch jene Fälle genauer betrachten,
von denen Abbildungen vorliegen, nämlich

6 Fälle bei Regeneration des Vorderendes nach queren
Schnitten,
3 resp. 2 Fälle nach schiefen Schnitten und
1 Fall bei Regeneration des Hinterendes.
1) Fig. 12 und 13. All. terrestris, K.-Nr. 34.
5 Segmente abgeschnitten am 6. II. 94, regeneriert 4, davon
das 4. ein „split metamere“. Rechts zwei Halbsegmente.
2) Fig. 14 und 15. All. foetida, K.-Nr. 180.
Einfachster Fall von „spiral metamermism“.
3) Fig. 16. All. terrestris, K.-Nr. 155.
5 Segmente abgeschnitten am 6. VII. 94, regeneriert 4, davon
das 1. ein „split metamere“, indem rechts 2 halbe Segmente statt
eines auftreten. Außerdem ist die Begrenzungslinie zwischen 3.
und 4. Segment unten nicht geschlossen.
4) Fig. 17—19. All. terrestris, K.-Nr. P 4.
5 Segmente abgeschnitten am 9. XI. 93, regeneriert 4, das 3.
Segment ein „split metamere“, links verdoppelt, doch läuft die
Scheidelinie der Halbsegmente oben nicht aus, sondern verbindet
5) Fig. Fig. 20—22. All. terrestris, K.-Nr. 144.
Abgeschnitten 10 vordere Segmente, am 26. VI. 94, regeneriert ca. 5 mit vielen Anomalien.
Zunächst sind die regenerierten Segmente I—III vollständig und normal, dann wird auf der linken Seite ein kleines Halbsegment (IV) eingeschaltet. Segment V ist ein „split metamere“ auf der linken Seite, die Scheidewand der Halbsegmente verbindet sich aber mit der Grenzlinie der Segmente V und VI. Segment VI ist auch „split“ auf der rechten Seite, auch diese Scheidelinie läuft in die Grenzlinie der Hauptsegmente ein.
Im ganzen treffen wir hier 5 regenerierte Hauptsegmente, davon 2 „split metameres“ und ein kleines eingeschaltetes Halbsegment.

6) Fig. 23—25. Die sonderbarsten Verhältnisse zeigt All. caliginosa, K.-Nr. 226.
Abgeschnitten 7 Segmente am 23. VIII. 94. Am Regenerat wird man bei flüchtigem Zusehen etwa 4 oder 5 Segmente unterscheiden; bei genauerer Beobachtung zeigt sich, daß keine der Grenzlinien in sich selbst zurückkehrt, und daß von allen nur die Linie I einen vollen Umgang macht, alle anderen aber 1/2 oder 3/4.
Unter den 4 Fällen, wo Regeneration auf schiefer Schnittfläche beobachtet wurde (Tab. XI), waren 3 mit Segmentanomalien zu verzeichnen.

7) Fig. 10 und 11. All. foetida, K.-Nr. 292.

8) Fig. 7—9. All. terrestris, K.-Nr. 291.
Operiert 30. XI. 94. Segment 7—10 rechterseits angeschnitten. Für Segmente 1—6 sind 4 neue regeneriert, das letzte aber nicht normal nach hinten begrenzt worden, indem die scheidende Linie weder oben noch unten zusammenhängt, d. h. in Wirklichkeit ist
eine rechte und linke Grenzlinie, die sich nicht treffen, vorhanden. Segment 7—8 sind durch ein einziges Segmentstück ergänzt, wobei die Begrenzung nach vorn, wie oben beschrieben, unvollständig und ebenso auch nach hinten, indem die Grenzlinie gegen das 9. Segment (O) sich unten nicht schließt.

9) All. terrestris, K.-Nr. 293, ähnlich operiert wie 291, bietet am Regenerat sehr komplizierte Segmentierungsverhältnisse wie etwa No. 6. Eine Figur ist von diesem Fall nicht gegeben.

10) Fig. 2. All. terrestris, K.-Nr. 263.

Vorn 12 Segmente abgeschnitten am 13. XI. 94. Dafür 7 regeneriert, das vorderste größer als die folgenden, alle normal. Besitz zugleich regeneriertes Hinterende, an dem sich 2 Segmentanomalien zeigen.

Schließlich sei nochmals an jene Beobachtung erinnert (siehe Versuche im Thermostaten, All. foetida), wo an Stelle eines mit Anomalie versehenen Teiles ein vollkommen normales Regenerat auftrat.

Wir müssen noch mit einem Wort auf jene Vorkommnisse eintreten, wo Verdoppelung ganzer Körperteile bei Lumbriciden beobachtet wurde, weil solche Abnormitäten auch mit der Regeneration in Verbindung gebracht werden.

unter 480 Individuen das einzige seiner Art, das andere unter 560 Würmern. Der zweite dieser Fälle ist von besonderem Interesse, weil die abnorme Bildung an einem höchst wahrscheinlich regenerierten Abschnitt des Körpers auftritt; dafür sprechen die engeren Segmente und die vielen Segmentanomalien in diesem Teile. Andrews läßt zwar auch der Auffassung Raum, daß eine nicht normale Ausbildung bei diesem Exemplar schon zur Embryonalzeit erfolgt sei. Das eine Schwanzende, das übrigens eher einem seitlichen Anhang gleich sieht, entbehrt in dem vorliegenden Falle des Darmrohres. Es muß besonders betont werden, daß dieser Anhang nicht an der Stelle sitzt, wo das vermutliche Regenerat beginnt, sondern weiter hinten, daß er also erst im Verlaufe der Regeneration und nicht in direkter Folge einer durch ihre Form die Bifurkation hervorrufenden Verletzung entstanden ist.

Andrews glaubt, daß Regenerationserscheinungen bei den meisten derartigen Fällen die Hauptrolle spielen. Er hat Experimente ausgeführt, um solche Mißbildungen zu erzeugen, allein alle ohne Erfolg. Dennoch hält er seine Ansicht für richtig, weil eben jene Fälle sehr selten sind, während Regeneration des Hinterendes außerordentlich häufig vorkommt.

Ich schließe mich dieser Ansicht an und erinnere daran, daß ich bei allen Operationen, die eine solche abnorme Regeneration des Hinterendes bezweckten, Selbstamputation beobachtete. Nun kann ja diese einmal ausbleiben und in der Folge dann eine jener seltenen Bifurkationen entstehen; andererseits ist auch möglich, daß solche größere Abnormitäten wie die einfachen Segmentanomalien relativ leichter im Verlaufe der Regeneration auftreten; die Art der Verletzung bleibt in diesem Falle ohne bestimmenden Einfluß. Freilich ist bei dieser letzten Annahme für die Erklärung der eigentlichen Ursache der Störung gar nichts oder nur wenig gewonnen 1).

Den Verlauf der Regeneration am Vorderende des Regenwurmes hat Miss Fielde (20) folgendermaßen beschrieben:

„1) A union of the outer coat of the body with the lining of the alimentary canal, roughly healing the wound.

1) Es ist nicht ohne Interesse zu wissen, dass Bülow bei Lumbriculus solche Doppelschwänze bei der Regeneration hat entstehen sehen.
2) A prolongation of these coats, forming a translucent white tube which could be protruded and retracted into the projecting border of the wound. This tube was at first a third or a half of the diameter of the body.

3) The formation of the lip or proboscis on the superior side of the end of the tube.

4) Segmentation proceeding from the anterior end of the regenerated part backward, until the normal number of segments were reproduced.

5) The deposit of coloring matter in the epidermis of the new segments, and their enlargement to the diameter of the old segments.\footnote{Abgesehen von der Angabe, daß die normale Zahl der Segmente regeneriert werde, sind diese Beobachtungen sonst wohl zutreffend. Ich kann bestätigen, daß immer zuerst die Proboscis gebildet wird, bevor die Segmentierung eintritt; daß die letztere von vorn nach hinten vor sich geht, so daß das dem alten Teile zunächst liegende Segment das jüngste ist, scheint mir wahrscheinlich, allein mit voller Sicherheit kann diese Frage erst an Hand von Schnittpräparaten entschieden werden; ich unterlasse es deshalb, mich darüber zu äußern und weise die Beantwortung in jenen Teil, in welchem von histo- und organogenetischen Vorgängen die Rede sein soll.}

Wir wollen davon absehen, auf die Theorien, die an die Probleme der Regeneration geknüpft worden sind, einzutreten; das vorliegende Material bietet zu wenig Gelegenheit, neue Gesichtspunkte hervorzuheben. Doch will ich nicht unterlassen, darauf aufmerksam zu machen, wie gerade die Gruppe der Oligochaeten imstande ist, uns reichlich Material zu liefern zur Beurteilung der von Lang (32) und v. KENNEL (31) vertretenen und wohl allgemein angenommenen Ansicht, daß das Regenerationsvermögen als Anpassungserscheinung und in naher Beziehung zur ungeschlechtlichen Fortpflanzung stehend aufzufassen sei; auch die Frage, welche Beziehungen zwischen systematischer Stellung einer Art und ihrem Regenerationsvermögen bestehen, ein Punkt, der erst kürzlich wieder von Nussbaum (41) und LOEB (33) diskutiert worden ist, wird dabei ihre Würdigung finden.
V. KENNEL hat eine Serie von Oligochäten zusammengestellt, anfangend mit Lumbriculus, die in steigender Reihenfolge Einrichtungen zur Erleichterung der Teilungsvorgänge zeigen, und in ähnlicher Weise gruppiert RANDOLPH (45) Lumbricus, Tubifex, Lumbriculus, Nais, bei denen wir mit Rücksicht auf die histogenetischen Vorgänge bei der Regeneration ein sich mit der Reihe fortlau fend steigerndes Vermögen antreffen. So ist wohl kein Zweifel, daß auch für die äußeren Vorgänge eine ähnliche Serie vorhanden sein wird; mit Lumbriculus haben wir schon ein Stadium erreicht, wo reine Regenerations- und eigentliche Fortpflanzungsscheinungen schwer zu scheiden sind. So ist wohl kein Zweifel, daß auch für die äußeren Vorgänge eine ähnliche Serie vorhanden sein wird; mit Lumbriculus haben wir schon ein Stadium erreicht, wo reine Regenerations- und eigentliche Fortpflanzungsscheinungen schwer zu scheiden sind.

Es liegt nun auf der Hand, daß durch weitere Einschiebung von Zwischenstadien und genaue Untersuchung derselben nach den verschiedensten Richtungen hin unsere Auffassung von der Phylogenese der Regeneration und ihrer Beziehungen zur ungeschlechtlichen Fortpflanzung eine wertvolle Verbreiterung und Vertiefung erfahren würde. In dieser Hinsicht ist aber noch viel zu arbeiten. Es sei nur der schon einige Male erwähnte *Criodrilus lacuum* angeführt, über dessen Regenerationsvermögen unsere Unkenntnis eine große ist, und doch würde diese Form vor allem des Interessanten genug bieten. Seine nahe Verwandtschaft mit den eigentlichen Lumbriciden auf der einen, das bei ihm viel stärker entwickelte Regenerationsvermögen auf der anderen Seite sprechen dafür.

Dann vor allem auch *Tubifex*, über den in der Beziehung eingehende Untersuchungen durchaus fehlen. D'UDEKEM (53) schreibt in seiner „Histoire naturelle du Tubifex des ruisseaux“, die übrigens schon 1855 publiziert wurde: „On n'observe pas chez les Tubifex rivularum des reproductions par bourgeois. La reproduction par scission naturelle ou artificielle n'a pas lieu non plus du moins d'une manière complète, c'est-à-dire que les deux parties d'un animal divisé ne redeviennent plus chacune un animal complet. Il n'y a que la partie qui porte la tête qui continue à vivre; et à la place de la partie divisée, il en reçoit une autre. La partie privée de la tête continue à vivre pendant assez long-temps après la scission, mais sans former de nouveaux segments céphaliques. Sous ce rapport, les Tubifex s'éloignent beaucoup des Lumbriculus, que l'on peut diviser à l'infini et toujours les différentes parties redeviennent des animaux complets.“ Demnach wäre das Regenerationsvermögen bei Tubifex weniger ausgeprägt als bei den eigentlichen Regenwürmern, während nach RANDOLPH'S
Angabe jene Form, was die histologischen Vorgänge anbetrifft, für die Regeneration weit besser angepaßt ist als diese. Eine genaue Untersuchung scheint hier also sehr geboten.

Die Frage, wie sich das Regenerationsvermögen zur systematischen Stellung einer Form verhält, dürfte wohl auch mit mehr Erfolg innerhalb einer kleineren Gruppe studiert werden. Loebr (33) äußert sich, nachdem er darauf hingewiesen, wie sich in jeder Abteilung des Tierreiches Arten mit größerem oder geringerem Regenerationsvermögen finden, darüber folgendermaßen: „Will man also die Regenerationsfähigkeit der Tiere für phylegetische Zwecke verwerten, so darf das nur in Bezug auf die Angehörigen ein und derselben größeren morphologischen Gruppe geschehen.“

Zusammenfassung.

1) Die Versuche erstrecken sich über Lumbricus rubellus und Herculeus, Allolobophora foetida, terrestris und caliginosa. Die Mehrzahl bezieht sich auf All. terrestris. (Bestimmt nach Rosa, 48).

2) Die Regenwürmer (alle angeführten Arten plus All. chlorotica) zeigen Selbstamputation. In keinem der zur Beobachtung gelangten Fälle trat dieselbe im vorderen Teile des Körpers ein. Beziehung zur Regeneration.

5) Regeneration am Vorder- und Hinterende ist unabhängig von einander; es können beide gleichzeitig vor sich gehen.

7) Der Einfluß verschiedener Faktoren auf die Geschwindigkeit der Regeneration, konstatiert an Hand von Regeneraten des Vorderendes, zeigt sich folgendermaßen:

a) Die Species bedingt im Sommer einen Unterschied in der Geschwindigkeit der Regeneration; All. foetida regeneriert von den untersuchten Arten am schnellsten, im Winter verwischen sich diese Differenzen, wenigstens was den weiteren Verlauf der Neubildung anbetrifft.

b) Die Jahreszeit zeigt einen wesentlichen Einfluß; im Sommer regenerieren alle Arten schneller als im Winter. Die Temperatur spielt dabei eine Hauptrolle; doch ist sie nicht der einzige in Betracht kommende Faktor (Versuche im Thermostaten).

c) Es ruft keinen wesentlichen Unterschied in der Geschwindigkeit der Regeneration hervor, ob 4 oder 8 vorderste Segmente abgeschnitten werden; dagegen verlangsamt sich, vom Verluste von etwa 9 Segmenten an, die Geschwindigkeit ungefähr proportional der Größe des abgeschnittenen Stückes und zugleich tritt von da an eine auffällige individuelle Variation in den bezüglichen Zahlen ein.
d) Junge Tiere regenerieren im Sommer schneller als alte, während der Winter hier auch die Differenzen ausgleicht.

8) Mehrmalige Regeneration des Kopfes wurde bei allen Species beobachtet, im Maximum 5 mal bei einer All. foetida. Dabei tritt mit der zunehmenden Zahl der Operationen eine steigende Verlangsamung des Regenerationsprozesses ein; der Umfang des Vermögens, was die Zahl der Segmente betrifft, nimmt dagegen im allgemeinen nicht ab. Regenerate können ebenso gut aus schon regeneriertem Gewebe hervorgehen; hierbei kann sich das Regenerationsvermögen sogar steigern.

9) Die Thatsache, daß am Vorderende stets weniger Segmente erzeugt werden als abgeschnitten worden waren, spricht dafür, daß in den meisten Fällen keine Geschlechtsorgane regeneriert werden, da die neuen Segmente den vordersten entsprechen.

10) Es treten in den Regeneraten häufig Anomalien der Segmentierung auf, was mit der von Morgan geäußerten Ansicht im Einklang steht, daß solche Fälle zu einem großen Teile bei der Regeneration sich zeigen. Auch die Verschiebung der männlichen Geschlechtsöffnungen wird durch die unter 9 berührte Thatsache erklärt.

Nachtrag.

Das Manuskript war beinahe fertig gestellt, als mir durch die Güte des Herrn Professor Morgan (36) seine neueste Arbeit „A study of metamerkism“ zukam. Wenn Morgan auch die Regeneration der Regenwürmer nicht zum Ziele seiner Untersuchung gemacht hat, sondern die darauf sich bezüglichen Untersuchungen mehr zum Zwecke des Studiums anderer Fragen anstellte, so sind doch die betreffenden Versuche zum Teil viel weitgehender als die meinigen. Zu meinem Vergnügen konnte ich aber konstatieren, daß meine Resultate sich mit jenen in großer Übereinstimmung befinden. Ich will auf diese umfassende Arbeit Morgan’s nicht näher eintreten (sie ist übrigens wohl jedem leicht zugänglich), sondern nur jene Punkte berühren, auf die ich auch bei meinen Untersuchungen aufmerksam gemacht habe.

In weiterer Ausführung seiner in der früher citierten Arbeit niedergelegten Ideen über die Segmentanomalien gibt Morgan eine genaue Einteilung aller vorkommenden Fälle. Man wird die von mir beschriebenen Abnormalitäten leicht in die von ihm auf-
gestellten Kategorien einreihen können. Dabei hat er den irre-
führenden Ausdruck „split metamere“ durch den den Thatsachen
mehr entsprechenden „compound metamere“ ersetzt. Zu
dem Kapitel „Variations in the position of the reproductive organs“
bietet der von mir angeführte Fall einer beidseitigen Ver-
doppelung der männlichen Geschlechtsöffnungen, was er, so viel
ich sehe, nie beobachtet hat, eine Ergänzung. Auch die von mir
beobachteten Fälle sprechen dafür, daß die von Morgan weiter
ausgeführte Ansicht richtig, daß das Auftreten von Abnormitäten
in den Regeneraten in keiner Weise durch Vererbung beeinflußt
werde (S. 423). Der oben erwähnte Fall, daß ein Regenerat des
Kopfes keine Segmentanomalie zeigte, während am abgeschnittenen
Teile eine solche auftrat, sei bei der Gelegenheit nochmals ange-
zogen.

Der Autor konstatiert, daß bei regenerierten Hinterenden Ab-
normitäten nur da fehlten, wo wenig Segmente neu gebildet wurden;
ich habe darauf aufmerksam gemacht, daß bei regenerierten Vorder-
enden die Segmentanomalien am häufigsten sind in Fällen, wo die
meisten Segmente auftraten.

Das Kapitel „Regeneration in earthworms“ interessiert
uns aber vor allem. „There were several main problems that I
wished to work out. First, the extent to which the earthworm
could regenerate; secondly, the number of new segments that
would reappear in the anterior end after the removal of a definite
number; thirdly, the presence or absence of abnormalities in the
regenerated anterior segments."

Die Resultate sind, wie schon angeführt, übereinstimmend mit
den meinen. Es werden fast immer weniger Segmente regeneriert,
as abgeschnitten wurden, nur wenn 2 oder 3 Segmente verloren
gingen (Beobachtungen, die bei meinen Untersuchungen fehlen),
wurden bei 2 jedesmal, bei 3 gewöhnlich alle ersetzt. Eine be-
stimmte Grenze des Regenerationsvermögens für den Ersatz
vorderer Partien konnte Morgan auch nicht feststellen. Doch
hatten seine Versuche mehr Erfolg als die hier beschriebenen.
Während ich hinter dem 15. Segment keine segmentierten Re-
generate, sondern nur noch kleine Knospen beobachtete, fand er
einen Wurm, der vom 20. Segment aus 4 oder 5 Segmente, einen,
dem 30—40 vorderste Segmente fehlten, der 31/2 Segmente re-
generiert hatte, und schließlich wird ein Fall erwähnt, wo bei
einem mutmaßlichen Verlust von 35—40 vorderen Segmenten 15
oder mehr sich neu bildeten.
Nun muß vor allem darauf hingewiesen werden, daß Morgan alle Versuche an All. foetida anstellte, während ich in erster Linie All. terrestris verwendete. Dennoch glaube ich nicht weit fehl gegangen zu sein, wenn ich oben betonte, daß der Umfang des Regenerationsvermögens für den Ersatz des Kopfes bei den überhaupt in den Kreis meiner Untersuchung gezogenen Species (und dazu gehörte auch All. foetida) kein wesentlich verschiedener sei. Alle diese Fälle, welche soeben erwähnt wurden, stellen eben nur Ausnahmen dar und Morgan sagt ausdrücklich: „The tables show that posterior to the twelfth segment the power of regeneration rapidly decreases. Worms that have lost more segments than this number may live for some time and heal up the wound, or even regenerate imperfectly. But sooner or later the majority of these die.“ Andererseits folgt auch hieraus wieder, daß man ein großes Unrecht begeht, wenn man jene Angaben alter Autoren, daß die beiden Hälften eines ungefähr in der Mitte entzweigeschnittenen Wurmeseiches wieder ergänzen, ohne weiteres als unwahr bezeichnet.

Morgan hat auch vordere Segmente schieß abgeschnitten und kommt zum Schlusse, daß das Vermögen, angeschnittene Segmente wieder zu ergänzen, weit größer ist als das, ganze Segmente zu regenerieren. Seine Beobachtung, daß das Regenerat im rechten Winkel aus der Schnittebene heraustritt, kann ich, wie wir gesehen haben, nur bestätigen.

Vordere Partien, bestehend aus wenigen bis etwa 30 Segmenten, sterben, ohne zu regenerieren, nach kürzerer oder längerer Zeit; einmal regenerierten aber 24 vorderste Segmente ein Schwanzstück von $1/2$ Zoll Länge. (Vergleiche damit die Angaben älterer Autoren am Schlusse des historischen Teiles meiner Arbeit.)

Ferner ist noch nachzutragen, daß sich in dem neuesten Werk von Yves Delage (18) „Sur l’Hérédité“ eine Anmerkung findet (S. 97), welche beweist, daß dieser Forscher bei den Regenwürmern auch Selbstamputation beobachtet hat. Er sagt: „J’ai constaté que les vers de terre, sectionnés longitudinalment ou obliquement, éliminent la partie oblique par une section spontanée transversale passant par l’extrémité proximale de la blessure et régénèrent ensuite le fragment entier.“
Litteraturverzeichnis.

4) Baudelot, De la regeneration de I’extre’mite cephalique chez le Lombric terrestre. Bull. de la Soc. des sc. nat. de Strasbourg, No. 4, 1869, p. 54—57.
6) Bergh, R. S., Vorlesungen über allgemeine Embryologie. Wiesbaden 1895.
 Article Lombric: „On a tenté sur eux des expériences sur la reproduction: quelques auteurs disent même avoir vu que les deux moitiés d’un lombric coupé en deux deviennent un animal complet. Cela peut se concevoir pour la moitié antérieure parce-qu’elle contient presque toutes les parties essentielles de l’organisation, et qu’il n’y a pour ainsi dire qu’un anus à se former; mais il n’est pas probable que la moitié postérieure puisse réparer la perte de l’estomac, des organes de la génération ect.“
Über Regenerationsvorgänge bei Lumbriciden. 285

26) GINANNI, Lettere intorno alla recente scoperta degl' Insetti che si moltiplicano mediante le sezioni de' loro corpi. Raccolta d'opuscoli scientifici e filologici (Angelo Calogierà), Tomo 37, Venezia 1747, p. 255.

28) HOFFMEISTER, W., Die bis jetzt bekannten Arten aus der Familie der Regenwürmer. Braunschweig 1845.

 p. 42 Anm. 18: „Man darf sicher schließen, daß diejenigen Thiere, an denen wir das Vermögen die verlorenen Glieder durch neue zu ersetzen, bemerken, solche manchmal durch einen oder anderen Zufall verlieren; so wie man Ursache hat zu vermuten, daß die man bey zerstümmelten Gliedern noch am Leben findet, ein solches Vermögen besitzen. Ich habe einige der Arten, welche auf Kosten ihrer Glieder den unersättlichen Geist unserer Naturforscher unterhalten, in ihrer Freyheit und ohne daß Menschen-Hände es hätten thun können, zerstümmelt gefunden: Eydehson, die den Schwanz, Schnecken, die das eine Horn, Regenwürmer, die den hinteren Theil, und Naiden, die den Kopf vermißten.“

38) — — Vermium terrestrium et fluviatilium historia. 1773.
 II. Teil, p. 11: „Partium amissarum et mutilatarum redintegratio, quam in Infusoriiis aegre experiri licet, Helminthicis et Testaceis vulgaris est. In uno tamen genere difficiliss quam in altero procedit, species quoque ejusdem generis amissas partes facilius aut difficiliss restituunt, quin etiam partes ejusdem speciei non aequo facile pullulant. Sic in Naide quavis pars amissa intra paucas horas restituitur, in Lumbrico post plures dies, in L. terrestri vix antica pars, in L. variegato utrque, si vel vieces transsecetur.“

Über Regenerationsvorgänge bei Lumbriciden. 287

46) Reaumur, R. A. de, Mémoires pour servir à l'histoire des Insectes. T. VI, Préface. Paris 1742. (Für diese Arbeit lag die Ausgabe von Amsterdam 1748 vor.)

47) Redi, F., Opusculorum pars tertia sive de animalculis vivis quae in corpribus animalium vivorum reperiuntur observationes. Lugduni Batavorum 1729.

S. 30 Anm. „Prodromo ect. . . . Cet opuscule, qu'on a traduit en français, en allemand et en anglais, n'est qu'un précis d'un grand ouvrage que Spallanzani se proposait de donner sur les reproductions animales. Quoiqu'il l'ait plusieurs fois annoncé, ne l'a jamais publié. Je lui en demandai un jour les motifs; il me répondit que les détails et les éclaircissements de son ami Bonnet avaient rendu son écrit inutile et superflu."

52) Trembley, A., Mémoires pour servir à l'histoire d'un genre de polyypes d'eau douce à bras en forme de cornes. Leide 1744.

54) Vallsneri, A., Sopra alcuni reproduzioni di Lombrichi terrestri. Diese Arbeit war trotz vielseitiger Bemühungen nicht aufzufinden; sie wird übrigens auch in der Bibliotheca zoologica (Carls und Engelmann) nicht citiert; dagegen findet sich bei Spallanzani obige Angabe und, wohl als bloße Kopie hiervon, auch bei Milne-Edwards. Wahrscheinlich wurde das Manuskript, das Spallanzani zugänglich war, nie gedruckt. Es handelt sich
dabei offenbar um den bei Van delius angeführten A. Vallisneri; denn der ältere und bekannte A. Vallisneri starb 1730, während Spallanzani von dem in Frage kommenden sagt, daß er „1768 professeur actuel d'histoire naturelle à Padoue“ gewesen.

Die erste Auflage (1769) enthält nichts über seine eigenen Versuche.

56) Van delli Dominici (Vandelli), Dissertationes tres. Patavii 1758, Diss. III. De vermium seu Lumbricorum terrae reproductione.

Figurenerklärung.

Tafel XIV.

Fig. 1. Allolobophora terrestris, K.-Nr. 174. Hinterende mit frischem Regenerat des Schwanzes. Von der rechten Seite.

MB = mediane Borsten. SB = Seitenborsten. Lineare Vergr. \(\frac{7}{1} \).

Fig. 2. Allolobophora terrestris, K.-Nr. 263. Vorn 7 Segmente an Stelle von 12 regeneriert; Hinterende auch regeneriert mit Segmentanomalien (SA). Von oben. Lin. Vergr. \(\frac{3}{1} \).

Fig. 3. Allolobophora foetida, K.-Nr. 151. Vorderende, regeneriert \(\frac{3}{2} \) Segmente an Stelle von \(\frac{4}{2} \). Von oben. Lin. Vergr. \(\frac{7}{1} \).

Fig. 4. Dasselbe von unten.

Fig. 5. Allolobophora terrestris, K.-Nr. 159. Segment 5—8 auf der rechten Seite angeschnitten und wieder ergänzt, davor 3 neue Segmente an Stelle von 4. Von oben. I—III neue Segmente, 5—9 alte. Lin. Vergr. \(\frac{10}{1} \).

Fig. 6. Dasselbe von unten.

Fig. 7. Allolobophora terrestris, K.-Nr. 291. Erklärung s. S. 98. Von oben. Lin. Vergr. \(\frac{10}{1} \).

Fig. 8. Dasselbe von unten.

Fig. 9. Dasselbe von der rechten Seite.

Fig. 10. Allolobophora foetida, K.-Nr. 292. Erklärung s. S. 98. Von oben. Lin. Vergr. \(\frac{9}{1} \). Sp.M. = Split metamere.

Fig. 11. Dasselbe von unten.

Tafel XV.

Fig. 12. Allolobophora terrestris, K.-Nr. 34. Regeneriert 4 Segmente an Stelle von 5, letztes rechts doppelt. Von oben. Vergr. \(\frac{5}{1} \).

Fig. 13. Dasselbe von unten.

Fig. 14. Allolobophora foetida, K.-Nr. 180. Regeneriert 3—4 Segmente (I—IV), „spiral metamere“ (Spir.M.), abgeschnitten 5. Von der linken Seite. Lin. Vergr. \(\frac{7}{1} \).

Fig. 15. Dasselbe von unten.
Fig. 16. Allolobophora terrestris, K.-Nr. 155. Erklärung s. S. 273. Von unten. Lin. Vergr. 7/1.
Fig. 18. Dasselbe von der linken Seite.
Fig. 19. Dasselbe von unten.
Fig. 20. Allolobophora terrestris, K.-Nr. 144. Erklärung s. S. 274. Von oben. Lin. Vergr. 7/1.
Fig. 21. Dasselbe von der linken Seite.
Fig. 22. Dasselbe von unten.
Fig. 23. Allolobophora caliginosa, K.-Nr. 226. Erklärung s. S. 274. Von oben. Lin. Vergr. 3/1.
Fig. 24. Dasselbe von der linken Seite.
Fig. 25. Dasselbe von unten.
Fig. 26. Lumbricus rubellus, K.-Nr. 60. Regeneriert normal 4 Segmente, abgeschnitten 4. Von oben. Lin. Vergr. 8/1.
Fig. 27. Dasselbe von unten.
Zur Kenntnis des Parablastes und der Keimblätterdifferenzierung im Ei der Knochenfische.

Von

Waclaw Berent.

Mit Tafel XVI—XVIII und 4 Figuren im Text.

Die ersten Entwicklungsprozesse der Knochenfische waren Gegenstand zahlreicher Untersuchungen und vieler Kontroversen. Die Streitpunkte, um die es sich hier hauptsächlich handelt, treten schon in scharfer Form bei den ersten Embryologen zu Tage.

Nach Carl Ernst von Bär (3) sondert sich das Blastoderm in ein seröses und ein Schleimblatt, von dem sich dann das zwischenliegende Gefäßblatt differenziert. Abgesehen von dem Mechanismus dieser Sonderung läßt sich derselbe Grundgedanke bei den meisten Forschern finden; so bei Rathke (67), Remak (69), Rieneck (70), Stricker (75), Weil (79), Oellacher (61), His (35), Hoffmann (39), Götte (24), Haeckel (26), Kingsley und Conn (46), Ziegler (83), Goronowitsch (23), v. Kowalewski (49), Ryder (72), Henneguy (30) und Wilson (82).

Das Jahr 1894 brachte zwei Arbeiten, in welchen die beiden entgegengesetzten Standpunkte aufs energischste verteidigt werden. Ziegler (86) stellt seine früheren Beobachtungen bei den Teleostiern und Selachiern zusammen und spricht den Dotterkernen

Gleichzeitig erschien eine Arbeit von Lwoff (59), in welcher das Entoderm der Selachier und Teleostier aus dem Parablast abgeleitet wird. Der Autor geht sogar an Hand seiner vergleichenden Untersuchungen so weit, daß er die Bildung des Darmblattes durch Gastrulation bei allen Wirbeltieren leugnet.

Was die Salmoniden im Speziellen betrifft, so sind sie, dank der Leichtigkeit, mit welcher das Material beschafft werden kann, beinahe zum klassischen Untersuchungsobjekt geworden. Eine ganze Reihe von Forschern haben Lachs und Forelle untersucht. Es seien hier von den neueren His, Oellacher, Klein, Götte und vor allem Ziegler, Hoffmann und Henne Guy genannt. Trotzdem blieben noch die wichtigsten Punkte streitig, und wenn man auch wenige thatsächliche Angaben zu Gunsten dieser oder jener Auffassung anführen kann, so ist jede in dieser Richtung aufgenommene Untersuchung berechtigt und begründet, zumal die Frage so eng mit der Gastrulationsfrage zusammenhängt.

Ich will nicht versäumen, gleich an dieser Stelle zu bemerken, daß ich dem bekannten Untersucher der Forellenentwicklung Henneguy (27—30) in vielen Punkten beipflichten muß; was aber das spätere Schicksal des Parablastes anbelangt, so lassen die Henneguy’schen Angaben viel zu wünschen übrig. Beweisende Bilder der Ablösung der Zellen fehlen, und die nicht gerade ge-rechtfertigten hypothetischen Vermutungen des Autors über die Ausstoßung nuklearer Parablastkugelchen gaben schon Anlaß zu Mißverständnissen.

Was die Bildung des Darmblattes anbelangt, so weiche ich prinzipiell von Henneguy ab: erstens darin, daß ich die Forelle in der Bildung des Darmblattes nicht allen Wirbeltieren gegenüberstelle (was außer Henneguy auch Oellacher [61] thut), sondern hier wie überall das einschichtige (nicht 3—4-schichtige) Auftreten desselben behaupte; zweitens bildet sich das Darmblatt nach meiner Erfahrung nicht durch Abspaltung von der sekundären Schicht, sondern durch sehr frühzeitige Differenzierung.

Beim Studium dieser feinen Verhältnisse kommt es sehr auf die Fixierungsmethode an. Dieselbe soll nicht nur die histologischen Verhältnisse schonen, sondern auch die Zellgrenzen mög-

Sollte der umfassenden Litteratur auf entsprechende Weise Rechnung getragen werden, so würden die Besprechungen fremder Angaben einen viel größeren Raum in Anspruch nehmen, als der beschränkte Rahmen dieser Mitteilung gestattet. Um die Arbeit nicht allzu sehr mit Citaten zu überladen, muß ich mich nur auf eingehende Besprechung neuerer Angaben beschränken, die teils im Widerspruch zu dem hier Mitgeteilten stehen, teils als Bekräftigung desselben dienen können.

Die Untersuchungen wurden im zoologischen Laboratorium der Universität Zürich unter Leitung des Herrn Prof. Dr. ARNOLD LANG ausgeführt. Dem hochgeehrten Lehrer erlaube ich mir an dieser Stelle meinen bleibenden Dank auszusprechen. Dankbar verpflichtet bin ich ferner dem Herrn Prof. Dr. PH. STRÖHRL, welcher mir gestattete, die Serien der Forellenentwicklung aus der Sammlung des Anatomischen Institutes zum Vergleiche zu benutzen.

I. Anteil des Parablastes beim Aufbau des Embryo.

Seitdem LEREBOULLET (54) unter der Keimscheibe der Knochenfische eine feinkörnige protoplasmatische Masse mit eingestreuten Kernen entdeckt hat, gab dieselbe Anlaß zu allen möglichen Deutungen. Es wurde schon erwähnt, daß dieser Forscher und nach ihm van Bambeke (6), KUPFFER (51), KLEIN (47), OWSIANNIKOW (62) und LAWOFF (59) das Darmblatt von dieser protoplasmatischen Lage ableiten. VAN BENEDEN (9) und BROOK (13)
lassen die ganze untere Schicht (Mesoderm plus Entoderm) auf diese Weise sich bilden. Für Ziegler (84), Goronowitsch (23), Wenkenbach (80) spielt der Parablast nur eine ernährende Rolle. Einige ältere Forscher, wie C. E. von Bär (3), Baumgartner (7), Max Schulze (76) und Filippi (20) vermuten, daß aus den Dotterkernen das Blut entstehe. C. Vogt (78), nach welchem sich übrigens jede Zelle des Embryos in Blutzelle umwandeln kann, sah nach der Differenzierung der Organe eine hämatogene Zellenlage über dem Dotter, die aber nicht aus Dotter entstehen soll. Kupffer (51a) sah ferner auf dem Dotter Zellen, die sich zu Blutzellen umwandeln sollten. Diese Vermutungen glaubt in letzter Zeit Hugo Gensch (21) bestätigen zu können; er schreibt den Dotterkernen die ausschließlich Funktion der Blutbildung zu und beansprucht sogar für diese Gebilde den Namen Hämatoblasten.

Über die Genese des Parablastes verdanken wir die ersten Angaben Agassiz und Whitman (1), denen sich einstimmig Kingsley und Conn (46). v. Kowalewski (49), Hoffmann (43) in seiner letzten Arbeit, Wilson (82) und Henneuguy (30) ange- schlossen haben. Die Segmente, die am Anfang mit ihrer Basis im Zusammenhang mit dem Nahrungsdotter bleiben, teilen sich äquatorial; die obere Zelle schnürt sich ab, während die untere samt ihrem Kern mit dem Dotter im Zusammenhang bleibt: ein Vorgang, der sich auf der ganzen Bodenfläche der Keimscheibe (Kowalewski) oder nur an ihrem Rande abspielt. Die Ansicht über die endogene Entstehung der Kerne darf wohl heute als überwundener Standpunkt gelten 1).

a) Das Verhalten des Parablastes bei der Furchung.

Ich beginne die Schilderung vom 3. Tage nach der Befruchtung: Die sich furchende Keimscheibe liegt auf einer feinkörnigen

1) Nach der seltenen Einstimmigkeit betreffs dieses Punktes bei den letzten Autoren und nach den schönen und beweisenden Bildern ist es jedenfalls sonderbar, wenn Mc Intosh und Prince (60) 1890 die endogene Entstehung der Kerne als möglich erachten. Sie schreiben darüber folgendes: „Observations do not strongly support the view that the nuclei of the periblast migrate from the archiblast, but probably they arise in the periblast itself.“ — Um eine „Migration“ handelt es sich, wie man aus dem oben Erwähnten sieht, nicht. Im übrigen scheinen sie die Henneuguy’schen und Hoffmann’schen Arbeiten (30 und 43) nicht zu kennen. Die Untersuchungen von Kowalewski werden zu wenig berücksichtigt. Die Wilson’sche Arbeit ist ein Jahr später erschienen.
protoplasmatischen Masse, der vielbesprochenen intermediären Schicht. Dieselbe ist nach unten mit Dotterpartikelchen stark überladen; allmählich erhalten die Dotterpartikelchen Übergewicht gegenüber dem protoplasmatischen Teile; es treten große blasenartige Vakuolen auf; die Dotterpartikelchen werden zu Dotterklumpen; noch näher dem Centrum stellt der Dotter eine homogene, kompakte Masse dar. In der intermediären Schicht selbst lassen sich deutlich zwei Teile unterscheiden: ein peripherer, am Rande des Eies liegender, breiter Saum und eine centrale, dünne Partie (Taf. XVI, Fig. 1). **van Bambeke und Henneguy** haben diesen Unterschied hervorgehoben und nennen den breiten Saum „bourrelet- oder zone périphérique“. Den dünnen centralen Teil beschreibt van Bambeke von Anfang an als eine strukturlose Lamelle, welche den Dotter von der Keimscheibe trennt. Dieses paßt wohl auf das Stadium, auf welchem er die intermediäre Schicht gesehen hat, nicht aber auf frühere. **Fig. 1** läßt erkennen, daß die centrale Partie nichts weiter ist, als ein verschmälterer Teil der Randverdickung, die genau dieselbe Struktur hat, was auch **Agassiz** und **Whitman** und **Wilson** schildern. Bei der Forelle lassen sich ferner in dem centralen Teile ruhende Kerne nachweisen, während in der Randverdickung beinahe ausschließlich Kernteilungsffiguren vorkommen. Die Mitosen stehen oft so dicht aneinander, daß man die, einer jeden Spindel zukommenden, Centrosomen schwer auseinanderhalten kann (Taf. XVI, Fig. 2). Die sehr selten vorkommenden ruhenden Kerne zeigen in der Randverdickung strahlige Anordnung des Protoplasmas.

Fig. 3 zeigt eine Reihe derartiger Gebilde; es sind kugelige Gebilde, welche stark lichtbrechende Körper enthalten. Die Körper sind, wie aus dem Vergleich der unter a, b und c abgebildeten Kugeln sich ergibt, von verschiedener Größe und Zahl; oft sind sie so dicht in einer Kugel zusammengehäuft, daß man die Konturen der einzelnen nicht mehr zu unterscheiden vermag. Nicht selten sieht man auch einen Kern in der Kugel (d). — Alle diese Gebilde sind offenbar in verschiedenem Grade zusammengeflossene
Waclaw Berent,

Fettkugeln; als solche verraten sie sich durch ihr starkes Brechungsvermögen und ihr Verhalten gegenüber Reagentien. Daneben kommen auch Dotterpartikelchen vor, welche sich von den übrigen Einschlüssen durch ihr mattes Aussehen, geringe Brechungsfähigkeit, sowie durch ihre intensive Färbarkeit unterscheiden (e).

Zur intermediären Schicht zurückkehrend, sei gleich erwähnt, daß von ihrer Randverdickung hauptsächlich die Nachfuruch vor sich geht. Weder Oellacher noch Klein, die die Furchung des Forelleneies studierten, haben dieselbe beobachtet; HenneGuy sah in seiner „zone périphérique“ Erhebungen mit einem von strahliger Struktur des Protoplasmas umgebenen Kern und schließt mit Recht, daß sich vom Parablast Zellen lösen, um sich an den Keim anzuschließen. Direkte Ablösung, mit einer mitotischen Kernteilung verbunden, wurde bei der Forelle nicht gesehen, und doch tritt der Vorgang vielleicht noch deutlicher zu Tage, als es Kowalewski (49) für den Goldfisch und Hoffmann (43) für den Lachs schildern. Fig. 5 (Taf. XVI) zeigt bei der Forelle vier nebeneinander liegende Zellen, die alle Stufen dieser Abfurchung erkennen lassen. Die Abbildung spricht für sich selbst, so daß ein weiteres Verweilen bei diesem Punkte überflüssig erscheint.

Gegenüber Kowalewski muß ich mit Hoffmann betonen, daß in diesem Stadium kein Unterschied zwischen den abgefurchten Zellen und den eigentlichen Blastodermzellen festzustellen ist. Zwar ist die intermediäre Schicht nach unten zu dunkler und grobkörniger, als das Protoplasma der Blastodermzellen, doch ist der Übergang ein so allmählicher, daß man hier keine scharfe Grenze ziehen kann; öfter erscheint der obere Teil einer sich abfurchenden Zelle heller, der untere dunkler, wie überhaupt die Färbungsmerkmale eine sehr unbeständige Eigenschaft waren. Übrigens gesteht auch Kowalewski zu, daß die Verschiedenheit nur sehr kurze Zeit sich bemerken läßt, und daß man später nicht sagen kann, welche die primäre Blastodermzelle und welche die abgefurchte ist. Der Vorgang der Abfurchung ist, versteht sich, nicht auf allen Schnitten des betreffenden Stadiums zu sehen, öfter sind auf der ganzen Länge alle Zellen vom Dotter abgelöst und die neue Nachfuruch ist noch nicht vorbereitet. Am besten
Parablast u. Keimblätterdifferenzierung im Ei der Knochenfische. 297

sieht man den Zusammenhang der Blastodermsscheibe mit der intermediären Schicht und die Nachfurchung auf tangentialen Schnitten, weil man dort die Randverdickung in ihrer ganzen Ausdehnung trifft (Taf. XVI, Fig. 7 und 8).

Henneguy sah bei der Forelle im centralen Teil kein Parablast, sondern nur, wie Van Bamenteke, eine strukturllose Lamelle, welche die Segmente scharf vom Dotter trennen soll. Dieses ist indessen nicht richtig. Auf dem Stadium, das gerade der Fig. 62 von Henneguy entspricht, und wo die centrale Partie unter schwacher Vergrößerung als strukturllose Lamelle (van Bamenteke) zu sehen ist, habe ich gelegentlich Zellen gefunden, die mit breiter Basis mit dieser Lamelle im Zusammenhang blieben (Fig. 6). Es ist, als ob der Übergang der intermediären Schicht zum Dotter in dieser Zelle selbst beginne; denn ihr unterer Teil ist schon reicher an Dotterpartikelchen, als an Protoplasma. Die strahlige Anordnung derselben läßt sich auch nach unten zwischen den Dotterteilen verfolgen. Der Mangel an Protoplasma ist wohl die einzige Ursache, warum von hier aus sehr spärlich Zellen abge- furcht werden. Diesem Umstand schreibe ich auch zu, daß in der centralen Partie der intermediären Schicht nur ruhende Kerne angetroffen werden.

In viel späteren Stadien, da, wo sich die Keimblätter zu differenzieren beginnen, sieht man unter der Keimscheibe eine ziemlich starke intermediäre Schicht. Sie wird dann von der Randverdickung aus gebildet, indem sich dieselbe rasch nach dem Centrum hin ausbreitet. Dieses wurde beinahe von allen Forschern, wenn nicht beschrieben, so doch abgebildet.

Eine Ausnahme macht der von M. v. Kowalewski (49) untersuchte Carassius auratus. Derselbe unterscheidet sich von der Forelle wie von allen bisher beschriebenen Knochenfischen dadurch, daß hier keine Verbreitung von der Randverdickung stattfindet; die zukünftige intermediäre Schicht bildet sich als Überbleibsel des Protoplasmas nach der Nachfurchung auf der ganzen Bodenfläche des Blastoderms. Ein noch von ihm untersuchter Macropode scheint mehr mit allen übrigen Knochenfischen zu harmonieren; er hat eine Randverdickung, aber dafür keine centrale Partie, vielmehr eine Lamelle im Sinne van Bamenteke's, von welcher aus keine Nachfurchung stattfinden soll.

Dieses veranlaßt Kowalewski, zwei Gruppen der Bildung der intermediären Schicht zu unterscheiden. Bei der ersten Gruppe soll die Konzentration des Protoplasmas noch lange nach dem
Auftreten der Horizontalfurche fortdauern; dieselbe schneidet nach oben kaum die Hälfte des zum Aufbau des Embryos nötigen Eiplasmas ab; es tritt daher an der ganzen Bodenfläche des Eies eine Nachfurchung ein. Bei der zweiten Gruppe soll die Konzentration beim Auftreten der ersten Furche ihr Ende erreicht haben, die Furche selbst trennt das Blastoderm beinahe vollständig vom Dotter ab (ausgenommen ist eine dünne, kernlose Lage unter dem Blastoderm); die Vermehrung der Zellen geschieht ausschließlich auf Kosten der schon vorhandenen; die intermediäre Schicht soll sich von den Randzellen des Blastoders am Ende der Furchung bilden. Der Macropode soll eine Übergangsstufe vorstellen, da hier die Furchungsebene an der Stelle der späteren Randverdickung noch Protoplasma übrig läßt, von wo auch die Nachfurchung vor sich geht. Es existiert ein nicht zu verkennender Unterschied in dem Verhalten des Parablastes zwischen Carassius und den übrigen Knochenfischen, doch scheint mir, daß die primäre Ursache der Verschiedenheit nicht in der Schnelligkeit der Konzentration, sondern in der Art und Weise, wie diese geschicht, zu sehen ist. Auch darf man, streng genommen, nicht behaupten, daß die Furchungsebenen das ganze Protoplasma, außer der dünnen zentralen Lage von Anfang an von dem Dotter trennen. Berichten doch Agassiz und Whitman, daß die Randzellen noch lange Zeit mit dem protoplasmatischen Überzug des Dotters in Verbindung bleiben. Sehr deutlich sprechen sich darüber auch Cunningham (18) und McIntosh und Prince (60) aus. Dasselbe lassen ferner die Abbildungen von Wilson (Fig. 15, 16, 17) erkennen. — Die intermediäre Schicht soll im zweiten Falle aus den Randzellen des Blastoders stammen. Zwar spricht auch Wilson von einer „Verschmelzung einiger Blastodermzellen“ oder davon, daß „the marginal cells have been metamorphosed into the periblast wall“, jedoch ist dies nur insofern richtig, als man (auch mit diesem Forscher) im Auge behält, daß diese Randzellen nichts in sich Abgeschlossenes, vom Dotter vollständig Getrenntes darstellen. Sie hängen vielmehr kontinuierlich zusammen mit dem protoplasmatischen Überzug, der durch allmähliche Konzentration die Keimscheibe geliefert hat. Dieser protoplasmatische Überzug (Entoblastrinde, couche corticale) ist nichts anderes als das beim Carassius auratus unter dem ganzen Boden der Keimscheibe befindliche Protoplasma. Der amerikanische Embryologe Ryder (72) machte zuerst
Parablast u. Keimblätterdifferenzierung im Ei der Knochenfische. 299
darauf aufmerksam, daß die Keimscheibe nicht bei allen Teleostiern
auf gleiche Weise gebildet wird. Beim Gadus umgeht das Proto-
plasma den Dotter und sammelt sich, dem Rande des Eies folgend,
zur Keimscheibe, bei einigen Clupeoiden (Clupea, Alosa, Pomolo-
bus) kommen dazu noch kleinere Züge von dem Innern des
Dotters. Das Ei der Forelle läßt wegen seiner Größe und Un-
durchsichtigkeit diese Verhältnisse im Leben nicht durchblicken;
wir haben aber soeben konstatiert, daß 1) die Nachfurchung zwar
hauptsächlich vom Rande vor sich geht, 2) daß sie aber in der
centralen Partie nicht ausgeschlossen ist, 3) daß die centrale Partie
sich nachträglich auf Kosten der Randverdickung vergrößert. Diese
drei Eigenschaften bezeugen, daß wir es hier mit ähnlichen Ver-
hältnissen in Bezug auf die Keimscheibe zu thun haben wie bei
den Clupeoiden. Erinnern wir uns ferner an das Verhalten beim
Carassius, so haben wir eine Kontinuität der Erscheinung vor uns,
und die verschiedene Bildungsweise der intermediären Schicht
wird sich leicht auf die verschiedene Richtung der Konzentration
des Protoplasmas im Ei zurückführen lassen.

Im ersten Falle dürfte die Konzentration des Protoplasmas
vom Dotter in allen Richtungen vor sich gehen (Carassius aurata-
tus). Im dritten Falle geschieht sie nur in Zügen am Rande der
Dotterkugel (die meisten Knochenfische: Ctenolabrus, Merlucius
nach Kingsley und Conn (46) und Agassiz und Whitman (1);
Crenilabrus, Tinca nach Janosik; Trachinlus nach Brook (11);
Gadus, Trigla nach Cunningham (17); Serranus nach Wilson (82);
Gadus nach Ryder (72) und die große Zahl der von McIntosh
und Prince untersuchten Fische). Übergangsstufen werden durch
solche Eier repräsentiert, wo zwar das meiste Protoplasma vom
Rande zuströmmt, wobei aber kleinere Züge von der Mitte, wenig-
stens am Anfang, nicht ausgeschlossen sind (Fall 2) — hierher:
Forelle und nach Ryder: Clupea, Alosa, Pomolobus.

20 *
Dieses stimmt vollständig mit dem überein, was wir auch dank anderen Autoren über die Konzentration des Protoplasmas im Ei wissen. So berichtet KOWALEWSKI über den Carassius auratus (Fall I), daß das Protoplasma von der Oberfläche des Eies in ganzen Schichten, von dem Innern in Zügen gegen den Keimpol strömt. Nach JANOSIK (45) und LIST (58) umgibt das Protoplasma den Dotter bei Crenilabrus und Tinca (Fall III) und sammelt sich erst später an einem Pol. KINGSLEY’s (46) Figuren 9, 10 und 11 veranschaulichen in schöner Weise, wie sich die Keimscheibe durch seitlichen Zufluß bildet. MCINTOSH und PRINCE hatten Eier vor sich, die ebenfalls unter das dritte der hier gegebenen Schemata fallen. Nach ihnen ist das Parablast eine Anhäufung von Protoplasma, welche zu spät an dem animalen Pol angekommen ist, um in die Keimscheibe einbezogen zu werden (60, p. 715). Das, was OELLACHER (61) als protoplasmatisches Maschenwerk unter der Keimscheibe der Forelle (Fall II) beschreibt, samt der hier erwähnten Nachfurchung: — alles dies deutet auf einen geringen Zufluß von der Mitte des Eies 1).

Wo die Konzentration des Protoplasmas wie beim Carassius (I), Forelle (II), Macropode (III) noch während der Furchung längere Zeit andauert, kommt es zu einer deutlich ausgeprägten Nachfurchung. Aber auch bei Ctenolabrus, nach AGASSIZ und WHITMAN, und Serranus, nach WILSON, lassen sich bei der Furchung gewisse Verhältnisse als Nachfurchung deuten. Mit Recht bemerkt HENNEGUI (30), daß zwischen Furchung und Nachfurchung keine scharfe Grenze zu ziehen, und daß der zweite Prozeß als Folge des ersten aufzufassen sei. Er sagt (S. 462): „Les premiers segments se détachent en effet du disque germinatif de la même manière que les cellules parablastiques se séparent du parablast; dans le premier cas, les cellules sont très volumineuses par rapport à la masse parablastique, dans le second cas elles sont beaucoup plus petites.“

Eine Zelle, die von einer solchen abstammt, welche mit dem Protoplasma des Dotters (sei dasselbe unter der ganzen Bodenfläche der Keimscheibe oder nur als Entoblastrinde vorhanden) zusammenhängt, kann als nachgefurchte bezeichnet werden. Auf der

1) Die Sammlung des Protoplasmas zur Keimscheibe kann mit merkwürdigen Kontraktionen des Dotters, wie solche von STRICKER (75), AUBERT (2), LERENDOLLET (54), van BAMBEEK (6) gesehen und eingehender von RAMSON (66) studiert worden sind, verbunden sein.
Parablast u. Keimblätterdifferenzierung im Ei der Knochenfische. 301

Sie sprechen von Parablast überhaupt dann, wenn er sich vollständig vom Blastoderm gesondert hat. Daß sie aber mit ihrer Deutung nicht gut verstanden wurden, bezeugt schon der Umstand, daß Kowalewski nur auf Rechnung dieser Autoren manchen Fischen die Nachfurchung abspricht, Henneguy (p. 469) sie im Gegenteil unter denjenigen Forschern citiert, die das Entoderm vom Parablast ableiten.

b) Das weitere Schicksal des Parablastes.

Bei Carassius kommen nach beendeter Furchung die Kerne der intermediären Schicht zur Ruhe; bei der Forelle tritt, wie bereits Henneguy richtig hervorhebt, diese Erscheinung noch vor dem Schlusse der Furchung ein. Die strahlige Anordnung des Protoplasmas um die Kerne verschwindet bald; einige Zeit haben dieselben das Aussehen wie in Fig. 1 in der centralen Partie; bald wachsen sie jedoch zu größeren Gebilden an und, was das Wichtigste ist, vermehren sich weiter direkt durch einfache Fragmentation.

Die Membran der Kerne wird permeabel und die Kerne selbst wachsen zu großen Gebilden an, oder, richtiger gesagt, sie quellen auf. Ihr Inhalt besteht aus einer klaren Flüssigkeit, in welcher die Chromatinsubstanz in ungeordneten Fäden mit knotigen Anschnürungen und in Klumpen zerstreut ist. Fig. 14a (Taf. XVI) stellt einen solchen Kern bei starker Vergrößerung dar. In einigen (sicher nicht in allen) sieht man einen Nucleolus, der, nebenbei gesagt, sehr leicht mit einer knotigen Anschnürung verwechselt werden kann. Man muß zu den stärksten Vergrößerungen greifen, um an der regelmäßigen Umgrenzung und dem mehr homogenen Aussehen solche Nukleolen von knotigen Anschnürungen der Chromatinfäden zu unterscheiden. — Solche Gebilde teilen sich in der Weise, daß ihr Nucleolus dabei in zwei Stücke zerfällt und dann die Einschnürung erfolgt (Taf. XVI, Fig. 13d und 14b). Anders liegen die Verhältnisse da, wo sich kein deutlicher Nucleolus nachweisen läßt. Hier scheint eine Ausdifferenzierung der Chromatinsubstanz an den Polen die Teilung einzuleiten und eine mittlere Einschnürung sie selbst zu zerlegen. Indessen habe ich nur ein einziges Bild gesehen, welches über die Teilung solcher Kerne einen näheren Aufschluß zu geben vermag (Fig. 9b). Außer den stärkeren Chromatinfädern, die hier nicht unregelmäßig sind, sondern, wie gesagt, an den Polen auftreten, sieht man von einer Seite die Einschnürung und von derselben einen dunkleren Schatten quer über den Kern, der wohl der Ausdruck einer Verdichtung an dieser Stelle ist. — Endlich kommt ein dritter Teilungsmodus vor, der an eine Art Knospung erinnert. Ofters sieht
man an einem schon zu großen Dimensionen angewachsenen Kerne einen kleinen mit einem Nucleolus versehenen aufsitzen; oft trifft man auch 2—3 solcher Knospen an einem Kerne (Fig. 14c, d). Als Vorstufe dieses Teilungsmodus dürfte ein in der Fig. 14e abgebildeter Kern zu betrachten sein, wo man in der Ecke einen von hellerer Zone umgebenen Nucleolus sieht.

Die durch direkte Teilung gebildeten Kerne haben mehr oder weniger regelmäßige Umrisse (Fig. 14b) und bleiben eine Zeit lang unverändert. Ihre größeren Mutterkerne wachsen bald zu Gebilden von riesigen Dimensionen und sonderbarsten Gestalten an; oft sind zwei aufgetriebene Gebilde durch einen dicken Strang miteinander verbunden oder sie sind ganz unregelmäßig zerflossen; die äußeren Konturen sind häufig schon verwischt (in Fig. 14 sieht man sie bloß von einer Seite). Die so zerfallenden Kerne legen sich oft aneinander und verschmelzen (14g, rechts). So entstehen kolossale, unregelmäßige, intensiv gefärbte Klumpen, die namentlich auf späteren Stadien angetroffen werden (Fig. 14g—m). Alles dies sind Degenerationserscheinungen, wie sie Oellacher, Kowalewski, Gensch und Henneguy gesehen haben, und wie sie Ziegler ausführlich für Selachier beschreibt.

Es sei nochmals bemerkt, daß nicht alle Kerne diese Umwandlung gleichzeitig durchmachen. Neben den total zerflossenen Kernen, ohne irgendwie nachweisbare Konturen, finden sich noch solche von regelmäßig runder oder ovaler Form, auch kommt es vor, daß ein schon zerfliessender Kern an einem Ende eine Knospe mit deutlichem Nucleolus trägt (Fig. 14g). Die letzte noch zu erwähnende Eigenschaft der Kerne ist ihr ungleiches Färbungsvermögen, ein Unterschied, auf welchen auch Rücker bei Selachiern hinwies und unter den Merocyt en helle, chromatinarme und dunkle, chromatinreiche unterschied. Letzteren stellen dunkle knotige Gebilde dar, die, wie ich zu sehen glaube, viel zahlreicher in älteren Stadien vorkommen.
Vom Parablast lösen sich auch Zellen ab, ähnlich wie während der Furcung, nur mit dem Unterschied, daß diese Ablösung nicht durch mitotische, sondern durch direkte Kernteilung eingeleitet wird.

Für eine derartige Abfurcung treten die meisten Forscher ein: Lereboullet (54), Kupffer (51 a), Owsianikow (62), Van Beneden (9), van Bambeke (6), Brook (13), Cunningham (17), Kingsley und Conn (46), Klein (47), Hoffmann (43) und Lwoff (59). — Agassiz und Whitman (1), Kowalewski (49) und Wilson (82) wollen der intermediären Schicht zu dieser Zeit nur eine ernährende Funktion zuerkennen, welche Meinung auch von Ziegler (84, 86) eutherisch verfochten wird. Für Wenkenbach (80) scheint die Ablösung der Zellen als „hochst zweifelhaft“, trotzdem seine Fig. 6, die ein Versinken der Zellen ins Parablast illustrieren soll, eigentlich geeignet wäre, nur die Ablösung zu beweisen, worauf schon Lwoff treffend aufmerksam machte.

Über die Art und Weise, in welcher die Zellen abgefurcht werden, sprechen sich nur wenige Forscher aus. Van Beneden sah neben den vollständig vom Dotter abgelösten Zellen solche, die zur Hälfte mit demselben zusammenhängen. Überzeugende Bilder von diesem Vorgang gibt nur Hoffmann (43) für den Lachs; Klein (47) und Henneguy (30), welche für die Forelle diese Abfurcung annehmen, haben sie direkt nicht verfolgt. Der letzte Forscher stellt darüber hypothetische Betrachtungen an, die zum Teil recht sonderbar klingen.

Er läßt die im Parablast durch direkte Teilung gebildeten Kerne ("globules parablastiques") an die Peripherie wandern, um dort als solche ausgestoßen zu werden. Dann gibt er zu, daß es schwer sei, sich vorzustellen, daß die abgelösten Gebilde nur aus Nuclein bestehen, und glaubt annehmen zu müssen, daß "le protoplasma ambiant entre aussi pour une certaine partie à leur constitution". Dementsprechend glaubt er zwar die "globules parablastiques" in jedem Blatte verfolgen zu können, doch sollen sie dort resorbiert werden und keine Rolle bei der Bildung der Organe spielen. Ziegler (86), der Henneguy zu Gunsten seiner Auffassung anführt, glaubt sie einfach durch Dotterkugelchenersetzen zu können und behält für sie den Namen Parablastkugelchen bei.

Ich habe nichts bemerkt, was auf eine Emigration der Kerne von tieferen Lagen des Parablastes an die Peripherie deuten könnte, und keine Spur von Ausstoßung loser Dotterkugeln ohne

Die Fig. 9, 10, 11, 12 (Taf. XVI) stellen solche Zellen vor. In Fig. 10 habe ich auch die darüber liegenden Blastodermzellen gezeichnet, um anzugeben, daß kein Unterschied zwischen beiderlei Elementen existiert. In dem Maße, als die Randverdickung sich nach dem Centrum zu ausbreitet, findet auch dort die Nachfurchung statt, sie ist jedoch auf späteren Stadien viel seltener. — Es ist aber wiederum nicht ausschließlich die Randverdickung, welche die Zellen liefert. Auf einem Schnitt einer Lachsserie sah ich unter der fadendünnen Lamelle einen protoplasmatischen Keil mit undeutlichem Kern eingesenkt, und bei der Forelle fand sich ungefähr an derselben Stelle eine abgauurchte Zelle. Das mag immerhin sehr selten vorkommen, deutet aber jedenfalls auf eine hier früher persistierende Schicht.

Im allgemeinen unterscheiden sich die abgauurchten Zellen von den übrigen Blastodermelementen nicht, doch trennen sich gelegentlich von der intermediären Schicht solche ab, die sich durch ihre Größe und dunkle Färbung des Kernes (dunkler chromatinreicher Dotterkern) von den anderen stark abheben (Taf. XVI, Fig. 15). Diese sind es wohl, die Klein (47) im Auge hat, wenn er von Zellen spricht, die in ihren „larger masses and all characters denote their origin from parablast“*. Auch Hoffmann beschreibt größere abgauurchte Zellen, die stark mit Dotterschollen beladen sind. Dieselben lösen sich meistens etwas später ab, kurz vor dem Umschlag der Ränder oder auch nach demselben.

Auch die in Fig. 17 (Taf. XVII) abgebildete kolossale Zelle gehört in diese Kategorie. Die Dotterkugel ist eigentlich nicht in die Zelle eingeschlossen, sie ist ihr vielmehr nachgewandert. Wie man aus der Figur ersieht, ist sie nicht von allen Seiten mit Protoplasma umgeben, unten liegt sie frei auf dem Dotter. Der
schmale, zellige Überzug steht unten und seitlich mit der intermediären Schicht kontinuierlich in Verbindung. Links sieht man ein längliches Fragment eines Kernes, der schon seiner dunkleren Färbung und starken, fädigen und knotigen Struktur nach als abgelöster Kern der intermediären Schicht sich verrät. Er liegt der Kugel flach auf, so daß man ihn nicht in seiner ganzen Länge treffen kann; drei Schritte weiter sehen wir ihn so, wie ihn Fig. 16b zeigt.

Es fragt sich aber, was ist das spätere Schicksal der ausgestoßenen Zellen überhaupt? welche Rolle spielen sie beim Aufbau des Embryos?

Lereboullet (54) beschreibt die intermediäre Schicht selbst und legt ihr schon den Namen „feuillet muqueux“ bei; er glaubt, daß sich aus ihr der Darm bilde. — Kupffer untersuchte ebenfalls durchsichtige Eier und beobachtete über dem Dotter Zellen, die das Entoderm liefern sollen. — Owsiannikow hat eine direkte Ablösung der Zellen ebenfalls nicht verfolgt; aber in der intermediären Schicht (Nebenkeim, wie er sie nennt) bemerkte er solche, die den darüber liegenden vollständig gleichen; im übrigen beruhen seine Annahmen auf Vermutungen. „Dem Auge prägen sich Verschiedenheiten ein“, — sagt er, um das Ausstoßen seiner Nebenkeimzellen zu beweisen. „Die Zellen legen sich an einer Stelle so, daß sie ein besonderes Blatt zu liefern scheinen.“ . . . Zwischen diesem scheinbaren Blatt und dem, welches weiter abgebildet wird (62, Fig. 3) giebt es kein Bindeglied. Über die Bildung des mittleren Blattes erfährt man nichts. —

VAN Beneden (9) leitet das Entoderm ebenfalls von nachgefurchten Zellen ab. „La couche intermédiaire forme le plancher de la cavité de la segmentation, cependant sur cette couche reposent çà et là quelques cellules arrondies, dont les caractères sont très semblables à ceux qui distinguent les cellules de la couche profonde de blastodisque.“ Diese Zellen sollen von der intermediären Schicht stammen; denn außer den vollständig getrennten gibt es solche, die noch mit der intermediären Schicht zusammenhangen. Die vollständige Ausbildung des Entodermus wurde gleichfalls nicht verfolgt. VAN Beneden hält es auch für möglich, daß das Mesoderm gleichfalls von der intermediären Schicht und zwar von ihrer Randverdickung abstamme.

Die Schilderung der Vorgänge, wie sie VAN bambeke (6) giebt, ist zum mindesten unvollständig, was der Autor selbst bekennt. Er hat nämlich nichts gesehen, was auf eine Emigration
Parablast u. Keimblätterdifferenzierung im Ei der Knochenfische. 307

der Zellen aus der intermediären Schicht hindeutet und läßt des-
halb das Entoderm in der intermediären Schicht in situ sich bilden.
Schon zu der Zeit, da die intermediäre Schicht eine dünne cen-
trale Lage mit Randverdickung vorstellt und die Kerne nur in
dieser Verdickung zu sehen sind, wird sie als ein besonderes
Keimblatt aufgefaßt. „Deux feuillets bien distincts“ — unter-
scheidet dann VAN BAMBEKE, — „l'un supérieur, plus considérable,
l'autre inférieur, beaucoup plus faible, formé par la couche inter-
médiaire.“ — Die weitere Differenzierung konnte ebenfalls nicht
verfolgt werden. Ein Schnitt durch einen viel älteren Embryo,
welcher dann gezeichnet wird, läßt die oben erwähnten zwei
Blätter unterscheiden; ein mehr nach hinten geführter zeigt ganz
deutlich 3 fertige Keimblätter. Das untere „feuillet muqueux“
(folger VAN BAMBEKE) hat sich in der intermediären Schicht durch
Zelldifferenzierung um die Kerne gebildet. — An VAN BAMBEKE
schließt sich am meisten KUPFFER an. Um die endogen ent-
standenen und sich regelmäßig anordnenden Kerne des Parablastes
differenziert sich das Protoplasma zu Zellen, und die so gebildete
Lage stellt das Entoderm dar. — Cunningham, Kingsley und
Conn vermuten nur, daß die abgefurchten Zellen einen Teil des
Hypoblastes liefern. Nach Brook (13) entsteht nicht nur das
Entoderm, sondern auch das Mesoderm aus den nachgezogenen
Zellen. Nach Mc Intosh und Prince (60) haben die ausgestoßenen
Zellen einen Anteil beim Aufbau des Darmblattes.

Neuerdings ist Lwoff für die Bildung des Darmblattes aus
dem Entoderm aufgetreten, und zwar ist er dazu auf folgendem
Wege gelangt: Auf einem Präparat ist eine künstliche Spalte
zwischen dem Dotter und der intermediären Schicht entstanden,
„daraus folgt, daß der Zusammenhang der intermediären Schicht
mit der Embryonalanlage ein innigerer ist, als mit dem Dotter.
Da früher das Blastoderm vom Dotter getrennt war, so entsteht
die Frage, worauf beruht auf diesem Stadium der Zusammenhang
der Embryonalanlage mit der intermediären Schicht, die nichts
anderes ist, als die oberflächliche Lage des Dotters?“ Diese Frage
wird an Hand einer zweiten Abbildung beantwortet. Es ist ein
Querschnitt, auf dem die Chorda schon gut differenziert ist, je-
doch von dem Parietalappchen noch nicht vollkommen getrennt er-
scheint; unter dem Parietalappchen sieht man die Entodermlage,
die zwar nach der Schilderung bald mehr, bald weniger deutlich
auftritt, aber auf der Abbildung ganz scharf und deutlich von der
intermediären Schicht getrennt erscheint. Unter der Chorda ist
nur die intermediäre Schicht samt Kernen zu sehen. Hier ist das Entoderm noch nicht gebildet, meint Lwoff. — „Die Lage ist so innig mit der intermediären Schicht verbunden und geht stellenweise so allmählich in dieselbe über, daß ihre genetische Beziehung keinem Zweifel unterliegen kann.“ An anderer Stelle (p. 121) schreibt Lwoff: „Auf dem Querschnitt von Gobius haben wir gesehen, daß die Entodermlamelle, aus der sich später der Darm bildet, unterhalb der Mesodermplatten schon fertig ist; unterhalb der Chorda aber sieht man noch keine Zellgrenzen, sondern bloß eine plasmatische Schicht mit Kernen. Auf einem etwas späteren Stadium sieht man schon eine ununterbrochene Zellenreihe. Es liegt die Wahrscheinlichkeit nahe, daß der mittlere Teil der Reihe sich aus der plasmatischen Schicht gebildet hat.“ Also einmal darf man keinen Zweifel haben, das andere mal ist es bloß Wahrscheinlichkeit.

Hugo Gensch (21) nennt die Kerne der intermediären Schicht „Hämatooblasten“; sie sollen, wie der Name sagt, Blutkörperchen bilden. Und zwar hat er sich die Aufgabe insofern erleichtert, als er die intermediäre Schicht kurzweg als sekundäres Entoderm deutet. Darüber liegt das Ektoderm, „seitlich am Embryo war das Mesoderm zu sehen“. Es bleiben noch Zellen zwischen Ektoderm und intermediärer Schicht übrig. Sie als Blutbildner zu deuten lag nicht so fern, in Anbetracht der Äußerungen früherer Autoren über die Entstehung des Blutes. Direkte Ablösung der Kerne hat Gensch nicht gesehen, wie das auch an Flächenpräparaten nicht zu konstatieren ist. Der genetische Zusammenhang zwischen der intermediären Schicht und den späteren Blut-

1) Ausnahme machen außer Forelle, Lachs, Labrax, auch, nach übereinstimmenden Angaben, die Anuren.
Parablast u. Keimblätterdifferenzierung im Ei der Knochenfische. 309

Zellen ist nicht erwiesen und Ziegler vermutet, daß sich Gensch durch die Ähnlichkeit dieser Gebilde mit den wirklichen mesodermalen Blutzellen habe irre führen lassen. Für den parablastischen Ursprung des Blutes tritt ferner Ryder (72) ein. Nach Ziegler (84), Wenkenbach (81) und Wilson (82) entsteht das Blut aus dem Mesoderm.

His (34, 38) leitet vom Parablast das Blut, die Anlagen der Wandungen der primitiven Gefäße, sämtliche Bindesubstanzen ab (His'sche Parablasttheorie).

Was das Schicksal der nachgefurchten Zellen betrifft, sei zu- letzt die Ansicht Hoffmann's erwähnt: er zweifelt nicht daran, daß die Merocyten (ausgestoßene Zellen) den größten Anteil an der Bildung des Hypoblastes haben; aber er will nicht mit Bestimmtheit behaupten, „daß es allein die Holocyten sind (ursprüngliche Blastodermzellen), welche das Epiblast bilden, und daß sich die Merocyten nicht daran beteiligen“.

Die Frage, wie sie letztthin Hoffmann formuliert hat, ist in- dessen nicht leicht zu beantworten. Die meisten nachgefurchten Zellen sind den übrigen Blastodermzellen gleich und es ist nicht möglich, sie in der Keimscheibe zu verfolgen.

Ungleich den übrigen Blastodermzellen sind die gelegentlich auf späteren Stadien sich abfurchenden größeren, mit Dotter beladenen Zellen, die einen großen, stark gefärbten chromatinreichen Kern besitzen, — und diese sind es, von denen wir eine nähere Auskunft erwarten können. Ich habe schon gelegentlich auf eine kolossale Dotterzelle ganz unter der Keimscheibe aufmerksam gemacht (Fig. 17, Taf. XVII). Figur 18 zeigt eine ebensolche Zelle, dicht unter der Deckschicht 1). Daß diese Dotterkugel, wie man vielleicht einwenden könnte, nicht früher hier lag, etwa bei der Sammlung des Protoplasmas im Ei eingewandert ist, darüber lehrt der drittfolgende Schnitt. Hier sehen wir einen dunklen, knotigen, schon öfter besprochenen Kern, der mindestens um das Doppelte an Größe die übrigen Kerne übertrifft (Fig. 18 b). — Auf derselben Serie, nur einige Schnitte weiter, sieht man eine Zelle doppelt so groß wie die anderen mit dreifach größerem Kern (Fig. 18 c) 2).

1) Leider ist die Deckschicht hier zerrissen, was wohl in Anbetracht der Lage der Kugel nicht zu vermeiden war. Den Zusammenhang der Teile sieht man übrigens gut.

2) Die Lage dieser Zelle ist in Fig. 18a durch ein Kreuz angedeutet.
Es sei hier gleich die Frage beantwortet, die wohl bei Betrachtung der Figuren auftauchen kann: wie sind diese Zellen dort hinauf gewandert? Nach meiner Ansicht könnte das auf doppeltem Wege geschehen. Hoffmann hat eine sich eben ab lösende Zelle gesehen, an der künftigen Umbiegungsstelle des Blastodermis. Die Deckschicht war zu der Zeit noch nicht über den Dotter gewachsen. Man muß sich nun eine solche Zelle abgelöst denken und die Deckschicht darüber gewachsen, und wir haben das Verhalten, wie in Fig. 17. Die zweite Möglichkeit, und die einzige zugleich, für die nicht am oberen Rande abgefurchten Zellen, ist die, welche auf ungleicher Teilungsintensität der Zellen beruht. Dadurch wird eine unten oder in der Mitte gedachte Zelle einem höchst komplizierten Druck- und Schubwechsel unterliegen, der sie schließlich bis nach oben treiben kann. Dieses trifft aber auf frühere Stadien, als das in Fig. 17 dargestellte, zu, in welcher Abbildung sich die Zellen noch nicht in dem Maße gegenseitig abgeflacht haben. In Fig. 10 z. B. ist der Vorgang noch nicht so weit vorgerückt.

So gezwungen eine solche Erklärung erscheinen mag, ist sie doch die einzige, die man hier geben kann. Daß die Zellen sich nicht alle im gleichen Maße teilen, davon habe ich mich genügend, nicht nur an meinen Präparaten, sondern auch an fremden Abbildungen, überzeugt. Dieses kann sich sogar bis ins Extrem steigern. Fig. 47 gehört einem Stadium an, auf dem sich in der Keimscheibe der Embryonalwulst zu differenzieren beginnt. In der Mitte (zukünftiger Embryonalwulst) sieht man große Zellen, die dreimal so groß als die übrigen sind; sie sind auch heller und zeigen noch schön die Sonnenstruktur des Protoplasmas um die Kerne. Diese Zellen gehören eigentlich den ersten Furchungsstadien an. —

Es gibt ferner markante Zellen anderer Art, die sich im Blastoderm verfolgen lassen. Ihr Protoplasma umschließt in Form eines Ringes eine Vakuole. Der Kern ist meist plattgedrückt und liegt flach auf der letzteren (Fig. 11 a, 13a und b). — Wie soll man sich die Entstehung der Vakuolen denken? Sind sie entstanden durch Resorption des Dotters in den abgefurchten Zellen oder sind sie schon so primär aus der vakuolenreichen intermediären Schicht gebildet? Ich glaube, daß beides der Fall sein kann. Außer den in der Fig. 13b und c abgebildeten, die deutlich auf die erste Vermutung hindeuten, habe ich solche gesehen, die sich von der in Fig. 17 abgebildeten dadurch unterscheiden, daß die
Dotterkugel in der Mitte fehlte und der Protoplasmmamantel ein wenig breiter war.

Solche Vakuolenzellen kommen jedenfalls nicht oft vor und bleiben auch nicht lange unverändert im Blastoderm. Auf späteren Stadien sieht man sie gar nicht mehr. Über die Art und Weise, wie solche Zellen sich zu regelmäßigen Blastodermzellen umbilden, gibt eine Zelle, die ich im sekundären Blatt einer, etwa auf dem Stadium der Fig. 35 stehenden Keimscheibe gefunden habe, den besten Aufschluß (Taf. XVI, Fig. 13 f). Sie zeigt einen von einer Seite abgeflachten Kern, analog den unter a und b (Fig. 13) abgebildeten; das Protoplasma füllt die ganze Zelle aus, ist aber nach der Mitte zu merklich heller.

Nachdem ich solche Vakuolenzellen unter der Keimscheibe gesehen, suchte ich sie im übrigen Blastoderm, — und auf dem Stadium der anfänglichen Differenzierung der Keimblätter waren solche in der That im sekundären Blatte zu finden. Im Ektoderm konnte ich sie bei der Forelle nicht bemerken, wohl aber in einer Längsschnittserie vom Lachsei, welches gerade auf dem Stadium stand, das dem der Forelle in der Zeichnung (Taf. XVIII, Fig. 36) wiedergegebenen Stadium entspricht. Die Zellen waren auf dem Schnitt zu finden, der ungefähr durch die Mediane ging, an der Stelle also, wo sich der Medularwulst schon bildet. Fig. 16 (Taf. XVI) zeigt dieunteren Zellen des Ektoderms schon cylindrisch ausgezogen, die oberen polygonal und zwischen beiden die Vakuolenzelle. Sie unterscheidet sich von der in Fig. 13 abgebildeten dadurch, daß ihr Protoplasmmamantel dicker war; der Kern ist wie dort von einer Seite abgeflacht. —

Alles, was hier über die intermediäre Schicht mitgeteilt wurde, glaube ich in Folgendem zusammenfassen zu können:

Der Parablast, eine mit der Keimscheibe zusammenhängende protoplasmatische Lage, die vom Dotter während der Furchung noch weiteren Zufluß erhält, gibt anfangs durch indirekte, dann durch direkte Kernteilung dem Blastoderm Zellen ab, welche aber in keinem genetischen Zusammenhang mit irgend einem Blatte stehen, vielmehr in die Bildung der ganzen Keimscheibe, aller Keimblätter einbezogen werden.
II. Die Keimblätter-Differenzierung.

Hier beginnen die Meinungen auseinander zu gehen. Nach den meisten Forschern bildet sich das sekundäre Blatt vom oberen durch Einstülpung: Haeckel (26), Götte (24), Ziegler (83), Henneguy (30), v. Kowalewski (49), Cunningham (17), Kingsley und Conn (46), Janošik (45), McIntosh und Prince (60), Wilson (82). Nach His (34), Hoffmann (39, 41), Ryder (72), Kupffer (51) und Oellacher (61) scheidet es sich von der Keimscheibe durch Abspaltung. Einige ältere Forscher, so Rieneck (70), Stricker (75), Weil (79) behaupten für die Forelle, daß die unteren Zellen der Keimscheibe auf den Boden der Furchungshöhle fallen und so das sekundäre Blatt liefern. Die mit Hülfe neuerer Methoden aufgenommenen Untersuchungen haben diese Behauptungen in keiner Weise bestätigt.

Am besten eignen sich zu Untersuchungen über diesen Gegenstand die von Kingsley und Conn und Cunningham untersuchten Eier, wo sich eine einzellige Lage umschlägt, am wenigsten aber die Forelle. Denn hier spielen sich, wie schon Ziegler (83) hervorhebt, gleichzeitig zweierlei Vorgänge ab: Ausbreitung der Keimscheibe und Umschlag. Derselbe Autor machte darauf aufmerksam, daß beim Lachs sich der Vorgang viel deutlicher gestalte; die Keimscheibe hat sich schon gut ausgebreitet, bevor der Umschlag beginnt. Dieses Verhalten bringt auf den Gedanken, daß zwischen Einstülpung und Spaltung in gewisser Beziehung kein Unterschied besteht und diese Momente sich gegenseitig ergänzen können, so daß das zweite als die Folge des ersten er-
scheinen kann. In der That muß, wenn sich der verdickte Teil der Keimscheibe am Dotter staut und die Ausbreitung in demselben Sinne noch weiter wirkt, in den oberen und unteren Zellen eine entgegengesetzte Bewegungsrichtung eintreten, die eine Zerreißung zur Folge hat. Die Ursache bleibt dennoch die Umstülpung und nach dem erfolgten Auftreten der Spalte findet dieselbe unbehindert weiter statt.

Als Gründe, die eher für eine Einstülpung als Zerreißung sprechen, seien meinerseits folgende erwähnt. Den Kernteilungsfiguren begegneten wir, trotzdem sie hier und da an verschiedenen Stellen angetroffen werden, doch vorwiegend am Umschlagsrand. Beinahe auf jedem Schnitte sieht man hier Mitosen, deren charakteristische Lage als ein zweiter Beleg dienen kann. Sie liegen nicht beliebig in den Zellen, sondern sind alle nach den mechanischen Zuglinien des Umschlags orientiert, wie man aus Fig. 28, 30 (Taf. XVII) und 35 (Taf. XVIII) ersehen kann. In Fig. 35 s ist eine Zelle zu sehen, die zwar eine kleine Biegung hat, doch nicht so charakteristisch, wie eine auf gleicher Höhe liegende in einer anderen Serie. Solche Zellen mußten während der Teilung eine Krümmung erlitten haben, was an der ganzen Form der Zelle zu erkennen ist. Der letzte Grund, der mich zur Annahme eines Umschlags zwingt, soll später besprochen werden. Hier sei nur darauf hingewiesen, daß auf den Fig. 28—30 die Ansatzstelle der differenzierten, helleren Zellen sich immer mehr nach vorn verschiebt.

Der in manchen Figuren wiedergegebene Zwischenraum beider Schenkel scheint kein normales Verhalten zu sein. Er fehlt in der Fig. 35 sowie an den Querschnitten. HENNEGUY sagt, er habe ihn nur an Osmiumpräparaten gesehen. Auch CORONOWITSCH beobachtete einen solchen Zwischenraum, doch behauptet er, daß derselbe nicht immer zu treffen sei. KINGSLEY und CONN, CUNNINGHAM zeichnen ihn nicht, wohl aber GÖTTE und HIS. So aber, wie ihn der letztgenannte Forscherzeichnet: unregelmäßig, zackig und oft mit losen, zwischen den Schenkeln liegenden Zellen (34, Taf. XVII, Fig. 2), habe ich ihn nie beobachten können. Querschnitte durch das Ei in der Gegend des Embryonalchildes lehren uns ferner, daß wir es hier von frühesten Stadien an mit zwei Teilen des sekundären Blattes zu thun haben: mit einer medianen Verdickung (3—4 Zellen dick), welche die Chordalanlage repräsentiert und seitlichen zweischichtigen Lagen, die zu Mesodermplatten werden.

Parablast u. Keimblätterdifferenzierung im Ei der Knochenfische. 313

Bd. XXX. N. F. XXIII. 21

Der Eindruck, den ich bekommen habe, ist der, daß der Vorgang sich überhaupt ganz unregelmäßig vollzieht. Einige Zellen waren schon abgeflacht und entsprechend dunkler geworden, während gleich daneben noch solche lagen, welche total den anderen Furchungszenlen glichen und dazu noch in Teilung begriffen waren, um, ehe sie in die Deckschicht einbezogen werden, der Keimscheibe noch eine Zelle zu liefern (Fig. 19). Oft auch bemerkt man zwischen den abgeflachten Zellen größere Zellen eingeklemmt (Taf. XVII, Fig. 20). — Bei den abgeflachten Zellen stehen die Kernplatten bei der Teilung vertikal, sodaß sie wieder Deckschichtzellen liefern. Auf einem und demselben Schnitte läßt sich oft in der Deckschichtlage eine vertikale Kernplatte in abgeflachter Zelle und eine horizontale, in runder oder polygonaler Zelle bemerken. Fig. 21 stellt die Deckschicht auf einem weiteren Stadium dar; auch hier sieht man noch die ungleiche Abflachung der Zellen.
Bei der Abplattung ziehen sich die Zellen erst in die Quere, dann in die Länge, wie dies das Fragment eines Längsschnittes (Fig. 22) zeigt, ferner die Reihenfolge der Längsschnitte Fig. 25—27. Die Zellen haben hier eine Parallelepipedonform.

Von den nächsten Tagen (8. und 9.) stehen mir nur Querschnitte zur Verfügung; aber diese geben vielleicht die besten Aufschlüsse über die weiteren Details der Differenzierung der Deckschicht. Fig. 23a (Taf. XVII) zeigt die Deckschicht auf den letzten, b auf dem vorletzten Schnitt: sie ist hier gleichmäßig abgeplattet; c stellt sie auf dem ersten, d auf dem zweiten Schnitt dar: Hier sehen wir in der Mitte einige Zellen, die sich noch nicht abgeflacht haben, ein wenig heller sind und den Zellen der übrigen Keimscheibe vollständig gleichen, vielleicht, daß sie dieselben ein klein wenig an Größe übertreffen. Der sechste Schnitt, Fig. 23e zeigt noch diese Verschiedenheit, weiter nach vorn verschwindet sie. Dasselbe kann man auf Querschnitten des folgenden Tages sehen.

Fig. 24 (Taf. XVII) stellt einen medianen Längsschnitt von einer 10 Tage alten Keimscheibe dar und zeigt ebenfalls dasselbe Verhalten: die hinteren Zellen haben sich nicht abgeflacht, sie stehen zwar im Zusammenhang mit der Deckschicht, lassen sich aber von den Keimscheiben zellen nicht scharf trennen, sowohl ihrer Größe als auch ihrer helleren Färbung nach. In Fig. 25 ist der hintere Teil desselben Schnittes bei starker Vergrößerung gezeichnet.

Auch andere Autoren weisen, wenn auch nicht deutlich, auf diese Verhältnisse hin. So meint GÖTZE, daß der äußere Saum der Deckschicht in der Abplattung träger erscheine. KOWALEWSKI hält dafür, daß die abgeflachten Zellen am Rande des Blastoderms in runde, dann polygonal werdende Zellen übergehen. Seine Fig. 14 läßt den Übergang nur von einer Seite erkennen. Ferner kann man nach Boronowitsch „hier und da den Übergang der äußersten Zellen der Deckschicht in die Zellen des Randteils des Blastoderms verfolgen“ und „in dem Randgebiet, wo die Deckschicht aufhört, haben ihre Zellen einen indifferenten Charakter“. — Auf der Fig. 24 ist die Deckschicht selbst, sowie der vordere und hintere Rand der Keimscheibe mit Projektionsapparat gezeichnet, das übrige schematisch ausgefüllt. Sie soll nur zeigen, daß die Deckschicht am entgegengesetzten Rand keine solche Verschiedenheit aufweist (entsprechend den Querschnitten Fig. 25). Auf Fig. 26, die sich gleich der vorangehenden anschließt, hat die
Deckschicht angefangen, sich auch in der Richtung von vorn nach hinten abzuflachen. Sie ist auch ein wenig dunkler geworden, ihre Randzellen haben ihre Form und Größe beibehalten. Daselbe, nur weiter vorgeschritten, sieht man in der Fig. 27. Was bei dieser Figur noch speziell betont werden muß, ist die Verschiedenheit der Randzellen, nicht nur von den Deckschichtzellen, sondern auch von den Keimzellen. Sie sind auch heller als die letzteren und überragen dieselben an Größe.

Der nächstfolgende Tag zeigt schon das Verhalten, wie es auf Fig. 21 dargestellt ist. Die Deckschicht greift über die Keimscheibe und endet über dem Dotter, die größeren, helleren Zellen sind unter derselben in der Ecke zu sehen. Es ist jedenfalls ein großer Sprung zwischen den beiden Stadien; aber eine kleine Andeutung über den Vorgang finde ich darin, daß sich nämlich zu dieser Zeit die Deckschicht stark in die Länge auszubreiten beginnt und ihre Zellen in lebhafter Teilung begriffen sind. Fig. 32 zeigt von derselben Serie ein Deckschichtfragment unter noch stärkerer Vergrößerung. An diesem Tage hat sich auch die Umstülpung der sekundären Schicht vollzogen, die mit der Keimscheibe zusammenhängenden großen Randzellen sind mitgezogen worden.

Trotzdem sich diese Zellen nur unter starker Vergrößerung wahrnehmen lassen, konnten sie nicht von allen Forschern der Forellenentwicklung unbemerkt geblieben sein. HENNEGUY, dem wir die genauesten Angaben über diesen Fisch verdanken, hat sie gesehen und schreibt darüber Folgendes: „Les cellules marginales de la couche enveloppante sont plus développées qu'elles qui constituent le reste de la couche. Souvent elles donnent naissance à des cellules qui font saillie dans le canal périgerminal et tendent à le combler... Je n' ai pu constater leur existence chez la truite qu' au moment de la réflexion de l' ectoderme et il m'a été impossible de suivre leur évolution ultérieure."

Das Entoderm.

Das weitere Schicksal dieser Zellen ist aus der Reihenfolge der Fig. 28, 29, 30, Taf. XVII und Fig. 35, 36, Taf. XVIII ersichtlich, — sie sind es, die das Darmblatt liefern. In Fig. 29 sind sie keilförmig nach unten versenkt, in Fig. 30 ist der Vorgang noch weiter vorgeschritten; Fig. 31 zeigt schon eine deutliche Lage hellerer Zellen, ebenso Fig. 35. Die Stelle, wo das Entoderm in das untere
Blatt übergeht, verschiebt sich immer mehr nach unten und vorn, was ein deutlicher Ausdruck des Umschlages der sekundären Schicht ist. Diese Entodermlage ist deutlich von den darüber liegenden Zellen zu unterscheiden, trotzdem sie nicht überall scharf abgesetzt ist; sie ist nämlich viel heller und in früheren Stadien aus länglichen Zellen zusammengesetzt; wenn man sie einmal gesehen hat, ist sie nicht mehr zu verkennen, sowohl auf Längs- als auf Querschnitten. — Fig. 47, Taf. XVIII stellt einen Querschnitt durch die Stelle dar, wo die oberen Keimblätter in einer indifferenten Zellenmasse („Schwanzknospe“) zusammenhängen. Unten sieht man gut die Entodermlage, die sich seitlich noch nicht vollständig ausbreitet hat. In späteren Stadien, wo sich die Wurzel des Darmblattes mehr nach vorn verschoben hat, ist diese Lage unter der „Schwanzknospe“ nicht mehr zu finden.

Von allen Autoren, welche die Entwicklung der Knochenfische studiert haben, ist es allein M. v. Kowalewski (49), der diese Entodermbildungszenellen beim Gobius gesehen und sie auch weiter verfolgt hat. Sein Studienobjekt zeigt diese Verhältnisse viel deutlicher, sie lassen sich sogar bei schwacher Vergrößerung beobachten. Dasselbe hat er auch bei „Carassius“ gefunden, doch, wie er selbst meint, nicht mehr so schön. Bei der Forelle scheint der Vorgang noch undeutlicher zu sein, denn er ist ausschließlich nur bei starker Vergrößerung zu erkennen. Genannter Autor hat die Entodermbildungszenellen auf dem Stadium gesehen, das meiner Fig. 28 entspricht und ist daher geneigt, sie von Blastodermzellen abzuleiten, die beim Umschlag desselben in der Ecke blieben und nicht nachgeschleppt wurden. Er verfolgte sie auch nur bis zu einem Stadium, das zwischen meinen Fig. 29 und 30 steht und glaubt deshalb in einem Nachtrag, in dem er sich speziell mit der Küpferschen Blase befällt (50), daß die beschriebene Anlage nur den hinteren Teil des definierten Entoderms bildet. Die Anlage der Küpferschen Blase steht nicht im direkten Verhältnis zu der großzelligen Anlage, sondern sie ist auf nachträgliche Wucherung des schon gebildeten Entoderms zurückzuführen (Fig. 36, Taf. XVIII); so wenigstens bei der Forelle. Auf die Entwicklung der Küpferschen Blase will ich unten mit einigen Worten zurückkommen.

Obgleich ich den Zusammenhang der Entodermbildungszenellen in früheren Stadien mit der Deckschicht zu zeigen bemüht war, will ich durchaus nicht behaupten, daß das Entoderm etwa durch Umschlag der Deckschicht sich bildet. Von einem wahren Um-
Waclaw Berent,

schlag der Deckschicht kann durchaus keine Rede sein. Auch möchte ich diese Zellen auf dem Stadium der Fig. 27 nicht indifferent nennen, wie es GORONOWITSCH für die Randzellen der Deckschicht thut. Gegen die letzteren verhalten sie sich wohl indifferent, aber im Verhältnis zum Blastoderm sind sie eben differenzierte Teile desselben. — In der geschilderten Entodermbildung möchte ich im Gegensatze zu KOWALEWSKI, der für sie einen Gastrulationsmodus aufstellt, nicht ein primäres, sondern ein abgeleitetes Verhalten erblicken. Obgleich die meisten Arbeiten, in denen das Darmblatt vom primären Entoderm abgeleitet wird, die Frage nicht eingehend genug behandeln, so ist es die ausführliche Abhandlung von WILSON (82), die die derartige Bildung des Darmblattes über jeden Zweifel erhebt. Sein Objekt ist auch wegen der relativen Dicke des Hypoblastes übersichtlicher als alle anderen. Worin sich WILSON von den andern Forschern unterscheidet, ist, daß er das Entoderm sich nicht abspalten, sondern differenzieren läßt, und daß diese Differenzierung gleich nach Beginn des Umschlags erfolgt. Es werden zwei einschichtige Lagen gebildet (Anlage des Mesoderms plus Chorda und die Anlage des Darmblattes), die dann weiter nach vorn wachsen (vgl. WILSON Fig. 46, 47, 43, 44. — Schema I und II.)

Während also bei anderen Fischen eine Differenzierung des sekundären Blattes erst nach dem beendeten Umschlag eintritt,
ist sie hier zeitlich verschoben und zwar gleich nach dem Anfang derselben. Man braucht sich nur zu denken, daß diese Differenzierung zeitlich noch weiter zurückgreift, ferner, daß die sekundäre Schicht viel mächtiger sei und wir kommen zu dem Verhalten der Forelle (Schema III).

So befremdend die beschriebene Bildung des Entoderms bei diesem Fisch erscheinen mag, erweist sie doch als Spezialfall von der allgemeinen Regel der Differenzierung dieses Blattes aus der unteren Schicht.

Im übrigen kann eine derartige Bildungsweise des Darmblattes verbreiteter sein, als es bisher angenommen wurde. Gobi, Carassius und Forelle sind nicht allzu nahe stehende Knochenfische 1).

1) So sieht man z. B. bei van Bambeke's Fig. 5 (6), die einen medianen Längsschnitt durch die hintere Region einer noch nicht in Keimblätter differenzierten Keimscheibe wiedergiebt, bei total undeutlichen Zellgrenzen in der Ecke drei größere, scharf begrenzte Zellen mit markant hervortretendem Nucleus. Es ist wohl möglich, daß dieselben dort eine ähnliche Bedeutung haben, wie in unserem Falle.
Unter der Chorda behält das Darmblatt seinen einschichtigen Bau am längsten; lateralwärts beginnt die einschichtige Lage hier und da zweischichtig zu werden (Fig. 33, Taf. XVII). Wo der freie Raum oder die Druckverhältnisse es gestatten, teilen sich die Zellen äquatorial (Fig. 45, links), an Stellen aber, wo im Gegenteil der Druck stärker wird (z. B. wenn eine Vacuole die Keimscheibe hebt), zwängt sich das Entoderm als sehr schmale Lamelle durch, um gleich dahinter wieder dicker zu werden (Fig. 34). In späteren Stadien ist das Entoderm stellenweise so deutlich zweischichtig, daß es sogar bei schwacher Vergrößerung gut wahrzunehmen werden kann. Dieses führt Henneguy zu der merkwürdigen Annahme, daß die Zahl der Schichten sich nachträglich vermindere.

Darm und Kupffer'sche Blase.

Der Darm der Knochenfische soll nach Agassiz und Whitman (1), Hoffmann (40), Wilson (82), Henneguy (30) und Lwoff (59) durch Faltenbildung entstehen; Ziegler (85) berichtet beim Lachs von einer soliden Anlage desselben ¹).

Wenn man bei der Forelle von einer Faltenbildung sprechen wollte, so würde dieselbe jedenfalls nicht als eine laterale, sondern vielmehr als eine mediane Aufsättigung aufzufassen sein, d. h. die faltenbildende Kraft käme nicht von der Seite, sondern von der Mitte. Zu einer deutlich ausgeprägten Falte kommt es bei der Forelle nie; die Höhlung erscheint als Spaltöffnung.

Die unter der Mitte der Chorda gelegenen Zellen sind in der Fig. 37 in Ausbreitung und Teilung begriffen, dadurch werden die seitlichen gezwungen auszuweichen, stoßen aber auf Widerstand der rechts und links gelegenen Zellen. Dem beiderseitigen Drucke passen sie sich so an, daß sie in schiefe Stellung geraten (Fig. 38). Bei noch weiter anhaltendem Drucke klappen sie in horizontale Stellung um und legen sich mit ihrer breiten Seite auf den Dotter. Sie haben hier den stärksten Grad der Abflachung erreicht, sie sind schmal und lang geworden, ihre Kerne stark oval zusammengedrückt (Fig. 39). Die Entstehung der Höhlung ist dadurch zu erklären, daß der Druck von der Mitte noch weiter andauert, die seitlichen Zellen aber, bis

¹) Die verschiedenen Angaben beziehen sich nur auf den mittleren und hinteren Teil des Darmes. In der Branchialgegend bildet er sich durchwegs durch Faltung.
Parablast u. Keimblätterdifferenzierung im Ei der Knochenfische. 321

Lwoff, dessen Objekt eine deutliche Falte zeigt, hat im Bauchteil dieser Falte mitotische Figuren gefunden und kann deshalb mit voller Berechtigung auch in diesem Falle von einer medianen Auffaltung sprechen. Somit waren die Anfangsstadien in beiden Fällen der Darmbildung (solide Anlage und Faltung) die gleichen: Teilung der Zellen in der Mediane, die zur Abflachung und Schiefstellung der seitlichen Zellen führt. Es läßt sich nun denken, daß die seitlichen Zellen im zweiten Falle nicht einer weiteren Verschiebung zur horizontalen Lage fähig sind (sei es durch den größeren Gegendruck seitlicher Zellen, sei es aus anderem Grunde), und daß schon auf diesem Stadium eine Spannung entsteht, die zur Abhebung führt. Sobald sich der mittlere Teil emporgehoben hat, wird die Spannung wieder kleiner, die Vermehrung der Zellen in der Mitte wird nun zur Abflachung der seitlichen Zellen führen und sie dadurch mit ihren zugekehrten
Enden einander nähern; ein Vorgang, der gleichzeitig mit einer horizontalen Teilung der letzteren Hand in Hand gehen kann.

Anders läßt sich die verschiedene Bildungsweise des Darmes bei den Knochenfischen nicht erklären, wenn man in beiden Fällen die mediane Auffaltung acceptieren will.

LwOFF läßt die untere Wand des Darmes sich frei aus dem Dotter durch Nachfurchung bilden. Die beigegebenen Zeichnungen sind aber nicht instande, diese Anschauungen zu beweisen. Seine Figuren 39 und 40 stellen bloß die Falten dar, 41 einen vollständigen Darm, welcher sich sogar schon von dem Entoderm abgegliedert hat. Die untere Wand kann sich ebenso gut durch Entgegenwachsen der Ränder und Teilung der abgeflachten Zellen bilden. (Daß diese Zellen sich auch wirklich teilen, sieht man aus meiner Fig. 39, Taf. XVIII, wo rechts die Kerne eine Vorbereitung dazu zeigen.) Der einzige Hinweis darauf, daß die Zellen der ventralen Wand flacher sind, kann in Anbetracht der vielfach erwähnten Abflachung nicht als Beweis einer Nachfurchung dienen.

Dieser Entwicklungsmodus des Darmes, wie wir ihn für die Forelle konstatiert haben, tritt noch deutlicher zu Tage bei der Entstehung seines hintersten, differenzierten und vergänglichen Teiles, bei der Bildung der KupFFER'schen Blase.

Dieses Gebilde wurde zuerst von KupFFER (51, 52) an durchsichtigen Knochenfischembryonen gefunden und als rudimentäre Allantois gedeutet. BALFOUR (5) hält sie für homolog dem postanalen Darme der Selachier, ähnlich D. SCHWARZ (73). — HENNEY-GUY, der dieses Gebilde bei der Forelle fand, glaubt, daß sich die Deutung KupFFER's noch heute verteidigen läßt. CUNNINGHAM (18) ist in den Fehler verfallen, als KupFFER'sche Blase eine Dottervakuoile zu deuten, was aus seiner Fig. 3 klar ersichtlich ist.

Auch AGASSIZ und WHITMAN, KINGSLEY und CONN und ZIEGLER wurde derselbe Vorwurf zu teil; sie alle berichten, daß die Blase ventral vom Parablaste begrenzt wird. Im Zusammenhang damit wollen sie dieses Gebilde als einen Teil der Gastralöhle auffassen. Bei den Selachiern nämlich ist das umgeschlagene Entoderm (dorsale Wand der Höhle) im hinteren Teil, vom Dotter (ventrale Wand) abgehoben, bei den Teleostieru liegt der hintere Umschlagsrand dem Dotter dicht an, und was vom Dotter abgehoben ist, ist ein weiter nach vorn gelegener Teil des Urdarms, die KupFFER'sche Höhle. — KupFFER schildert die Blase als von

An einer nahe der Schwanzknospe gelegenen Stelle fangen die Zellen des Entoderms an sich rasch zu vermehren (Fig. 36). In der gebildeten Zellenmasse tritt ein Lumen auf, welches dorsal von cylindrischen Zellen, ventral von abgeflachten begrenzt wird. Einiegend äußert sich Henneguy nicht über die Bildung dieses Lumens. Schwarz spricht nur von „einer eigentümlichen, nicht näher zu beschreibenden Gruppierung der Zellen“. — Wenn ich nun auf die Bildung der Kupffer'schen Höhle noch zurückkome, so geschieht es, wie gesagt, nur darum, weil sich auch hier das Lumen ähnlich wie beim Darm bildet.

Fig. 40, Taf. XVIII, stellt einen Querschnitt durch die schon mehrfach erwähnte Anschwellung des Entoderms (Fig. 36) dar. Hier läßt sich wiederum konstatieren, daß die mittleren Zellen sich am energischsten teilen und die seitlichen in schiefe Stellung zwingen. Es kommt aber ein neuer Umstand hinzu: die mittleren Zellen strecken sich und nehmen eine cylindrische Form an (Fig. 41), die schiefl gestellten teilen sich ebenfalls, wenn auch nicht so schnell. Es entsteht eine zweisechichtige Lage hoher Cylinder- und abgeplatteter, langgestreckter Zellen. Die Spannung, die dank dem Druck von der Mitte weiterwirkt, führt endlich zur Trennung beider Lagen (Fig. 42). Die unteren Zellen platten sich nachträglich noch weiter ab (Fig. 45).

Ob die Trennung immer so vor sich geht, daß eine doppelte Spalte auftritt, kann ich nicht sagen; indessen ist das sehr möglich, schon in Anbetracht, daß sich der mittlere Teil am energischsten teilt; hier muß also eine mehr als zweisechichtige Lage entstehen. An einem älteren Embryo, wo die Kupffer'sche Blase schon gut ausgebildet ist und die untere Wand sich abflacht (Fig. 44), sieht man in der Mitte einen höheren Wulst, der stellenweise zwei Zellenlagen aufweist. Dieses dürfte auch für den gegebenen Bildungsmodus sprechen.

M. Kowalewski (50) hat über die Entstehung der Kupffer'schen Blase ganz eigenartige Ansichten geäußert. Die mehrfach erwähnten differenzierten Zellen des Blastoderms, die nach den letzten Angaben des Autors nur den hinteren Teil des Darm-

1) Die Mitteilung ist übrigens 1886 erschienen.

Die Entwicklung der Kupffer'schen Blase, wie sie bei der Forelle so deutlich zu Tage tritt, läßt dieses Gebilde am ehesten mit dem postanalen Darme der Selachier vergleichen, was auch Balfour und Schwarz thun. Die Deutung der Blase als Allantois, wie Kupffer und Henneguy wollen, stößt jedenfalls auf einige Schwierigkeiten. Die Kupffer'sche Blase hat keine splanchnische Bedeckung wie die Allantois der Reptilien, Vögel und Säugetiere, was mit dem Fehlen des Amnions zusammenhängt. Die Allantois der höheren Wirbeltiere entsteht viel später als das Amnion, kann somit als jüngeres Gebilde aufgefaßt werden. Schon das Vorkommen derselben ohne Amnion dürfte nicht ohne weiteres auf ein primitives Verhalten deuten 1). Endlich findet man bei den Amphibien nichts, was sich als Amnion deuten ließe. Für die exkretorische oder respiratorische Funktion der Blase lassen sich bei den Knochenfischen schwer irgend welche Anhaltspunkte finden. Freilich wurden auch hier die Merocyten herbeie gezogen.

Mesoderm und Chorda.

Die mediane Verdickung, wie sie oben beschrieben wurde, differenziert sich immer mehr von den seitlichen Teilen des sekundären Blattes, bis sie sich als definitive Chordaanlage von ihm abschnürt. Der Vorgang schreitet im allgemeinen von hinten nach vorn fort. Ihre größte Entwicklung hat sie auf diesem Stadium gleich hinter der Schwanzknospe; weiter nach vorn ist sie durch die Wucherung des Ektoderms plattgedrückt und ein wenig in den Dotter eingezquetscht, an den vordersten Schnitten ist die mediane Verdickung nicht mehr so deutlich von den seitlichen Teilen abgehoben. Fig. 45, Taf. XVIII, stellt die Chordaanlage von einem 20 Tage alten Embryo dar, Fig. 46 ein um einen Tag älteres Stadium.

1) Allerdings hat His (36) bei Hai-embryonen Spuren von Falten, die er als rudimentäre Amnionfalten deutet, beschrieben.
Auf beiden Stadien ist die Chorda noch nicht von der sekundären Schicht abgesondert, und das Entoderm ist unter ihr schon gut zu unterscheiden.

Den Punkt muß ich stark betonen, weil er den Schilderungen von GORONOWITSCH (23) und M’INTOSH und PRINCE (60) gegenübersteht. Nach dem ersten Forscher soll sich das Entoderm samt einer medianen Verdickung (Chordaanlage) vom sekundären Blatte spalten und die Chordaanlage sich nachträglich vom Entoderm lösen. Nach M’INTOSH und PRINCE ist die Chorda ebenfalls ein Produkt des Hypoblastes und zwar eine Proliferation seines medianen Teiles. Die Forscher gehen indessen von einem relativ sehr späten Stadium aus, auf dem die Mesodermplatten schon von der Chorda getrennt sind. Die Chordaanlage hängt ebenso gut mit dem ektodermalen Medullarstrang wie mit dem Hypoblast zusammen; es wurden weder hier noch dort Abgrenzungen konstatiert. Ferner ist auf ihrer Fig. 5a, Pl. IV, unter der Chordaanlage (die hier auch mit dem Ektoderm kontinuierlich zusammenhängt) überhaupt kein Hypoblast zu sehen; das Vorkommen desselben in dieser Region soll sich durch das Vorwärtszwingen des schon gebildeten hinteren Teiles erklären.

OEELLACHER (61) beschrieb für die Forelle, wie bekannt, einen ganz anderen Entwicklungsmodus der Chorda und des Medullarrohres. Eine feine Spalte soll die Keimscheibe in ein oberes und unteres Blatt scheiden. Diese Spalte tritt nur seitlich auf; in der Medianebene bleibt ein aus konzentrischen Zellen bestehender „Achsenstrang“, von welchem sich dann die Chorda und das Medullarrohr differenzieren. Die konzentrische Anordnung der Zellen in der Mediane ist in der That zu beobachten, tritt aber bei starker Vergrößerung nicht so deutlich hervor (Fig. 45). Sie wurde bei den Salmoniden von allen Nachfolgern OEELLACHER’S gesehen, aber ebenso gut wurde eine Grenzlinie in der Mediane in den frühesten Entwicklungsstadien konstatiert, und dies nicht nur bei den Salmoniden, sondern durchweg bei allen untersuchten Knochenfischen. — Auch für RADWANEK (64) machte es eine Reihe von Querschnitten wahrscheinlich, daß die Chorda ein Gebilde des äußeren Keimblattes ist. Doch hat er Schnitserien nicht gebraucht und gibt nicht an, von welcher Region die abgebildeten Schnitte stammen. Seine Fig. 2, die als Beweis angeführt wird, stammt (wie man aus der Dicke der oberen Schicht, der Lage der Mesodermplatten mit ziemlicher Sicherheit sagen kann) aus der Gegend der Schwanzknospe, dort, wo die beiden
Parablast u. Keimblätterdifferenzierung im Ei der Knochenfische. 327

Blätter ineinander übergehen. Der Übergang vollzieht sich in der That erst in der Medianebene, dann seitlich. Bilder, wie RADWANER’s Fig. 2, lassen sich bis in die spätesten Stadien in der betreffenden Region bemerken.

Für HOFFMANN ist die Chorda bei den Knochenfischen (und speziell bei der Forelle) ein direktes Produkt des Entoderms. Der Vorgang soll auf folgende Weise vor sich gehen: Die drei Keimblätter liegen vorerst übereinander geschichtet, das Ektoderm bildet in der Medianebene den Medullarkiel und drängt die Mesodermzellen seitlich, bis schließlich in der Medianebene das Ektoderm direkt das Entoderm berührt; das Mesoderm bildet jetzt zwei seitliche Zellenlagen. Die Chorda bildet sich als Wucherung des Entoderms an seiner Berührungsstelle mit dem Ektoderm.

Trotzdem die letzten Angaben des Forschers bezüglich des Parabalastes (43) bei den Salmoniden gewiß genau sind, konnte ich, was die Entwicklung der Chorda anbetrifft, nicht die ge-ringste Andeutung des beschriebenen Vorgangs finden und muß mich vielmehr auf die Seite GÖTTE’s stellen, welcher die Chorda der Forelle vom sekundären Blatt ableitet. — Der Kiel dringt nie so weit ein, bis er das Mesoderm in zwei seitliche Lagen trennt und mit dem Entoderm in Berührung kommt. Die beigegebenen Zeichnungen Fig. 45 und 46, Taf. XVIII, zeigen so deutlich, wie man nur wünschen kann, die Chordaanlage in kontinuirlichem Zusammenhang mit den Mesodermplatten, darunter das Entoderm, dessen Zellen, wie gesagt, von denjenigen der Chorda und des Mesoderms sich deutlich unterscheiden.

Öfters wird CALBERLA (14) als derjenige angeführt, der eine entodermale Entstehung der Chorda für Teleostier nachgewiesen hat (so z. B. von L. GERLACH [22] oder HOFFMANN [40]). In dessen sagt der Forscher nichts, was einer anderen Anschauung gegenübergestellt werden darf. „Die Chorda“, schreibt er, „entsteht zweifellos aus dem primären Entoderm. Das Mesoderm entsteht aus dem primären Entoderm, gleichzeitig mit der Anlage der Chorda.“ Ferner entsteht das Darmblatt aus dieser Schicht; kurzum, es bilden sich Chorda, Mesoderm und Darmblatt aus einer Schicht, dem primären (oder, wenn man will, dem palin-genetischen) Entoderm. Nun differenziert sich das Darmblatt (das sekundäre, eigentliche Entoderm oder Enteroderm, wie es auch genannt wurde) viel früher von der gemeinschaftlichen Anlage als die übrigen Teile. Die Differenzierung kann sogar bald nach dem Anfang der Invagination stattfinden (WILSON) oder zeitlich noch
weiter zurückgreifen, wie bei der Forelle. Chorda und Mesoderm bleiben also noch lange Zeit, nachdem sich das Darmblatt gebildet hat, miteinander in Verbindung. Es ist Sache der Auffassung, die zwischenliegende Schicht im Ganzen als Mesoderm zu deuten und die Chorda vom Mesoderm abzuleiten, wie es GÖtte für die Forelle thut, oder von zusammenhängenden „Anlagen“ der Chorda und des Mesoderms zu sprechen. Für die letztere Annahme ließe sich das sehr frühzeitige Erscheinen der medianen Verdickung anführen.

holt, so läßt sich, indem man am primären Verhalten des Amphioxus festhalten will, kaum an etwas anderes als an ein Zurückverlegen der Anlagen auf frühere Stadien denken.

Allgemeines.

Die Gastrula der Knochenfische wurde von verschiedenen Seiten zu erklären versucht; so vor allem von Haeckel (26), Ziegler (83, 85) und O. Hertwig (32), deren jeder eine originelle Auffassung vertritt."

Poles um den Dotter dem Überwachsen der Mikromeren über die Dotterzellen. Das Archenteron befindet sich hier, wie dort zwischen dem Dotter und der umgeschlagenen Schicht.

Was das Schicksal des Urmundes betrifft, so wurde schon erwähnt, daß Haeckel den Umschlagsrand als Urmundsrand deutet. Wilson, Henneguy und Schwarz setzen die indifferente Kaudalmasse, „die Schwanzknospe“, dem Primitivstreifen der Amnioten homolog, und in der That gestattet der Bau dieses Gebildes, indem alle drei Blätter in einer indifferenten Lage zusammenhängen, sowie auch seine Lage, die mit der anfänglichen Lage des Primitivstreifens der Amnioten entspricht, am ehesten einen solchen Vergleich.

geschlossen, noch ehe die Keimscheibe den Dotter umwachsen hat. Der im ersten Falle „randständige“ Embryo kommt mehr in die Mitte des Blastoderms zu liegen 1).

Wie nach HATSCHEK die Verengung des Urmundes beim Amphioxus durch Verwachsung der Ränder erfolgt, welche zum größten Teil die spätere Rückenlinie bilden, so wird auch hier „der Anfang des Urmundes am Anfang der Chorda und der Zwischenhirngegend zu suchen sein“. Das hintere Ende des Urmundes wird zum After. — Die einzelnen Bildungsstadien, sagt HERTWIG, zeigen uns immer einen kleinen, dem jeweiligen Stadium entsprechenden Teil des Urmundes geöffnet. Will man den Begriff von seiner ganzen Ausdehnung bekommen, so muß man sich den Urmund in seiner ganzen Länge geöffnet denken. Dergleichen sollen die bekannten Froschmißbildungen vorstellen, wo der Urmund kliift und sich über die ganze Rückengegend des Embryos ausdehnt. Schon von LEREBOULLET wird über eine ähnliche Mißbildung beim Hechtembryo berichtet, ferner wurde eine solche von RAINER bei der Forelle beobachtet. Bei einem normal sich entwickelnden Knochenfischembryo läßt sich indessen ein derartiger Schluß des Urmundes nicht beobachten; die Schilderung von HERTWIG stützt sich, wie bekannt, auf die Konkreszenztheorie von HIS, der eine solche Bildung des Embryos erstens für die Selachier, dann für die Knochenfische behauptet (36, 37). RAUBER (68a), CUNNINGHAM (17) und RYDER (73) schließen sich dieser Theorie an; andererseits wurde sie aber aufs energischste angegriffen. So von Balfour (5), welcher sie ad absurdum zu führen sucht. Ferner sprechen sich HENNEGUY und Lwoff entschieden gegen dieselbe aus. Unter anderem meint Balfour, daß, wenn die Medullarrinne der Selachier sich geschlossen hat und an ihrem hinteren Ende mit dem Darmkanal in Verbindung steht (was sehr frühzeitig geschieht), kein weiteres Längenwachstum durch Konkreszenz erfolgen könne. Man müßte also annehmen, daß nur ein kleiner Teil des Körpers durch Konkreszenz gebildet werde, während der übrige durch Intussusception wächst.

HENNEGUY bemerkt, daß, nachdem sich die KUPFER‘sche Blase gebildet hat, die Konkreszenz nur hinter derselben (im

1) Auch dieser Unterschied ist wohl nicht so scharf. Bei einem von Miss CORNELIA CLAPP (16) untersuchten Teleostier (Batrachua Tau) kommen die Keimscheibenränder hinter der Embryonalanlage in einer längeren Verwachungsstrecke zur Vereinigung.

Lwoff sagt kurzweg, daß eine Bildung des Urmundes, wie sie HERTWIG beschreibt, von keinem Menschen gesehen wurde. Was er Positives für Axolotl angiebt, ist in der That recht verschieden von den HERTWIG'schen Figuren. Er sieht keinen Vorsprung nach vorn in der Längsachse des Embryos. Der Urmund, anfangs hufeisenförmig, wird immer enger, bildet sich zu einem Ring um, bis er sich endlich mit zwei lateralen Lippen schließt.

Bei den Knochenfischen hängt diese Frage mit der nach der Umwachung des Blastoderms über den Dotter eng zusammen. Und in dieser Hinsicht ist man noch lange nicht zu einer befriedigenden Antwort gekommen.

His (37) sieht den Kopfteil des Embryos als fixiert an. Der vordere Teil der Keimscheibe umwächst den Dotter energischer als der hintere; der Embryo bildet sich durch Konkrescenz. — Nach OELLACHER (61) ist im Gegenteil der hintere Teil der Keimscheibe (also auch das Schwanzende des Embryos) als fixiert zu betrachten, der vordere Teil umwächst den Dotter; der Embryo wächst durch Intussusception.

Die meisten Forscher nahmen eine gleichmäßige Umwachung von allen Seiten an, nach KUPFFER (51) soll sich dabei die Keim-
scheibe um den centralen festen Punkt in den Sinne drehen, daß sich der Embryo parallel zu sich selbst um 180° verschiebt.

Ganz negativ gegen die Gastrulationsfrage bei den Wirbeltieren verhält sich ein hier schon mehrfach erwähnter Autor, LWOFF (59), dessen Arbeit, wie man hoffen darf, von vielen Seiten eine Replik herausfordern wird. Der Forscher hat die Entwicklung des Amphioxus einer Kontrolle unterzogen, ferner Cyclostomen, Amphibien, Selachier, Teleostier und Reptilien auf die Keimblätterbildung nochmals untersucht und kommt zu dem Schlusse, daß alle unsere theoretischen Vorstellungen über die Entwicklung der Wirbeltiere (Bildung des Entoderms durch Gastrulation, entodermale Chordaentwicklung, Entstehung des Mesoderms vom Entoderm, Côlom als Urdarmdivertikel) jeder thatsächlichen Grundlage entbehren. Zu einer Kritik dieser Angaben ist wohl nur der berechtigt, der mit ebenso viel That-

1) Wenn Wilson (82) z. B. bei Serranus das hintere Ende sich nicht verschieben läßt, weil seine relative Lage zu der Fettkugel die gleiche bleibt, so ist dies wohl im runden Ei kein allzu exaktes Maß.
material diesen Behauptungen entgegentreten kann. Hier wurde vorläufig für die Knochenfische eine der LWÖFF'schen entgegengesetzte Meinung vertreten und gezeigt, daß, was diese Tiere betrifft, seine Angaben viel zu unvollständig sind, um die Bildung des Darmblattes aus dem Dotter zu beweisen. Aber auch sonst drängen sich beim Studium seines Werkes Fragen auf, die die Grundlagen der Beweisführung berühren. LWÖFF geht vom Amphioxus aus, und indem er die Makromeren nach HATSCHEK als Entoderm-, die Mikromeren als Ektodermzellen deutet, läßt er im Gegensatz zu bisherigen Erfahrungen beiderlei Zellenarten sich einstülpen, und zwar verläuft der Vorgang so, daß die Mikromeren die dorsale Wand der Höhle bilden. Aus dieser dorsalen Wand („ektoblastogene dorsale Platte“) bildet sich das Mesoderm und die Chorda. Aus den Makromeren entsteht der Darm. LWÖFF verwahrt sich zwar ausdrücklich dagegen, im allgemeinen in früheren Stadien die Makromeren kurzweg als Entodermzellen zu deuten, und giebt zu, daß dieselben, indem sie sich teilen, ebenso Ektoderm- wie Entodermzellen liefern. „Bei der Unterscheidung der primären Keimblätter“, meint er, „muß man zunächst ins Klare bringen, welche Elemente oder welche Schicht den Darm bildet“, und wenn LWÖFF schon bei der Blastula des Amphioxus Entodermzellen unterscheidet, so ist es nur deswegen, weil diese eben den Darm liefern. Sofern also die innere Schicht der Gastrula einartige Zellen bilden, darf man von Entoderm sprechen, denn auch nach LWÖFF ist es gleichgültig, ob von diesen Zellen etwas anderes außer dem Darm gebildet wird. Wenn es aber zweierlei Zellen sind, wie beim Amphioxus (nach LWÖFF), dann sind die Makromeren ausschließlich als Entoderm zu bezeichnen.

Es fragt sich, inwiefern man sogar auf diesem Stadium den Unterschied präzisieren darf, ob die Mikromeren, trotzdem sie eingestülpt werden, als Ektoderm gedeutet werden können und nicht etwa jenem Teil der Makromeren gleich sind, „die etwas anderes außer dem Darm bilden sollen“.

Daß die Makromeren früher oder später zu Entodermzellen werden, das wird stillschweigend angenommen; daß es aber nicht immer der Fall zu sein braucht, darüber belehrt uns z. B. die Entwicklung einer ganzen Reihe von Kalkschwammen (Sycandra, Ascandra, Leucandra) [SCHULZE, 77]¹). Das Ei furcht sich erstens

Ein Gastropode, Neritina fluviatilis, zeigt das Verhältnis der beiden Blastomeren in noch deutlicherem Lichte. Die Makromeren liefern wie bei den übrigen telolecithalen Eiern die Mikromeren; aber nicht alle Mikromeren werden zu Ektodermzellen, ein Teil derselben wird zu Entoderm, und der Urdarm wird teils von Makro-, teils von Mikromeren gebildet (Blochmann, 10).

Der Urarm wird also gebildet: 1) durch Makromeren, 2) durch Mikromeren, 3) durch Makro- und Mikromeren zugleich.

— Kann man in Anbetracht dieses Verhaltens einen Unterschied zwischen den beiden Gebilden machen? Ist es nicht zum mindesten ebenso gerechtfertigt, beiderlei Blastomeren als indifferente Zellen aufzufassen, die sich nur durch verschiedenen Dottergehalt unterscheiden, und von einer Gastrula im allgemeinen auf dem Stadium des zweisehichtigen Keimes, ungeachtet der Größe der Zellen, zu sprechen?

Auch LWOFF läßt die beiden Zellenarten allmählich ineinander übergehen, und die lateralen Teile der Mesodermfalten sollen von Makromeren gebildet werden, was der Autor als doppelten Ursprung des Mesoderms deutet.

Für die übrigen Wirbeltiere soll die Gastrula auch nicht zutreffen. Es läßt sich hier nichts von einer Einstülpung, die zur Darmbildung führt, bemerken, und als Gastrulation ist nur ein solcher Einstülpungsprozeß zu bezeichnen, der direkt oder indirekt zur Bildung des Darmes führt. Die Darmbildungszenellen (Dotterzellen der Amphibien und Cyclostomen, Dotter samt Merocyten der Fische) werden von Mikromeren umwachsen. Was eingestülpt wird, ist hier eine ektoblastogene Chorda und Mesodermanlage, die in keinem Verhältnis zur Bildung des Darmes steht.

Lwoff sucht an seinen Präparaten den ausschließlichen Anteil der Dotterzellen (resp. der intermediären Schicht) beim Aufbau des Darmblattes bei Cyclostomen, Amphibien, Selachiern, Teleostiern und Reptilien zu beweisen. Auf der anderen Seite stehen aber die Beobachtungen vieler Autoren, die für alle diese Tiere das Darmblatt durch das umgeschlagene Blatt ausschließlich oder wenigstens teilweise bilden lassen.

Als die vorliegende Arbeit schon fertig war und dem Druck überliefert werden sollte, bekam ich die ganz neuen Publikationen von Samassa (87, 88, 89) in die Hände; sie müssen an dieser Stelle eine kurze Besprechung finden. Der Umstand, daß zwei Autoren gleichzeitig und unabhängig voneinander die Gastrulation bei den Wirbeltieren einer Kritik unterziehen und dieselbe ganz oder teilweise verwerfen, ist an und für sich schon charakteristisch. Diese Kritik ist es, was die beiden Autoren nähert, sonst unterscheiden sie sich beinahe in allen wesentlichen Punkten. Während Lwoff eine Einstülzung überall anerkennt, die jedoch, wie mehrfach erwähnt, eine ektodermale Chorda und Mesodermanlage bildet, leugnet sie Samassa bei den meroblastischen Eiern gänzlich, und wo dieselbe für ihn noch vorhanden ist (beim Amphioxus und teilweise bei den Amphibien), ist es eben eine Gastrulation, die zur Bildung des Entoderms führt. Lwoff leitet das Entoderm bei den meroblastischen Eiern von den Dotterkernen ab (und darauf beruht ja seine Gegenüberstellung des Darmblattes der Anlage der Chorda und des Mesoderms); Samassa wiederum leugnet jeglichen Anteil der Dotterkerne beim Aufbau des Embryos. Lwoff begnügt sich, zu zeigen, daß die Keimblattdifferenzierung bei den Wirbeltieren nichts mit der Gastrulation zu thun hat, für Samassa „liegt die Stärke der Gastracatheorie vor allem darin, daß sie von allen Hypothesen über den Ursprung der Metazoen die größte innere Wahrscheinlichkeit hat“ und außerdem „in der Ontogenie der meisten ursprünglichen und dotterfreien Formen ihre Bestätigung findet“, und er sieht sie auch beinahe palingenetisch rein beim Amphioxus, cänogenetisch verändert bei den Amphibien; bei den meroblastischen Eiern soll sie gänzlich fehlen: cänogenetisch vollständig unterdrückt sein. — Auch geht Samassa meiner Ansicht nach viel methodischer zu Werke. Er sucht sich einerseits auf die Begriffe „Gastrula“, „Gastrulation“ eine klare Antwort zu verschaffen und fragt sich zweitens, inwiefern die Teilung Anhaltspunkte für die Bestimmung der Keimblätter gibt.

Und hier trifft Lwoff seitens dieses Autors ganz derselbe Vorwurf, den ich ihm an Hand zweier Beispiele, welche sich vielleicht vermehren lassen, aus dem Gebiet der Entwicklung der Wirbellosen gemacht habe, nämlich: inwiefern darf man die Makromeren als Entoderm-, die Mikromeren als Ektodermzellen
deuten? — „Wenn aber“, lesen wir, „nur die Zellen Entodermzellen sind, aus denen der Darm entsteht, so ist nicht gut einzusehen, wie aus denselben noch etwas anderes gebildet werden kann als der Darm.“ ... Später stellt sich heraus, daß auch ein Teil des Mesoderms aus dem Entoderm entstehen soll. Woran sind denn die Entodermzellen zu unterscheiden; vielleicht daran, daß sie von Mikromeren umwachsen sind? Dann sind also die Mikromeren wohl Ektoderm, von einem früheren Stadium wird dies aber ausdrücklich geleugnet. ... Woher kommt dann auf einmal die Berechtigung, die Keimblätter nach der Größe der Zellen zu unterscheiden? — An anderer Stelle heißt es: „Falls die Beobachtungen Lwooff’s über die Entwicklung der Wirbeltiere mit totaler Furchung richtig sind, so folgt meiner Ansicht nach aus denselben weiter nichts, als daß die Auffassung der Makromeren als Entoderm, der Mikromeren als Ektoderm, welche von den meisten Forschern vertreten wird, irrtümlich ist, daß vielmehr beide Zellenarten zur Bildung des Urdarms verwendet werden, wobei die Mikromeren die Chorda und einen Teil des Mesoderms bilden.“ Samassa sucht die Frage, inwiefern man die Mikromeren (resp. animale Zellen) und Makromeren (vegetative Zellen) zur Bestimmung der Keimblätter verwenden kann, auf folgende Weise zu lösen:

Bei Ascidien wurde der dorsale Urdarm und folglich auch die Chorda, aus den vegetativen Zellen gebildet, bei den Amphibien aus den animalen: somit „gewährt die Furchung für die Bestimmung der Keimblätter keinerlei Anhaltspunkte“.
Zur Gastrulation zurückkehrend, findet sie der Autor beinahe rein palingenetisch beim Amphioxus (auf die bilaterale Symmetrie dieser Gastrula wurde ja schon von mehreren Seiten aufmerksam gemacht); bei den Amphibien vollzieht sich die Gastrulation nur um die dorsale Lippe, auf der ventralen Seite ist sie cänogenetisch stark beeinflußt: sie wird hier gar nicht vollzogen.

Nun folgen die Angaben des Autors für meroblastische Eier 1), die mit meinen Erfahrungen bei den Knochenfischen in manchem nicht übereinstimmen.

Zunächst der Anteil der Dotterkerne bei der Bildung der Keimscheibe. Im Gegensatz zu den Annahmen von Balfour, Schulz, Swaen, Kastschenko u. a. 2), sollen die Dotterkerne keinen Anteil an der Bildung der embryonalen Gewebe der Selachier haben. Dagegen, daß man die entsprechenden Befunde bei den Teleostiern nicht ohne weiteres auf die Selachier übertragen darf, sprechen bei den letzteren gewichtige Beobachtungen das Erscheinen der Dotterkerne betreffend. Während bei den Knochenfischen die neuesten Autoren alle einig darüber sind, daß die Dotterkerne von den Furchungskernen abzuleiten sind, ist dies bei den Selachiern zum mindesten zweifelhaft. — Kastschenko hat auf dem Stadium zweier Furchungszellen eine Anzahl Dotterkerne bemerkt, Rückert beobachtete dieselben noch vor der Vereinigung der Vorkerne; er führt sie somit auf überschüssig eingedrungene Samenfäden zurück, wofür eine weitere Stütze darin gefunden wird, daß die Dotterkerne halb so viel Chromosomen enthalten als die Furchungskerne. Von Samassa wird Torado citiert, der für die Reptilien ursprünglich eine Polyspermie annahm, sich aber bald überzeugte, daß er es mit gewissen Protoplasmaansammlungen zu thun hat, und daß physiologische Polyspermie bei den Reptilien nicht vorkommt. Samassa meint dies bestätigen zu können, verwahrt sich aber gegen die Übertragung dieser Befunde auf die Selachier. Auch umgekehrt dürfte eine solche Übertragung auf die Teleostier nicht statthaft sein. Bei diesen Fischen wurde Ähnliches, wie Kastschenko und Rückert bei Selachiern gesehen, von keinem Forscher beobachtet, auch Samassa nimmt gleich

1) Es handelt sich hier um die Eier von Selachiern und Teleostiern; bei den Sauropsiden soll die Keimblätterdifferenzierung beträchtlich verschieden sein, worauf hier nicht eingegangen werden kann.

2) Den betreffenden Litteraturnachweis siehe bei Lwoff und Samassa.
den anderen Forschern an, daß die Dotterkerne der Teleostier anderen Ursprungs sind, daß sie von den Furchungskernen abstammen. Und wird einmal der verschiedene Ursprung der Dotterkerne für die beiden Fischgruppen angenommen, so ist die Möglichkeit ihres verschiedenen Verhaltens nicht ausgeschlossen. Und dennoch sollen auch bei den Knochenfischen die Dotterkerne keinen Anteil am Aufbau der Keimscheibe haben 1).

RÜCKERT läßt übrigens die Möglichkeit offen, daß nicht alle Merocytens der Selachier von den überschüssigen Samenfäden abzuleiten sind. Ohne näher darauf eingehen zu können, verweise ich nur auf SAMASSA’S Fig. 46, Taf. XIII, welche ein älteres Furchungsstadium vom Scyllium canicula vorstellt. Eine Zelle hängt zur Hälfte mit dem Dotter zusammen, außerdem sieht man unter ihr tief im Dotter einen Kern, der auf der Figur als Furchungskern zum Unterschied von den übrigen Dotterkernen bezeichnet wird. Frägt man sich, was aus diesem Kerne wird, so kann die Antwort nach alledem, was man von dem Autor über die Furchungskerne erfährt, nur die sein, daß er sich mit einem Teil des Protoplasmas vom Parablast abschnürt. Und ist dies nicht eine Nachfurchung? Man braucht sich dieses Verhalten bei den Teleostiern nur gesteigert zu denken: nämlich, daß mehr Furchungskerne, ähnlich wie in der Fig. 46, in den Parablast zu liegen kommen. Überdies glaube ich, daß hier vorerst ein Mißverständnis in der Deutung vorliegt. Daß die direkt sich teilenden Kerne eine Nachfurchung unterhalten, tritt besonders bei den Salmoniden (und diese hat der Forscher untersucht) so deutlich zu Tage, daß es einfach schwer ist, dieselbe zu übersehen. In Anbetracht der erwähnten Fig. 46 (die sich übrigens auf die Selachier bezieht) glaube ich, daß der Autor den Vorgang wohl bemerkt, denselben aber von der Furchung nicht unterscheidet oder nicht unterscheiden will. Indessen werden im allgemeinen die Zellen, die mit dem Parablast kontinuierlich zusammenhängen und welche, dank der Teilung der in der kontinuierlichen Schicht eingeschlossenen Kerne, als Knospen sich abschnüren, als nachgefurcht bezeichnet. (Vergleiche übrigens das über Furchung und Nachfurchung auf S. 300 Gesagte.)

Es handelt sich hier offenbar nur um Nachfurchung auf späteren Stadien, wobei sich die Kerne des Parablastes schon direkt

1) Die Angaben für die Teleostier sind vor der Hand als vorläufige Mitteilung zu betrachten.
teilen. Trotzdem bei den Selachiern der Anteil der Merocyten am Aufbau des Embryos mit Bestimmtheit ausgeschlossen wird, findet man doch folgende Klausel: „Die bestimmten Angaben Rückerl's über diesen Punkt (das Abschnüren einiger Dotterkerne mit dem umgebenden Dotter und Einwandern derselben in die Gewebe, um dort zu Grunde zu gehen) will ich durchaus nicht in Zweifel ziehen, ich glaube aber, daß sie speciell bei Torpedo Giltigkeit haben.“ Sollte man auch für die Knochenfische eine ähnliche Klausel vorbehalten können?

Die Frage würde sich also darauf zurückführen, ob die abgeschnürten Zellen zum Aufbau der Gewebe verbraucht werden oder bloß dort einwandern, um resorbiert zu werden. Daß diese abgeschnürten Zellen nicht mit Dotter, sondern mit Protoplasma umgeben sind, scheint für mich in Anbetracht solcher Bilder, wie ich sie in Fig. 11 und 12 abgebildet habe, sicher. Dieselben sind auch allen übrigen Zellen gleich, und es läßt sich an ihnen nichts erkennen, was ihren späteren Zerfall bedingen sollte; im Gegenteil glaubte ich zu sehen, daß die mit Dotterkugeln beladenen Zellen oder die „Vakuolenzellen“ (Fig. 13a, b, c) sich zu regelmäßigen Blastodermzellen umwandeln (Fig. 13f). Nur die relativ auf sehr späten Stadien sich abfurchenden Zellen mit dem großen, knotigen, dunklen Kern, seien dieselben frei oder mit Dotter beladen (wie solche in den Fig. 15, 17, 18b und c abgebildet sind), zeigen, an dem Kern nämlich, die beginnende Degeneration, und nur von diesen dürfte man behaupten, daß sie nachträglich dem Zerfall unterliegen.

Trotzdem man beim Anblick der meisten nachgefurchten Zellen keinen Anhaltspunkt für die Behauptung hat, daß sie einer späteren Degeneration unterliegen, so hat anderseits die Annahme, daß sie zum Aufbau der Embryonalgewebe verbraucht werden, dennnoch einen schwachen Punkt, den ich nicht verschweigen will.

Die Kerne, die sich im Parablast direkt teilen, können diesen Teilungsmodus unmöglich bewahrt haben. Zweierlei Zellenvermehrung im Embryo anzunehmen, wäre zum mindesten sonderbar. Daß die Zellen, nachdem sie in die Keimscheibe gelangen, sich auf einmal mitotisch zu teilen beginnen, ist auch nicht ohne Weiteres wahrscheinlich.

1) Und thut man dies Rückerl zu Liebe, so sollte man für die Behauptungen Kupffer's, van Beneden's, van Bambeeke's, Brook's, die von solchen Zellen das Entoderm ableiten, wenigstens die Möglichkeit ihrer späteren Resorption reservieren.
Die nachgefurchten Zellen stelle ich, wie erwähnt, in keinen genetischen Zusammenhang zu irgend einem Keimblatt und möchte darin eine Nebenerscheinung, verursacht durch die Art der Furchung und des Sammelns des Protoplasmas im Ei, erblicken. Und dieses ändert an der Frage der Gastrulation bei den Teleostiern gar nichts.

Ein wichtiger Unterschied ist, daß die primären Keimblätter bei Teleostiern nach Samassa durch Abspaltung sich bilden sollen. Es wurde erwähnt (S. 312), daß die meisten Autoren sich für die Einstülzung aussprechen, während einige an der Abspaltung festhalten; auch wurde es betont, daß die Salmoniden zur Entscheidung der Frage kein günstiges Objekt sind. Die Lage der mitotischen Figuren schien mir hier auf eine Umbiegung und Umschlag zu deuten; die Wilson'schen Abbildungen aber, die sich auf Serranus beziehen (S. 312, Fig. 43, 44, 46, 47), scheinen die Möglichkeit einer Abspaltung auszuschließen. Eine andere Frage ist die, ob der Prozeß, den ich mit dem wenig passenden Worte „Umschlag“ mehrfach benannte, auch als Gastrulation gedeutet werden kann, denn eine Einstülzung, wie sie bei holoblastischen Eiern vorkommt und sich phylogenetisch bei der Gastraea nach Haeckel vollzogen haben soll, ist der Vorgang eben nicht. Anders lautet dieselbe Frage: ob bei den Teleostiern ein Gastrulastadium vorhanden ist oder nicht?

Samassa antwortet darauf verneinend, denn ein entsprechender Vergleich der Gastrula beim Amphioxus wird „immer daran scheitern, daß die ventrale Urdarmwand fehlt und der ventrale Darmverschluß viel später erfolgt“ und dies „durch einen Prozeß, dem beim Amphioxus nichts entspricht“.

Ein ähnlicher Gedankengang findet sich bei Samassa: „Es kann aber sein, daß gerade die große Masse des Dotters diesen Effekt hervorbringt (die Vorschiebung der morphologischen Funktionen von den vegetativen Zellen auf die animalen), indem in einem bestimmten phylogenetischen Stadium sich das Bildungsplasma vom Dotter zurückzieht und so der Keim dem Dotter gegenüber in eine mehr unabhängige Stellung gelangt.“

Wir haben aber eine Lage von Bildungsplasma in dem Dotter — ich meine den Parablast, und dieser dürfte wohl den
vegetativen Zellen des Amphioxus entsprechen. Da derselbe aber nicht die gleiche morphologische Rolle spielt (Bildung der ventralen Urdarmwand), so lassen sich die Teile nicht homologisieren, und wenn ich Samassa richtig verstehe, dürfte das Vorhandensein desselben vielmehr die Richtung andeuten, in welcher die canogenetische Beeinflussung seitens des Dotters stattgefunden hat.
Litteraturverzeichnis.

5) — A treatise on comp. embryology. London 1878.

6) van Bambeke, C., Recherches sur l'embryologie des poissons osseux. Mémoires couronnés et mémoires des savants étrangers publ. par l'Acad. Roy. de Belgique, 1876.

7) Baumgartner, M., Beobachtungen über die Nerven und das Blut. Freiburg 1830.

16) Clapp, Cornelia, Some points in the development of the Toad-Fish. Journ. of Morphol., 1891.
18) — The significance of the Kupffer's vesicle etc. Quart. Journ. of Micr. Sc., 1885.
20) De Filippi, Memoria sullo sviluppo del Ghiozzo d'acqua dolce. (Gobius fluvialis). Annali Univ. di Medici, 1841.
34) His, W., Untersuchungen über das Ei und die Eientwicklung bei den Knochenfischen. Leipzig 1868.
60) — — Further observations on the life-histories and development of Fishes. Edinburgh Fish. Rep., 1891.
Parablast u. Keimblätterdifferenzierung im Ei der Knochenfische. 347

64) Radwaner, J., Über die erste Anlage der Chorda dorsalis, Sitzungsber. der Wiener Akad., LXXIII, 1876.

68a) — Primitivstreifen und Neurula der Wirbeltiere. Leipzig 1877.

71) Ryder, J., Development of the Silver Gar etc. Publ. of the U. S. A. Fish Commission, 1881.

72) — A contribution to the embryography of osseous fishes with special reference to the development of the Cod (Godus Morrhua). The Annual Report of the Commissioners of Fish and Fisheries, for 1882.

73) — On the formation of the embryonic axis of the Teleostean embryo by the concrescence of the rim of the blastoderm. Amer. Natur., 1885.

23*
82) Wilson, H., The embryology of the Sea Bars (Serranus atrarius). Bull. of the Unit. States Fish Commission, Vol. XX, 1891.
85) — Über die Gastrulation der Teleostier. Tageblatt der 60. Versammlung deutscher Naturforscher und Ärzte zu Wiesbaden.

Tafelerklärung.

Die Abbildungen wurden mittels Camera und zwar die meisten bei Leitz Ok. 1, Ob. 7 entworfen.

Tafel XVI.

Fig. 1. Schnitt durch die Keimscheibe am 3. Tage nach der Befruchtung.
Fig. 2. Mitotische Kernteilungsfiguren im Parablast.
Fig. 3. Fettkongregationen.
Fig. 4, 5 u. 6. Schnittfragmente durch die Keimscheibe zur Demonstration der nachgefurchten Zellen.
Fig. 7 u. 8. Querschnitte durch die Keimscheibe, Ok. 1, Ob. 3.
Fig. 9 u. 10. Schnittfragmente durch ältere Keimscheiben der Forelle.
Parablast u. Keimblätterdifferenzierung im Ei der Knochenfische. 349

Fig. 11 u. 12. Dito vom Lachs.
Fig. 13 a, b u. c. Vakuolenzellen aus dem unteren Teil der Keimscheibe der Forelle.
Fig. 14. Merocyt en in Teilung und Degeneration.
Fig. 15. Unterer Teil der Keimscheibe nach der Sonderung der primären Keimblätter mit einer nachgefurchten großen Zelle.
Fig. 16. Ein Teil des Medullarwulstes eines 19 Tage alten Lachs-embryos. v = Vakuolenzelle.

Tafel XVII.

Fig. 17. Keimscheibenfragment mit einer nachgefurchten, mit Dotterkugel beladenen Zelle.
Fig. 17 b. Der Kern der Zelle.
Fig. 18 a u. b. Dito.
Fig. 18 c. Eine Zelle aus derselben Serie; ihre Lage ist in 18 a mit einem * angedeutet.
Fig. 19, 20, 21, 22. Obere Fragmente der Keimscheibe vom 5. bis 7. Tage.
Fig. 23 a—e. Deckschichtfragmente von einer Keimscheibe 8 Tage nach der Befruchtung.
Fig. 24. Medianer Längsschnitt einer 10 Tage alten Keimscheibe.
Fig. 25. Der hintere Teil desselben Schnittes in stärkerer Vergrößerung.
Fig. 26 u. 27. Die hinteren Teile der medianen Längsschnitte (11. und 13. Tag).
Fig. 28 u. 29. Mediane Längsschnitte durch die Keimscheibe einer Forelle, 14. und 15. Tag nach der Befruchtung.
Fig. 30 u. 31. Dito, 16. und 17. Tag.
Fig. 32. Deckschichtfragment aus dem Stadium Fig. 28.
Fig. 33 u. 34. Teile der Längsschnitte von einer 19 Tage alten Keimscheibe. e = Entoderm.

Tafel XVIII.

Fig. 35 u. 36. Mediane Längsschnitte durch die Embryonen der Forelle, 18. und 19. Tag nach der Befruchtung.
Fig. 37, 38 u. 39. Entwicklungsstadien des Darmes.
Fig. 40—44. Entwicklungsstadien der Kupfer’schen Blase.
Fig. 45 u. 46. Querschnitte durch die 20 und 21 Tage alten Embryonen.
Fig. 47. Querschnitt durch die „Schwanzknospe“ (18 Tage alt). e = Entoderm.
Fig. 48. Querschnitt durch die Keimscheibe, 6 Tage nach der Befruchtung. f = die in der Teilung zurückgebliebenen Zellen.
Die embryonale Entwicklung der Radula von Paludina vivipara.

Von
Isaak Bloch.
Hierzu Tafel XIX—XXa.

Die Aufgabe, die ich mir zuerst stellte, bestand darin, den Entwicklungsgang des Darmkanales der Gastropoden festzustellen. Da ich aber bald einsah, daß der Umfang zu groß würde, wenn eine allseitige und alle einschlägige Litteratur berücksichtigende Untersuchung durchgeführt worden wäre, entschloß ich mich, nur ein oder wenige Organe möglichst genau in ihrem Entwicklungsgang zu verfolgen. So wurde aus der Arbeit eine Entwicklungsgeschichte der Radula von ihrem ersten Auftreten an. Das Unter-
I. Zufall dennoch nicht klein, daß auch der äußerst wenig umfangreiche Abschnitt der Radulatasche genau durchschnitten wurde (vgl. Fig. 2, 3, 4, 5, 7 etc.). Die Zeichnungen wurden mit Hilfe des Abbé'schen Zeichnungssapparates hergestellt bei einer 112- bis 300-fachen Vergrößerung. Zur Herstellung von allgemeinen Orientierungsbildern mußten einige Schnittserien vollständig abgezeichnet werden, die erhaltenen Bilder wurden ausgeschnitten und ihrer Reihenfolge nach auf Nadeln gesteckt, die selbst auf einer Korkplatte befestigt waren; zwischen je zwei ausgeschnittenen Figuren wurde ein kleines Kartontafelchen eingeschaltet, so daß, wie es sich aus einer Berechnung ergab, die Dicke des Bildes plus Kartontafelchen im Verhältnis zur gezeichneten Größe ungefähr der Dicke des Schnittes im Verhältnis zu seiner Größe entsprach. Auf diese Weise wurde ein körperliches Übersichtsbild erhalten, an welchem der Verlauf und Zusammenhang der einzelnen Organe studiert werden konnte. Der sichere Nachweis frisch abgesonderten Chitins, das keine der angewandten Farben annimmt, konnte nur mit Zuhilfenahme des Abbé'schen Beleuchtungsapparates geleistet werden.

II. Geschichtliches.

Schon im Altertume bildete die Radula der Mollusken den Gegenstand der Aufmerksamkeit. Angaben, die für die Wissenschaft von großem Werte wurden, finden wir dagegen erst in diesem Jahrhundert. Die ersten genaueren Untersuchungen verdanken wir Loven, ferner Troeschel (1), welcher wahrscheinlich als erster die Vermutung aussprach, „ob diese Platten (nämlich der Radula) vielleicht durch Vorschlieben ergänzt werden; dann wäre der nach hinten vorstehende Cylinder gleichsam die Werkstatt für die Bereitung neuer Platten“ (1836). Dieser Vermutung verlieh er eine Stütze durch die Beobachtung, daß er die Platten hinten weniger deutlich und fest, und vorn dagegen häufig sehr abgenutzt fand. Ganz ähnlich spricht sich 10 Jahre später Lebert (2) aus, der namentlich auch den hohen systematischen Wert der Radula erkannte und eine ganze Reihe von Mollusken in Bezug auf die Mundorgane untersuchte. Während eine Reihe von Arbeiten sich nachher mehr mit der äußeren und anatomischen Beschreibung beschäftigten, so folgten wieder etwa 10 Jahre später.
Publikationen, in denen die ersten Hypothesen über die Bildungsweise der Radula mit Bestimmtheit ausgesprochen wurden. Während die betreffenden Forscher darüber einig waren, daß die Radulascheide, in welcher der hintere Teil der Radula verborgen liegt, als Bildungstatte des Reiborganges zu betrachten sei, so widersprachen sie sich sehr über die Art der Entstehung der Reibmembran. Namentlich stehen sich die Ansichten SEMPER’s (5) und KÖLLIKER’s (6) gegenüber, während andere Forscher sich mehr der einen oder anderen Hypothese anschlossen, ohne selbst neue Vermutungen auszusprechen. Ich neune hier CLAPARÈDE (4), HUBRECHT (7) etc. SEMPER kam in seinen Betrachtungen zu dem Resultate, daß das Größerwerden der Zähne dadurch zu erklären sei, daß von Zeit zu Zeit eine Häutung stattfinde, und so die ganze Reibmembran, d. h. die vielen Zähnchen zusammen mit der basalen Platte, auf der diese stehen, durch eine neue ersetzt würde; die gesamte Reibmembran würde vom unteren Epithel der Radulascheide gebildet. — Dieser Theorie SEMPER’s, die er nicht durch „schlagende Beweise“ stützen konnte, stand KÖLLIKER mit der anderen Hypothese gegenüber, daβ allerdings das untere Epithel an der Bildung beteiligt sei, aber nur insofern, als von demselben die die Zähnchen tragende basale Platte ausgeschieden werde, während die Zähnchen von einem „besonderen Gebilde, das von der oberen Mittellinie der Zungenscheide in ihre Höhlung hänge“, erzeugt werden. KÖLLIKER nennt dieses Gebilde „Zungenkeim“ oder die „Matrix“ der Zähnchen und behauptet, daβ „die Zunge der genaue Abdruck der inneren Oberfläche der Zungenscheide sei, von der sie auch in der That gebildet werde“. An eine Häutung nach der Theorie SEMPER’s denkt KÖLLIKER nicht.

Wieder sind für die folgende Zeit eine ganze Reihe von Arbeiten zu verzeichnen, die sich bald der einen, bald der anderen ausgesprochenen Ansicht anschlossen, im übrigen aber mehr äußere Beschreibungen brachten, die indes für die Systematik von größtem Werte wurden. — Die ersten Forscher, denen wir in der Litteratur begegnen, und die es unternahmen, an diesen alten Hypothesen zu rütteln, sind etwa 20 Jahre später (1878) TRINCHÈSE (10), sowie gleichzeitig SHARP (15) und RUCKER (14), deren beide Arbeiten im gleichen Jahre erschienen (1883). Eine neue Theorie wurde durch die genannten Autoren begründet, eine Theorie, die durch spätere Arbeiten ergänzt wurde und die sich in ihren wichtigsten Punkten erhalten hat bis auf den heutigen Tag. Nach derselben haben wir als Bildungstatte der Reibmembran weder
Isaak Bloch,

das untere noch das obere Epithel noch den über dem oberen Epithel gelegenen „Zungenkeim“ KÖLLIKER’s zu betrachten, sondern bestimmte Zellgruppen ganz im Hintergrund der Radulascheide, die von einem späteren Autor „Odontoblasten“ bezeichnet wurden, sind die Urheber der Zahnbildung, indem von denselben immer neue Querreihen von Zähnen abgesondert werden, während die vorderen Querreihen durch das Nachwachsen der im Hintergrunde gebildeten vorgeschoben und so nach und nach durch neue ersetzt werden. Ob die odontogenen Zellgruppen immer dieselben und also als Bildner der gesamten sich immer ersetzenden Radula zu betrachten seien, oder ob auch diese Odontoblasten durch neue ersetzt werden, darüber finden wir hier sowohl als auch bei den später zu citierenden Autoren Widersprüche. — Wohl angeregt durch diese neuen Resultate, durch welche die alten Ansichten SEMPER’s und KÖLLIKER’s verdrängt wurden, so daß sie heute nur noch historisches Interesse verdienen, unternahm es dann RÖSSLER (16), die Untersuchungen, die TRINCHESI, SHARP und RÜCKER angebahnt hatten, fortzusetzen und weiter auszudehnen, da diese Autoren sich nur mit einzelnen Tieren beschäftigt hatten. So brachte uns das Jahr 1885 die wertvolle Arbeit RÖSSLER’s, in welcher eine vergleichende Übersicht der Radulabildung aller Mollusken gegeben wurde. Der Grundgedanke ist also schon in den Veröffentlichungen der früheren Autoren enthalten, und die Hoffnung, welcher RÜCKER am Ende seiner Arbeit Ausdruck gab, daß nämlich die für die Radula von Helix pomatia gefundenen Resultate sich verallgemeinern lassen, wurde durch die Untersuchungen RÖSSLER’s aufs glänzendste bestätigt. Die neuen Gesichtspunkte, welche RÖSSLER auf Grund seiner umfangreichen Forschungen aufstellte, lassen sich etwa durch folgende Sätze wiedergeben: 1) Die Zähne der Radula werden bei allen Mollusken von besonderen Zellgruppen im Hintergrunde der Radulascheide, den sogenannten Odontoblasten, gebildet. 2) Die Odontoblasten sind besondere Epithelzellen. 3) Die Zähne weisen eine mit dem Gesamtwachstum des Tieres zunehmende Größe auf. 4) Entweder finden wir wenige große Odontoblasten zu einem fast ringförmig geschlossenen Wulst vereinigt und dies ist der Fall bei Pulmonaten und Opisthobranchien, oder 5) viele und schmale Odontoblasten bilden ein halbkugelig gewölbtes Polster, letzteres treffen wir bei Prosobranchien, Placophoren, Heteropoden und Cephalopoden. Bei Pulmonaten und Opisthobranchien erzeugen 4 oder 5 Zellen einen Zahn und eine die Basalmembran. 6) Die

Nachdem nun diese neue Theorie durch die Untersuchungen Rössler’s eine feste Stütze und sichere Grundlage erhalten hatte, erschien verschiedene Arbeiten, welche die jetzige Erklärung der Radulabildung bestätigten. Unter diesen nenne ich die von Garnault (18), Lacaze-Duthiers (19), Fol (20), von Jhering (26), Pruvot (27), Plate (28), Wiren (31), Heuschner (35), Thiele (39) und anderen. Wenn diese genannten Autoren auch noch in manchen Punkten von den Darstellungen Rössler’s abweichen, Punkte, von denen im Laufe der Abhandlung die Rede sein soll, so stimmen sie doch alle im Prinzip mit der neu geschilderten Bildungsweise überein.

Wenn ich nun nach solchem Sachverhalte es noch einmal unternahm, die Bildung der Radula zum Gegenstand einer Untersuchung zu machen, so geschah dies aus zwei Gründen: einmal, weil ich in der ganzen Litteratur, die ich konsultierte, nur spär-
liche oder sozusagen keine Untersuchungen getroffen habe, die sich mit der embryonalen Entwicklung der Radula befaßt hätten, wenigstens seit dem Entstehen der neuen Theorie; die oben angeführten Autoren untersuchten fast alle die Neubildung der schon vorhandenen und ausgebildeten Radula; andererseits geschieht dies deshalb, weil eine solche embryonale Untersuchung über manche Punkte, über die die Forscher heute noch sich widersprechen, und von denen unten die Rede sein wird, Licht verbreiten und für die Richtigkeit der neuen Hypothese gewiß den schönsten Beweis liefern kann. — Mit der embryonalen Entwicklung beschäftigten sich schon Troeschel (1), der „diese Organe nicht nur bei erwachsenen Exemplaren, sondern auch schon bei ungeborenen Jungen dieser Tiere schon mit derselben Nettigkeit und Vollständigkeit vorhanden fand“, ebenso Leydig (3) und Semper (5). Später finden wir nur noch Untersuchungen, die sich vielleicht mit der allerersten Anlage der Radulascheide beschäftigten, ohne ihre weitere Ausbildung zu verfolgen, so diejenigen von Rabl (9), Foll (11), Patten (17), Sarasin (13), Ehringer (24, 25), Kowalevsky (36) etc. Aus neuester Zeit ist endlich eine Arbeit von Sterki (38) zu verzeichnen, der sich speziell mit den Verschiedenheiten der Radula in verschiedenen, auch embryonalen Lebensstadien befaßt. Ohne auf die erste Anlage der einzelnen Teile einzutreten, beschäftigt er sich namentlich mit den verschiedenen Veränderungen, welche die Radulazähne im Laufe der Zeit erfahren. Auch auf diese Arbeit muß ich im speciellen Teil zurückkommen.

III. Specieller Teil. Entwicklung der Radula.

Gern hätte ich die Entwicklung des Darmkanales „ab ovo“ verfolgt, aber in dem Untersuchungsmaterial, das mir in sehr reichlichem Maß zur Verfügung stand, waren ganz junge Stadien, wie schon oben angedeutet wurde, nur sporadisch anzutreffen. Das befruchtete Ei und wenigzellige Stadien habe ich gar nicht mehr getroffen. Leydig (3) beschreibt das Ei als Zelle mit blaschenförmigem Kern, der zwei auseinandergerückte Nucleoli besitzt. Im Eileiter hat er viele Spermatozoiden gefunden, die von der Samentasche dem Ei entgegengehen. — Ich selbst habe Spermatozoiden (Fig. 13) oft in ganzen Haufen im vorderen Darm-
Embryonale Entwicklung der Radula von Paludina vivipara. 357

Fig. 1 stellt den vorderen Abschnitt eines etwas schief aus-
Isaak Bloch,

gefallenen Schnittes vor in sagittaler Richtung, an welchem durch die hell gezeichneten Zellen des Velums (v) sofort die dorsale Seite zu erkennen ist. Diese Zellen heben sich deutlich von den übrigen ab, sie nehmen keine oder nur wenig Farbe an, und zwar bei allen Färbungsmethoden, welche Anwendung fanden. Diese Zellen sind bedeutend größer als die übrigen, kleine Vakuolen treten im Innern auf, und außerdem sind sie mit Cilien bekleidet, was an späteren Stadien mit Deutlichkeit zu erkennen ist (vgl. Fig. 2). Zwischen diesen Velarzellen finden sich sehr hohe Cylinderzellen, die ektodermale Anlage der Fühler (fũ) bezeichnend. Nach hinten gehen die Zellen des Velums in eine ganz dünne Zellschicht über, die den Körper bekleidet, nach vorn biegen sie um, um mit dem Mund (m) die Eintrittsstelle in den Darm zu bilden. Die Zellen, die hier Mund und Schlundanlage (schl) begrenzen, zeigen namentlich auf der ventralen Seite besondere Beschaffenheit, indem die Darmwand hier eine auffallende Verdickung aufweist. Diese deutet uns die Stelle an, wo später der komplizierte Kauapparat sich bildet. Die Zellen sind plasma- und körnerreich, tief gefärbt. Eine schwache Einbuchtung ist als erstes Auftreten der Radulatasche (rt) zu betrachten. Der Darm geht dann nach außen wieder in weniger gefärbte und hohe Cylinderzellen über, welchen ventralwärts verdickte stark gefärbte Ektodermzellen folgen — die Fußanlage (fũ) — die endlich, wie dies dorsal der Fall ist, sich in die dünne Zellschicht der Körperbedeckung fortsetzen. msd bedeutet die spindelförmigen, durch Fortsätze maschig miteinander verbundenen Zellen des Mesodermes, dessen Entstehen ERLANGER (24, 37) genau beschrieben hat. Eine besondere Anhäufung dieser Zellen finden wir schon auf diesem Stadium unter der Anlage der Radulatasche, jedoch noch nicht stark hervortretend.

Von besonderer Bedeutung ist uns nun dieses Stadium wegen des ersten Auftretens der Radulatasche, die zwar hier nur durch eine seichte Vertiefung dokumentiert wird. Da, wie dies schon angedeutet wurde, der Mund und Schlund als ektodermale Einstülpung entstehen, und diese erste Radulafalte ganz am vorderen Ende, unmittelbar hinter der Mundstelle sichtbar ist, so können wir den ganzen Radularapparat als eine ektodermale Bildung qualifizieren (vgl. übrigens auch Fig. 2). Ich muß zwar eingestehen, daß es außerordentlich schwer ist, auf diesen Stadien noch genau die Grenze anzugeben, wo Ektoderm und Entoderm ineinander übergehen. Zwar nimmt OSWALD (34)
nach seinen Untersuchungen, die er an erwachsenen Tieren ange-
stellt hat, an, daß als Übergangsstelle des ektodermalen und ent-
dermalen Darms diejenige zu betrachten sei, wo die Cuticular-
bildung, die sonst das äußere Körperepithel bekleidet und auch
ein Stück weit im Darm bis in den Oesophagus hinein zu erfolgen
sei, nicht mehr auftrete. Nun ist aber an diesen jungen Em-
bryonen noch keine Spur von Cuticularbildungen oder Chitin-
absorberungen wahrzunehmen, so daß wenigstens in dieser Hin-
sicht eine Beurteilung selbst vom embryologischen Standpunkt aus
schwer wird. Auf der anderen Seite tritt die Radulafalte bei
Paludina vivipara erst auf, wenn Ektoderm und Entoderm bereits
ineinander übergehen und der vollständige Durchbruch des Darms
erfolgt ist. Jedoch spricht die Lage des ersten embryonalen Auf-
tretens unmittelbar hinter dem ektodermalen entstehenden Munde
durchaus für die ektodermale Herkunft der Tasche. (Weitere
Stützpunkte siehe unten.)

Die in Fig. 1 nur angedeutete Vertiefung, welche die Radula-
tasche bezeichnet, senkt sich mehr und mehr ein, wie dies aus
Fig. 2 ersichtlich ist, und wird zunächst zu einem rundlichen
Säckchen, das auf ca. 10 Sagittalschnitten verfolgt werden kann.
SARASIN (13) findet ebenfalls die embryonale Zungenscheide von
Bithynia tentaculata als „Hohlkugel, von der ein enger Aus-
führungsgang in die Mundhöhle einmündet zu einer Zeit, wo noch
keine beginnende Radulabildung zu konstatieren ist“.

— Auch Fig. 2 ist ein sagittaler Längsschnitt eines in der Entwicklung
ziemlich vorgeschrittenen Embryos; bezüglich der Orientierung muß
bemerkt werden, daß der Schnitt gleichsam das Spiegelbild zu
Fig. 1 vorstellt. Der Embryo hat sich stark verlängert, bereits
hat sich in diesem Stadium eine Mantelhöhle durch Auftreten einer
Mantelfalte gebildet, die aber in der Figur nicht mehr gezeichnet
ist. Eine durch Einstülpung entstandene Schalendrüse hat schon
einer äußerst feine Schale abgesondert. Auf unserem Bilde sehen
wir wieder dorsale die hier nun viel deutlicheren Zellen des Velums
mit ihrer Cilienbekleidung (v). Der Mund (m) führt in einen stark
verlängerten Oesophagus (oe), während die ventralen stark ver-
dickten Zellen des in Fig. 1 gezeichneten Darms sich hier ein-
gesenkt haben, um die Radulatasche (rt) zu bilden, die von tief
gefärbten hohen Cylinderzellen gebildet ist; dieselben gehen nach
hinten in die nach und nach niedriger werdenden Zellen des Oeso-
phagus (oe), vorn in die des Mundes (m) über. Die mesodermale
Zellanhäufung (msd), die schon in Fig. 1 angedeutet war, hat sich
Isaak Bloch,

Was nun die Entstehung der Radulatasche als eine ekto- dermale Einsenkung der Wandung des vordersten Darmabschnittes anbelangt, so scheint mir diese Bildungsweise allgemein zu sein in den verschiedensten Gruppen der Mollusken. So wurde zunächst schon von Leydig (3) die Mund- und Schlundanlage von Paludina vivipara als besondere Bildung, unabhängig von der Bildung der übrigen Darmabschnitte, gefunden. Ebenso läßt Erlanger (24) den ganzen vorderen Darmkanal bis zum Magen aus dem Ekto- dem hervorgehen. Bei vielen Mollusken bildet sich — und dies scheint mir die ekto-dermale Entstehungsweise am meisten zu stützen — die Radulatasche als Einsenkung vor dem Durchbruch der Mundeinstülpung in den übrigen Darmkanal. Dies wurde beobachtet von Kowalevsky (12) an Chitoularven, von Patten (17) an Patella, einem Vertreter der Gastropoden, von Rabl (9) an Planorbisembryonen. In einigen Fällen wurde die Radulafalte sogar schon gefunden, noch bevor sich der Vorderdarm völlig eingesenkt hat; so findet Fol. (11) für Helix pomatia, daß die Radulaeinsenkung infolgedessen ganz an die Oberfläche des Embryos zu liegen kommt. Auch für Cephalopoden wurde die Zungentasche als Einbuchtung des vordersten Darmabschnittes beschrieben, so für Loligo vulgaris von Korschelt und Heider (36), vgl. die Originalzeichnung dieser Autoren. Ebenso stimmen die Zeichnungen Sarasin’s (13), die nach embryonalen Schnitten von Bithynia an-
Embryonale Entwicklung der Radula von Paludina vivipara. 361
gefertigt wurden, mit den von mir gefundenen Bildern überein, indem auch hier der Mund mit Radulaanlage als ektodermale Ein-
stülzung wiedergegeben ist, und zwar hier vor dem Durchbruch
des Vorder- in den Mitteldarm.

Die fernere Entwicklung der Mundorgane finden wir an Sta-
dien, deren allgemeine Körperform derjenigen des erwachsenen
Tieres schon sehr ähnlich ist, und denen Fig. 3, 4 und 5 ent-
nommen sind. — Fig. 3 ist ein Längsschnitt durch einen ganzen
Embryo; derselbe wurde schematisiert und soll mehr der all-
gemeinen Orientierung dienen, sowie zum Beweise dafür, daß zur
Zeit, wo die Radula sich erst auszubilden anfängt, die meisten übrigen Organe sich schon angelegt haben. Ventral ist der vollständig abgesetzte Fuß (fu), der bei
Embryonen dieser Stadien, welche von ihrer Eihülle befreit werden,
bereits als Lokomotionsapparat gebraucht werden kann. Vorn ist
der Mund (m) mit Zunge (zu) und Radulatasche (rt), in der nun
eine Chitinabsonderung (rd) sichtbar wird, unter der Zunge die
Sublingualfalze (sbl), dann der Oesophagus (oe), der hier fast in
seiner ganzen Länge getroffen ist. Eine schwache Einbuchtung
läßt jetzt schon die Anlage der Subösophagealfalte (sboe) erkennen
(ihre Bedeutung siehe unten). Hinten sind weitere Stücke, die
das Darmsystem gehörig (d), der schließlich in der Mantelhöhle
(mh) nach außen mündet. Das Entstehen der letzteren ist von
ERLANGER genau untersucht. Meine Präparate und die herge-
gstellten Orientierungsbilder für den allgemeinen Verlauf der Organe
stimmen mit den Zeichnungen ERLANGER'S überein. — Ferner
sehen wir auf dieser Figur das Pericard (p), welches durch Ein-
stülzung das Herz (h) gebildet hat. Über und unter dem Oeso-
phagus sind die Visceralstränge (vs), die Chiastoneurie bildend. In
der Mantelhöhle (mh) finden wir endlich die Anlage der Kiemen-
falten (k) und auf dem Mantel die Schalendrüse (sch) des Mantel-
randes.

Fig. 4 und 5 zeigen uns den vordersten Abschnitt bei stärkerer
Vergrößerung und mit möglichst genauer Wiedergabe der einzelnen
Verhältnisse. In Fig. 4 hat sich die auf dem früheren Stadium
noch runde Radulatasche rt) vielleicht um das Anderthalbfache
verlängert. Vorn hat sie sich im Verhältnis zum Gesamtlumen stark verengt, steht aber in Kommunikation mit dem Oesophagus. Während die Verbindung mit dem Oesophagus nur etwa auf 4
Schnitt zu verfolgen ist, treffen wir den hinteren Teil der Tasche
auf 10—11 aufeinander folgenden Bildern, so daß also das Lumen
hinten 2—3 mal so groß ist wie vorn. Die Kommunikation des Oesophagus mit der Tasche ist auch auf Fig. 6 zu sehen, welche den Querschnitt eines noch etwas jüngeren Stadiums wiedergibt, wo noch keine Chitinabsonderung sichtbar ist. Die Verbindungstelle zwischen Darm und Tasche ist noch relativ weit. Der Oesophagus (oe) zeigt auf seiner oberen Wand zu beiden Seiten Ausbuchtungen (oef), oder von der Mitte hängt eine Leiste herab, die sich aber nur so weit auf den Schnitten verfolgen läßt, als Teile der Radulatasche (rt) auf den Präparaten sichtbar sind. Zwischen den hell gezeichneten und mit Cilien bewaffneten Zellen des Velums (v) sind die Fühleranlagen (fū), in starker ektodermalen Verdickeung bestehend, zu sehen. Fig. 6 beweist uns ferner, daß die mesodermale Zellanhäufung (msd) unter und über der Radulatasche, die sich übrigens wieder verstärkt hat, auch zu beiden Seiten anzutreffen ist, oder ein Vergleich aller Quer- und Längsschnitte ergibt, daß die ganze Tasche von dicht anliegenden Zellen (msd) umgeben ist, daß die stärkste Ansammlung dort zu finden ist, wo wir in den Zungenfortsatz geführt werden, also unter der Tasche und ebenso über derselben. Hinter der Tasche fehlt die Anhäufung (Fig. 4, 5). Statt dieser finden wir nur eine dünne Schicht von Mesodermzellen oder nur vereinzelte Zellen, die höchstens noch mit ihren Fortsätzen in Verbindung stehen. Es ist das die Anlage einer späteren Bindegewebschicht, die die ganze Tasche umgibt.

Ein weiteres Entwicklungsstadium zeigt uns Fig. 5, ebenfalls ein Längsschnitt, von welchem nur der Kopfteil gezeichnet ist, der nach unten in den Fuß (fu) übergeht. Die äußerste Schicht, die derselben begrenzt, besteht aus hohen Cylinderzellen, die in dem Maße, als sie sich dem Munde (m) nach oben nähern, an Höhe abnehmen, um in eine Schicht von mehr flachen Cylinderzellen überzugehen, die deutlich auffallende Kerne besitzen. Ebenso besteht das Ektoderm auf der oberen Kopfseite aus ganz plattgedrückten, länglichen Zellen mit nicht sehr körnerreichem Plasma. Beim Übergang dieser Zellschicht in das Epithel der Mundhöhle, also bei der Eintrittsstelle in das Darminnere verändern die Zellen fast ohne Vermittlung ihre Gestalt, indem sie namentlich auf der oberen Seite bedeutende Höhe aufweisen. Auf der unteren Seite bildet das Epithel die nun viel tiefer gewordene Sublingualfalte (sbl), über welcher sich jetzt der schon starke Zungenfortsatz (zu) erhebt. Er nähert sich der oberen Schlundwand, um hier, wie LEBERT (2) sagt, „einen Engpaß zu bilden, wo (später) die Nah-
Embryonale Entwicklung der Radula von Paludina vivipara. 363

Besondere Aufmerksamkeit verdienen die Zellen der oberen Taschenwand (oet). Dieselben scheinen in starker Bildung und Vermehrung begriffen zu sein, so daß sie sich gegenseitig drängen, sehr lang und oft an den Enden zugespiitzt werden. Sie wachsen aneinander vorbei, und da sie hauptsächlich nur auf medianen und ihnen benachbarten Längsschnitten in dieser Form zu treffen sind, bilden sie eine von hinten nach vorn sich ziehende und von der Mitte der Taschendecke herabhängende Leiste, die nicht zum
geringsten Teil das nach vorn immer mehr sich geltend machende Schwinden des Taschenlumens bedingt. Nach unten sind diese Zellen oft in feine Ausläufer ausgezogen, die tief ins Innere hinabhängen und oft eine gegenseitige Verbindung zeigen. Ob diese Zellen schon Chitinmassen abgesondert haben, läßt sich an diesen Schnitten nicht feststellen, jedoch weist der spätere Entwicklungs-
gang mit Wahrscheinlichkeit darauf hin. Die Außenseite der oberen Taschenwand zeigt entsprechend der ins Innere ragenden medianen Leiste eine Vertiefung, in welcher sich Mesodermzellen strang-
artig anordnen, um später eine Stütze für die Radulascheide zu
bilden. Fig. 14 a ist ein Querschnitt durch eine Radula dieses
Stadiums im vorderen und 14 b im weiter hinten gelegenen Ab-
schnitt. Aus beiden Schnitten geht hervor, daß die obere Taschen-
seite (oet) sich rinnenförmig eingesenkt hat, um die eben be-
schriebene Leiste zu bilden.

Von besonderer Bedeutung scheinen mir die in Fig. 4 und 5
wiedergegebenen Stadien zur Beurteilung der ersten Entstehung
der eigentlichen Radula zu sein, d. h. jenes Organs, welches bei
den meisten Mollusken die Zunge überzieht und bei der Bewegung
der letzteren zum Zerreiben der aufgenommenen Nahrung dient. —
In Fig. 4 beobachten wir eine dünne Schicht farblosen Chitins (in
der Figur schwarz gezeichnet). Diese Chitinplatte (bp) ist etwa
ein Drittel so dick wie die Zelllage, auf der sie ruht, und erstreckt
sich vorn bis auf die Höhe des Zungenfortsatzes. Hinten ist sie
leicht aufgewölbt, sich der Form der Tasche anschmiegender, und
ist bei Anwendung des Abbé'schen Beleuchtungsapparates mit
scharfen Konturen sichtbar. Auf Querschnitten (Fig. 14 a u. b)
erkennen wir, daß die Chitinplatte (bp) nach beiden Seiten wie
die Tasche selbst leicht aufgebogen und infolgedessen rinnenartig
ist. Da ich auf keinen gleichaltrigen und jüngeren Stadien diese
Chitinabsonderung etwa nur im hinteren Teile gefunden habe, bin
ich zu der Annahme gezwungen, daß diese Chitinschicht
durchaus eine Absonderung aller unter ihr liegen-
der Zellen ist. Zu dieser Annahme führt mich ferner der
Umstand, daß absolut alle Zellen, auf denen in diesem Stadium
Chitin ruht, gleichartig und ziemlich hoch sind und jene tief dunkle
Färbung zeigen, wie dies bei älteren Embryonen nur an den
Zellen zu sehen ist, welche die hintere Wand bilden und oben all-
gemein als Matrixzellen bezeichnet wurden. Einen weiteren, nicht
to unterschätzenden Beweis für diese Annahme liefert mir die
Thatsache, daß die junge Chitinplatte auf einigen Stadien noch in
Felder geteilt ist und Konturen erkennen läßt, die den Zellgrenzen entsprechen. Ähnliche Beobachtungen beschreibt schon KöLLIKER (6) von der Cuticula des Magens bei Aplysia depilans sowie von einer ganzen Reihe untersuchter Cuticularbildungen. Die „schichtweise Streifung“ hält KöLLIKER für „den Ausdruck der schichteweisen Apposition der Substanz“, während seine „Längsstreifen, welche um die Breite der unterliegenden Epithelzellen voneinander abstehen und genau den Grenzlinien derselben entsprechen, einfach den Anteil der einzelnen Zellen an der Bildung des Zahnes andeuteten“. — Ich schließe aus meinen Befunden, daß das Chitin eben abgesondert wurde und die Fixierung des Embryos stattgefunden hatte, noch bevor diese Einzelabsonderungen verschmolzen waren. Man könnte daran denken, daß das Chitin beim Schneiden vielleicht zerrissen ist, dann aber wäre die angedeutete Struktur nicht so regelmäßig und auf älteren Stadien ebenso gut, wenn nicht noch eher, anzutreffen, indem bei stärkerer Chitinabsonderung der Schnitt mehr gefährdet wäre. Zudem weisen meine Präparate im übrigen nicht die geringste Verletzung auf. — Die Zellen der oberen Wand (œel) zeigen auf diesem Stadium noch keine Differenzierung. — Vergleichen wir nun das in Fig. 5 wiedergegebene Stadium eines etwas älteren Embryos, so sehen wir, daß die Matrixzellen, d. h. die Bildner des Chitins nur noch in der Tiefe der Scheide zu finden sind. Dies folgt aus dem Umstand, daß auffallend stark gefärbte Zellen nur noch die hintere Wand bilden, während unten weniger gefärbte, bedeutend niedrigere Zellen zu treffen sind, d. h. die Tasche hat sich durch starke Zellvermehrung bedeutend verlängert, so daß die Bildungsstätte der Platte nun ganz im Hintergrund zu suchen ist. Dort findet jetzt auch eine reichliche Chitinsekretion statt, die, solange die Tasche noch nicht ihre definitive Gestalt und vollständige Länge erreicht hat, sich einfach an die vorderen schon gebildeten Teile ansetzt und mit ihnen verschmilzt. An ein Vorwärtschieben einer hinten immer neu sich ersetzenden Platte ist vorderhand absolut noch nicht zu denken, weil die Absonderung auf ziemlich älteren Stadien nach vorn sich nie weiter verfolgen läßt, als bis gegen die Höhe des Zungenfortsatzes, d. h. bis dahin, wo wir dieselbe schon vom ersten Auftreten an wahrnehmen konnten (Fig. 4). Noch deutlicher und zur Gewißheit werden diese Folgerungen bei Betrachtung von Fig. 7. Die Radulatasche hat seit Beginn der ersten Chitinabsonderung vielleicht eine 3—4fache Verlängerung nach hinten erfahren; der Hohlraum im Hintergrunde, der namentlich durch
Isaak Bloch,

Ausbuchtung nach oben entstanden ist, hat an Umfang zugenommen, während die vordere Kommunikationsstelle mit dem Oesophagus immer relativ sehr eng bleibt. Daß die Chitinabsonderung immer aufs neue stattgefunden hat, ist daraus ersichtlich, daß auch sie an Masse bedeutend zugenommen hat. Daß sie sich ferner hinten neu bildet und sich an die schon vorhandenen Teile nur anlagert und diese nicht vorschiebt, geht daraus hervor, daß die Platte hinten vielleicht viermal so mächtig ist wie vorn, wo sie ihre ursprüngliche Dicke beibehalten hat, und immer noch am gleichen Orte wo früher, d. h. am Ausgang der Tasche auf der Höhe der Zunge, endet. Die Zellen, auf denen die Lamelle jetzt ruht, sondern, wenigstens im vorderen Abschnitt, kein Chitin mehr ab.

Rossler (16) hat in seiner Untersuchung über Radulabildung hauptsächlich für Pulmonaten und Opisthobranchien, aber auch für Prosobranchien und die meisten übrigen Muscheln nachgewiesen, daß wenigstens im erwachsenen Zustande sowohl die Zähnen als auch die Basalplatte, auf der jene ruhen, von dem hinteren Polster aus gebildet, daß dieselben dann durch fortwährende Neubildung von hinten nach vorwärts geschoben werden, um die abgenutzten Teile der Reibmembran vorn konstant zu ersetzen. Ich glaube, für Embryonen einen etwas modifizierten Bildungsprozeß nachgewiesen zu haben, indem von hinten immer neue Teile an die Basalplatte angelagert werden. Indes liegt darin durchaus noch kein Widerspruch mit der Ansicht Rossler's. Meine Untersuchung bezieht sich nur auf junge, oft kaum 1 mm große Paludinen, in relativ kurzer Zeit verlängert sich die Radulatasche und zwar nach hinten, während vorn die Absonderung immer am gleichen Orte und in ziemlich gleichmäßiger Menge zu finden ist. Mir scheint nun: sobald die Tasche, die sich bis zur Vollbildung noch um ein ganz Beträchtliches zu verlängern hat, vollständig ausgewachsen ist, d. h. wenn der ganze Preßapparat für den der Geburtsreife nahen Embryo gebildet ist, so wird es nötig, daß die vorderen Teile von hinten durch neue ersetzt werden. Da die Tasche nach hinten sich nun nicht mehr oder höchstens ganz wenig und langsam verlängert, so bleibt eben nichts anderes mehr übrig, als daß bei der Chitinabsonderung der nun ganz in der Tiefe liegenden Matrixzellen die vorderen Teile der Sekretion weggeschoben werden. Im übrigen weisen auch meine Präparate, die älteren Stadien angehören (Fig. 8, 9, 15, s. unten), auf eine Bildungsweise oder, besser
gesagt, Neubildung der Radula hin, die von der RÖSSLER'schen Darstellung wenigstens in dieser Beziehung kaum mehr abweicht. — Bis zur vollen Längenausbildung mögen sogar eine Zeitlang beide Prozesse, d. h. ein Vorwärtschieben und gleichzeitiges Ansetzen hinten neu sich bildender Teile, nebeneinander stattfinden. Denn 1) der Umstand, daß die später auftretenden Zähnchen zuerst nur in der Tasche, auf älteren Stadien aber auch auf dem Zungensfortsatz zu treffen sind, ferner daß im vorderen Abschnitt der Radulatasche keine Zellen mit sekretorischer Funktion mehr getroffen werden, führt zur Annahme, daß die chitinösen Sekretionsprodukte hinten gebildet und dann vorwärts gesoben werden. 2) Die noch nicht definitive Längenausbildung spricht auch noch bei älteren Stadien für den ersten Bildungsmodus, d. h. für die Anlagerung neu gebildeter Teile an die schon abgesonderten. Auf diese Weise erhalten wir eine Auffassung über das allmähliche Entstehen der Radula, die uns am plausibelsten erscheinen muß, indem an ein unvermitteltes Übergang der Anlagerung in ein nachheriges Vorwärtschieben selbstverständlich nicht zu denken ist.

Ich habe oben dargestellt, wie ursprünglich die ganze basale Zellschicht (uen) zur Absonderung einer chitinösen Lamelle geführt hat (Fig. 4), und wie an späteren Stadien (Fig. 5, 7, 8, 9, 12 etc.) nur noch die Zellen ganz im Hintergrunde an der Sekretion teilnehmen. Wir haben uns infolgedessen noch darüber Rechenschaft zu geben, wie dieser Übergang stattgefunden haben mag. Da sind zwei Annahmen möglich. Entweder sind die ursprünglichen basalen Matrixzellen unter der abgesonderten Basalplatte weg durch reiche Vermehrung der vorderen Zellen nach hinten gerückt; und dieser Vorgang wäre nicht ausgeschlossen, da, wie dies schon von RÜCKER (14) und RÖSSLER (16) allerdings an ausgewachsenen Tieren nachgewiesen wurde, ein inniger Kontakt zwischen der basalen Platte und der unter ihr liegenden Zellschicht nicht stattfindet; oder dann müssen wir annehmen, daß die Zellen, durch welche diese erste Sekretion stattfand, sich bald erschöpfen und sich so in die niedrigen gewöhnlichen Epithelzellen umwandeln, wie wir sie an älteren Tieren eben immer finden. Die basalen Zellen würden dann später in ihrer sekretorischen Arbeit abgelöst von den hinteren Zellen, die ja in der That auch jene tiefdunkle Färbung haben wie ursprünglich die basalen Zellen. Diese letztere Annahme scheint mir die natürlichsste und erklärt uns gleichzeitig aufs beste den oben beschriebenen Modus der
späteren Anlagerung neuer Chitinteile an die schon gebildeten. — Nach Trinchese (10) soll, wie dies schon lange von Semper (5) und Kölliker (6) dargestellt wurde, auch noch im erwachsenen Zustand die Basalplatte vom unterliegenden Epithel gebildet werden; mit dieser Annahme kann ich mich aber absolut nicht einverstanden erklären, da schon für Embryonen dieses Epithel so dünn wird (Fig. 7, 8, 9), daß ein anderer Sekretionsherd, nämlich im Hintergrunde der Scheide, angenommen werden muß.

Ich habe früher auf die Veränderungen aufmerksam gemacht, welche die Zellen der oberen Taschenwand im Laufe der Entwicklung erfahren haben. Ihr weiteres Schicksal läßt sich leicht verfolgen auf den Stadien, wo die Basalplatte schon beträchtlich entwickelt ist (Fig. 7, 12 oet). Schon aus Fig. 5 war ersichtlich, daß die der Innenseite der Tasche zugekehrten Enden der Zellen keine zusammenhängende, fortlaufende Linie mehr bilden, sondern diese ist unregelmäßig geworden, die Zellen haben sich verlängert und sind in fast farblose Spitzen ausgezogen (Fig. 7), die gegen die unter ihnen liegende Basalmembran (bp) gerichtet sind. Nur selten lassen sich in diesen farblosen Enden Kerne nachweisen. Eine Berührung dieser Spitzen mit der Basalplatte findet auf dieser Stufe der Entwicklung durchaus nicht statt. Dennoch konnte ich mich des Eindruckes nicht erhören, als würden von diesen Zellen auch Absonderungen stattfinden, welche die Basalplatte mit einer besonderen, resistenzfähigen Schicht zu überziehen haben. Auf älteren Stadien (Fig. 12, etwas lateraler Längsschnitt) ist es zu dem oft schwer zu entscheiden, ob zwischen den äußersten feinen Spitzen und der Basalplatte nicht ein wirklicher Kontakt stattfindet. Die Spitzen sind gegen die Platte hin außerdem oft merkwürdig verbreitert, und ganz sicher habe ich manchmal neben der stark hervortretenden Hauptkontur der Basalplatte noch eine ganz feine zweite, der ersten parallele Kontur sehen können, deren Abstand von der Hauptkontur aber so gering ist, daß ihre Beobachtung leicht entgeht. An älteren Stadien ist diese zweite Kontur wieder schwieriger nachzuweisen, wahrscheinlich wegen der innigen Verschmelzung. Auf diese Weise kann es uns begreiflich werden, warum diese Zellgebilde (oet), deren spätere sehr nahe Beziehung zur Zahnbildung Sharp (15) und Rössler (16) an vielen Mollusken hervorgehoben haben, und auf die wir unten selbst noch zu reden kommen, schon lange vorbereitet werden, bevor überhaupt nur eine Spur eines Zahnes zu finden ist. Die Bildungsstätte dieser Zellen ist unschwer zu finden. Schon in Fig. 5
Embryonale Entwicklung der Radula von Paludina vivipara. 369

scheinen sie von der hinteren Wand aus nach vorn gedrängt zu werden. In Fig. 7 und 12, sowie auf älteren Stadien (Fig. 8 u. 9) sehen wir diese Ansicht bestärkt, indem den schon gebildeten Zapfchen, die von der oberen Wand herunterhängen, von hinten neue folgen, die aber erst in Bildung begriffen sind, und wie die neuen Stücke der Basalplatte den älteren von hinten sich anreihen, so reihen sich diese Zapfchen bei der stets sich verlängernden Tasche an die bereits gebildeten vorderen. In Fig. 7 und namentlich in Fig. 12 sehen wir hinter den schon vorhandenen Zapfchen kleinere noch nicht vollendete, und hinter diesen solche, die sich erst von der Taschendecke herabgelassen haben. Danach ist also der Entstehungsort der Zapfchen die Zellgruppe (1g), die sich oberhalb der stark tingierten und stark sekretionsfähigen Zellen befindet, von denen die Basalplatte und später auch die feinen Zähnchen abgesondert werden. Der Übergang dieser Zellgruppe (1g) in die Odontoblasten (od) ist ein ganz allmäßlicher. — Zu diesem Stadium will ich noch bemerken, daß die starke Mesodynamzellanhäufung auf der Radula, von der oben schon die Rede war (msd), immer deutlicher zum Ausdruck kommt, um den von Rössler bezeichneten „Bindegewebspfropf“ zu bilden. Wie aus den Untersuchungen Semper's (5), Rucker's (14), Rössler's (16), Plate's (22) und anderer hervorgeht, haben wir es später mit einem Organ zu thun, das hauptsächlich aus muskulösen sowie bindegewebigen Zellen besteht, und dessen Hauptfunktion darin gipfelt, einen Stützapparat für die Radula zu bilden. Auch sollen bei vielen Mollusken, wie dies namentlich von Lacaze-Duthiers (19) und anderen dargethan wird, knorpelige Elemente nicht zu verkennen sein.

Wir kommen nun auf die Entstehung der Zähnchen zu sprechen, die den integrierendsten Teil der Reibmembran bilden, und die bei ausgewachsenen Paludinen auf der Basalplatte stehen. Ich habe lange nach Stadien gesucht, wobei ich die allererste Zahnbildung hätte konstatieren können. Im ganzen habe ich gegen 200 Paludinaembryonen in Serien geschnitten und glaube, daß vom ersten Auftreten der Radulafalte an mir kein entscheidendes Stadium entgangen ist; dennoch war es mir unmöglich, Präparate zu entdecken, wo nur ganz wenige, die ersten Zähnchen zu finden gewesen wären. Entweder waren die Präparate in dem Zustande, dem Fig. 7 und 12 entnommen sind — und diese Stadien bezeichne ich als die ältesten vor dem Auftreten der Zähnchen — oder dann war die Tasche bis vorn gegen den Austritt aus der
Scheide schon mit Zähnchen angefüllt. Ich habe schon darauf aufmerksam gemacht, daß die Chitinabsonderung in dem Maße zunimmt, als die Tasche nach hinten sich verlängert, so daß wir wohl annehmen dürfen, daß, wenn die Radulascheide einmal ihrer definitiven Ausbildung nahegerückt und zur Zahnbildung vollständig vorbereitet ist, die Chitinabsonderung für die Basalplatte und die Zähnchen in so reichlichem Maße und so rasch stattfindet, daß die Beobachtung der ersten Zahnbildung uns wohl entgehen kann. Übrigens läßt sich die Zahnbildung an den in Fig. 8, 9 und 15 wiedergegebenen Stadien dennoch verfolgen, und ich bin durchaus der Ansicht, daß die ersten Zähnchen, wie Sharp, Rücker und Rössler an ausgewachsenen Tieren die Neubildung beschrieben haben, in gleicher Weise, d. h. hinten entstehen. Trotzdem die Zähnchen bald in so großer Zahl und bis fast nach vorn zu finden sind, so ist jene alte Ansicht früherer Forscher vollständig ausgeschlossen, nach der die Zähnchen und die Basalplatte von der oberen Zellwand (den herabhängenden Zäpfchen, oet) oder vom basalen Epithel (uet) gebildet werden.

Fig. 9 und 15 sind Schnitte durch den hinteren Radulaabschnitt jüngerer und Fig. 8 durch den eines älteren Stadiums, teils median, teils lateral. Alle Stufen ergänzen sich und geben nach meinem Dafürhalten genügenden Aufschluß über die Entstehungsweise der Zähnchen und bilden gleichzeitig in manchen Punkten eine Bestätigung der Untersuchungen eben angeführter Autoren. In Fig. 8 wurde über der Radula wegziehend der Oesophagus (oe) gezeichnet (schematisiert). — Besonders will ich noch darauf hinweisen, daß Fig. 15 (noch etwas jünger als Stadium von Fig. 9) an Größe dem Stadium von Fig. 12 nachsteht, obgleich in Fig. 12 noch keine Zähnchen, wohl aber in Fig. 15 solche mit großer Deutlichkeit zu sehen sind. Allerdings spielt der Größenunterschied keine allzu stark ins Gewicht fallende Rolle, denn schon Erlanger hat darauf hingewiesen, und ich muß diese Beobachtung bestätigen, daß oft kleinere Embryonen schon bedeutend weiter entwickelt sind als ziemlich größere. Die allgemeine Körperorganisation der Stadien von Fig. 12 und Fig. 15 beweist mir, daß diese beiden Embryonen trotz des vorhandenen Größenunterschiedes in ihrer Ausbildung nicht zu weit auseinanderstehen konnten.

Vergleichen wir nun Fig. 12 mit Fig. 15 sowie mit Fig. 9 und 8, so ergibt sich alsbald, daß die Aufgabe der hinteren Zellwand, die immer dicker geworden ist, sich in eine zwiefache ge-
teilt hat. In allen Figuren finden wir, daß die Zellen des unteren Taschenepithels (u.et), sobald sie im Hintergrunde der Scheide nach oben biegen, allmählich ihre Struktur ändern, indem sie auffällig lang, körnerreich und besonders tintionsfähig sind. Hervortretender Dicke begegnen wir in Fig. 8 und 9. Ich habe diese Zellen oben allgemein als „Matrixzellen“ bezeichnet. Eine Arbeits teilung findet nun in dem Sinne statt, als nur die unteren dieser Zellen die Basalplatte absondern, während die oberen, die „Odontoblaster“, speziell die Zähnchen, die auf der Basalplatte stehen, zu bilden haben. Dabei habe ich mir bei Betrachtung meiner Präparate folgende, von der RöSSLER’schen Darstellung abweichende Anschauung erworben. Ursprünglich wird, und dies ist sicher nachgewiesen, nur die Basalplatte gebildet, die in Fig. 7 und 12 schon eine bedeutende Dicke erreicht hat. Vergleichen wir nun mit diesen Präparaten diejenigen, wo die Zähnchen zu finden sind (Fig. 8, 9 und 15), so sehen wir, daß hier die Basalplatte relativ dünner ist als auf jüngeren Stadien, bei noch älteren Embryonen ist sie noch dünner, und zwar am Sekretionsorte selbst, wo von einer Verdichtung noch nicht die Rede sein kann. Ich glaube deshalb, daß nunmehr die reichlichere Chitinabsonderung in den tiefer gelegenen Zellen stattfindet, welche in der That in der Färbung eher dunkler sind als die oberen, während in diesen die Sekretion eine langsamere ist und der unteren noch nicht folgen kann. Da nun in der älteren, mehr ausgewachsenen Radulascheide die neu gebildeten Teile der Basalplatte die schon gebildeten nach vorwärts schieben, findet im oberen Teil, wo die Sekretion noch nicht so schnell stattfindet, ein Zerreissen oder vielmehr ein Abheben von der Zellunterlage statt, d. h. die Chitinabsonderung bildet die auf der Basalplatte stehenden und mit ihr innig verbundenen Zähnchen. Ich glaube nicht, daß die Basalplatte und die Zähnchen gesondert ausgeschieden werden und erst nachträglich miteinander verschmelzen; denn sonst müßte man an den jüngsten und erst in Ausbildung begriffenen Zähnchen sicher eine Trennungslinie wahrnehmen. Statt dessen sehen wir in Fig. 9 und 15, wie je ein Zähnchen (zech) sich eben von den Odontoblasten abgelöst hat, mitgerissen durch die sich fortschiebende Basalplatte, während in Fig. 8 das noch nicht ausgebildete Zähnchen mit den odontogenen Zellen in Kontakt ist, und in allen Fällen läßt sich die Verbindung mit der basalen Platte nachweisen. Auch sind die Zähnchen in Bezug auf die Form nicht von so großer Regelmäßigkeit, als daß an ein solches Mitreiben nicht gedacht
Hand in Hand mit den Veränderungen, welche durch Auftreten der Zähnchen auf der unteren Seite der Tasche sich eingestellt haben, geht noch eine kleine Umwandlung der Zellen, die von der Decke der Tasche herabhängen und schon lange vor dem Auftreten der Zähnchen sich konstatieren ließen. Während diese Zellgruppen auf früheren Stadien noch ziemlich unregelmäßig auftraten, durch Bildung von Ausläufern sich unten oft zu berühren schienen (Fig. 12), so zeigen sie jetzt eine große Gesetzmäßigkeit in ihrem Auftreten wie in ihrer Ausbildung, indem zwischen je zwei aufeinander folgende Zähnchen ein solches Zäpfchen herunterkommt. Mit der Bildung eines Zahnes treffen wir im Hintergrunde die Bildung eines Zapfens, der in dem Maße, als er zusammen mit dem Zahn nach vorn rückt, mit diesem einen innigeren Kontakt bildet und ziemlich genau die Form des Zahnes wiederholt. Es ist also nicht umgekehrt, wie KöLLiker (14) annimmt, daß die Zähne der „genaue Abdruck der inneren Oberfläche“ sind. Denn vor dem Vorhandensein der Zähnchen sind die Zäpfchen ganz unregelmäßig ausgebildet (Fig. 5, 7, 12). Der Modus, nach welchem die Berührung von Zähnchen und Zäpfchen stattfindet, ist nicht ganz unregelmäßig. In Fig. 15 findet eine solche für den hintersten, also jüngsten Zahn noch nicht statt, wohl aber für den zweiten, während der dritte schon recht innig verbunden ist mit den herabhängenden Zellen. Fig. 9 zeigt schon eine Berührung des ersten Zahn, doch kommt es auch hier erst beim dritten zu innigem Aneinanderschließen, ähnlich in Fig. 8, wo sogar erst der vierte Zahn vollständig mit den Zäpfchen verbunden ist. Hier ist der erste Zahn aber noch nicht fertig ausgebildet. Gleichzeitig treffen wir die Abstände der jüngsten Zähnchen voneinander, also im Hintergrunde viel größer als vorn, wo diese Gebilde sich oft sehr dicht folgen. Daraus läßt sich schließen: je weiter vorn die Zähne stehen, und je dichter sie sich folgen, um so inniger wird gleichzeitig der Kontakt mit den follikelartigen Zäpfchen, und um so tiefer ragen diese zwischen die Zähnchen hinein. Oft lassen sie sich bis zur Basalplatte verfolgen, und der Schluß liegt nahe, daß, wie auf früheren Stadien (ohne Zähnchen) diese Zellen die basale Platte mit einer besonderen Schicht zu überziehen haben, dies auch jetzt noch zu geschehen hat zwischen den Zähnchen; ebenso können aber auch gleichzeitig diese mit einer besonders widerstandsfähigen Schicht bekleidet werden, während anderseits ein Wiederverschmelzen der einzelnen Zähnchen, die sich durch Drängen von hinten sehr nahe zu stehen kommen, verunmöglicht
ist. Die Aufgabe, die Zähne mit einer Art Schmelzschicht zu überdecken, haben zuerst Sharp und Rössler diesen Zellen zugeschrieben, und die ganze Entwicklung scheint mir auch für diese Auffassung zu sprechen. — Oft lassen sich die Zellgrenzen in den Zapfchen nur noch mit großer Schwierigkeit nachweisen, Zellkerne findet man in den Zapfchen selbst relativ nur wenige, dafür aber um so mehr direkt über denselben (Fig. 7, 12, 15 mit Hamalaun gefärbt), während die untersten, meist farblosen Spitzen oft nur noch in feinen Konturen zu erkennen sind, so daß es in der That sehr wahrscheinlich wird, daß hier eine Chitinabsonderung stattfindet. Jedenfalls kann aber eine solche nur auf der der Zunge zugekehrten Seite, also auf dem Rücken der Zähnchen stattfinden. Denn eine genaue Betrachtung belehrt, daß die Zapfchen die Zähne nur einseitig berühren, und daß zwischen je einem Zapfchen- und Zähnchenpaar ein kleiner Hohlräum zu finden ist, der allerdings in dem Maße, als wir nach vorn kommen, kleiner wird. Dafür aber können wir anderseits annehmen, daß vorn die letzte Chitinabsonderung bereits geschehen und der Zahn vollständig ausgebildet ist. Diese Ansicht wird erhärtet durch die Tinktion, indem die Zähnchen hier ziemlich viel Farbstoff in sich aufgenommen haben (eine Eigenschaft älteren und erhärteten Chitins), während im Hintergrund der Tasche das frische abgesonderte Chitin auch nicht die Spur von Farbstoffen aufgesogen hat. — Für unsere Anschauung spricht ferner die Ausbildung der Zähnchen am erwachsenen Tier. Lébert (2) beschreibt die Radulatasche von Paludina als ein Organ von durchschnittlich 6 mm Länge, wovon etwa die eine Hälfte im Divertikel verborgen liege. Der Durchmesser der Scheide betrage kaum über 1 mm und erscheine nur am Ende etwas ausgeschweißt. Die Radula selbst ist „eine Chorda, welche aus 7 Längsreihen kleiner, dachziegelförmig sich zum Teil deckender Platten besteht, welche fast in ihrer Zusammenfügung den Schuppen der Fische gleichen“. „Man kann sich leicht überzeugen, daß sie alle vertikal oder schief auf einem feinen, häufigen, durchsichtigen Gebilde aufstehen (die oben beschriebene Basalplatte), welches ihnen als Basis dient“. „Sie tragen am oberen Ende kleinere Zähnchen“ (die obersten Teile der plattenartig verbreiteten Zähnchen zeigen am erwachsenen Tier nämlich feine Spitzen). Nach dieser Beschreibung läßt sich schließen, daß die Zähnchen, die auch schon in der embryonalen
Embryonale Entwicklung der Radula von Paludina vivipara. 375

Radulatasche diese gebogene Form zeigen und später die Zunge überziehen, namentlich mit den obersten Spitzen und dem der Zunge zugekehrten, oberen Teil zum Zerreiben der Nahrung dienen. Und dies ist auch der Grund, weshalb eine Verstärkung des Zahnes durch Auftragen einer besonderen Schicht nur auf der einen Seite geschieht, wenigstens bei Paludina vivipara (vergl. Fig. 16). Viel-leicht ist dies auch noch bei anderen Prosobranchien mit ähnlicher Radula der Fall; denn in der That scheinen auch nach den Zeichnungen Rücker's (14) diese oberen Epithelzellen die Zähnchen nur einseitig zu berühren. — Seine Vermutung, daß die Zähnchen beim Vorschreiten der Radula abgerissen werden, wird durch gar keine Beobachtung bestätigt und widerspricht auch ganz der Entstehungsweise und weiteren Ausbildung; die Zähnchen rücken selbständig vor, da ja, wie oben dargethan wurde, eine Berührung mit den Zähnchen erst beim dritten oder vierten Zahn stattfindet.

Wir haben ferner die Frage zu beantworten, was mit den Zähnchen und Zapfchen später geschieht, da dieselben an älteren Embryonen und ausgewachsenen Paludinen durch die sich neubildenden Elemente vorwärtsgeschoben werden. Ich lasse hier zunächst Rössler, der diese Frage eingehend beleuchtet hat, sprechen. Er sagt: „Die cuticularen Höcker (die oben beschriebenen und cuticularisierenden Zapfchen) werden mit dem oberen Epithel von der Radula abgehoben und aus den Lücken zwischen den Zähnen herausgezogen. Als Resultat dieser Bewegung ist unterhalb der Mündung des Oesophagus eine starke Falte mit dickem Cuticularbelag, gebildet durch die austretenden Epithel- und Bindegewebs- teile.“ In der That habe ich schon bei Beschreibung von Fig. 3 eine schwache Einbuchtung über der Radulatasche als Vorbildung der Subösophagealfalte, wie sie Rössler bezeichnet hat, hervor-
gezogen. Die Falte bleibt noch lange sehr gering und wird erst später, wenn die Radulatasche in reicher Zahnbildung begriffen ist, tief und nimmt eine Form an, wie sie Rössler beschrieben und in Figuren wiedergegeben hat. Nach Rössler „muß auch das basale Epithel nach vorn bewegt werden, das indessen nicht in dem Maße vorrücken kann, wie die aufliegende Radula. Eine der Subösophagealfalte entsprechende Verdickung an der oberen Basis der Zunge ist ebenfalls vorhanden (unsere früher bezeichnete Sublingualfalte, die schon in jungen Stadien angedeutet ist, vergl. Fig. 2, 3, 4, 5 etc.), aber bedeutend schwächer, da sie nur vom basalen Epithel gebildet wird, dessen Zellen ihr Volumen auf der Zunge bedeutend verringern. Ein starker Chitinbelag findet sich dort ebenfalls, an dem die abgenutzte Radula zerschellt nach vorhergegangener Auflockerung der Basalmembran“ (Auszug). — Als treibende Kraft für das Vorrücken der Radula will Kölliker (6) den Druck der umgebenden Muskelnmassen und die zerre rende Freßbewegung ansehen und nicht den Druck hinten sich neu bildender Teile. Rössler hat diese Ansicht widerlegt und schreibt die Hauptsache der Vorwärtsbewegung dem Nachwachsen neuer Teile, unterstützt allerdings durch die Muskelbewegung, zu. Ich glaube, den wichtigen Argumenten Rössler's noch das weitere beifügen zu können, daß schon bei Embryonen ganz sicher ein Nachschieben nach vorn stattfinden muß, indem vorn Zähne sind, wo doch früher noch keine waren; diese werden aber hinten gebildet, und zwar zu einer Zeit, da von einer zerre renden Freßbewegung keine Rede sein kann, indem der ganze Freßapparat ja noch gar nicht in Aktivität ist. — Ich habe in Fig. 16 den vordersten Abschnitt der Zunge in einem Längsschnitt wiedergegeben. Derselbe ist etwas lateral, so daß die Mundöffnung fast geschlossen erscheint. Die Zähnchen sind schon bis vorn auf die Zunge gerückt, und in der tiefgewordenen Sublingualfalte sehen wir den Chitinbelag und die vordersten Zähnchen, während an früheren Stadien noch keine Spur von chitinös en Gebilden wahrzunehmen ist; es sieht ganz aus, als ob die Oberfläche der Chitinplatte, welche in der Sublingualfalte sichtbar ist, durch den Druck der nachwachsenden Zähnchen sich schwach in Krümmungen gelegt hätte. — Besonders möchte ich an dieser Stelle noch auf die Thatsache hinweisen, daß, trotzdem Fig. 16 bei gleicher Vergrößerung gezeichnet ist wie Fig. 8, 9 etc., und trotzdem Fig. 16 einem bedeutend älteren Stadium angehört, dennoch die Zähnchen des späteren Stadiums viel kleiner sind. Dies ist einzig dadurch zu
erklären, daß die Zähnchen von Fig. 16 eben die ältesten sind, d. h. diejenigen, die am frühesten abgesondert wurden, zur Zeit, als der Embryo und die Radulascheide noch klein waren. Daran ist selbstverständlich nicht zu denken, daß diese Zähnchen durch Reiben sich schon abgenutzt hätten, denn der Embryo war ja zur Zeit der Abtötung noch in der Eihülle. Dagegen scheint es mir höchst wahrscheinlich, daß die Zähnchen, die sich auf dem außerordentlich dünn gewordenen Epithel der Zunge befinden, sobald der Embryo seine Hülle verläßt und ein selbständiges Leben beginnt, schon in der Sublingualhalte zerstört und abgerissen werden, um möglichst bald durch neue ersetzt zu sein; ich konnte mich des Eindruckes nicht erwehren, daß das epitheliale Gewebe, welches von den Zahnspitzen der vordersten Zähnchen berührt wird, durch den Druck dieser gelitten hat. Ein künstliches Zerreifen der Gewebe kann ich nicht annehmen, da der Schnitt sonst unverschoben ist, und die Zähnchen noch in vollem Kontakt mit den unter ihnen liegenden Teilen sind, und weil ich auch keine abgefallenen Chitinstücke in der Mundöhle oder der Sublingualhalte zu entdecken imstande bin. — Ich weiß nicht, welcher Art die von der neugeborenen Paludina aufgenommene Nahrung ist, und ob sich dieselbe von derjenigen unterscheidet, welche das Tier später zu sich nimmt; aber so viel ist sicher, daß das neugeborene Tier, wenn es auch schon mit allen Mundteilen bewaffnet zur Welt kommt, noch nicht den gleich starken Fressapparat besitzt, der das Gleiche zu leisten imstande ist, wie die bedeutend größeren Teile des Reibapparates späterer Lebensstadien, und daß diese jüngsten und ersten Zähnchen, die beim Pressen zuerst gebraucht werden, bald durch die neuen und größeren von hinten ersetzt werden müssen.

Was nun den Vergleich unserer Befunde mit den Ansichten anderer Autoren anbelangt, so kann ich mich verschiedensten ausgesprochenen Meinungen anschließen, während ich einigen anderen entgegenzutreten gezwungen bin. Dies betrifft vornehmlich die Frage, ob die ganze Radulabildung als eine Art Cuticularisierung der zugehenden Zellen im Sinne WIREN'S (31) aufzufassen sei, oder ob wir es mit einer Ausscheidung nach der Darstellung RÖSSLER'S und anderer zu thun haben; ferner ob immer dieselbe Odontoblastengruppe als die Bildner aller Zahnreihen zu betrachten seien, oder ob wir auch hier an einen gelegentlichen Ersatz zu denken.
haben. Da diese Fragen ineinander greifen, will ich sie auch einer gemeinsamen Erörterung unterziehen.

Was die alte Auffassung Trinchese's (10) anbelangt, daß nämlich die odontogenen Zellen sich nach und nach in Stäbchen verwandeln, die schließlich die Zähnchen bilden, so daß wir es also nicht mit einer Sekretion, sondern mit einer Zellumwandlung zu thun hätten, so wurde diese zuerst widerlegt von Sharp, Rücker und nachher von Rössler, welche annehmen, daß die Zellen die Chitinplatten ausscheiden. Dieser Ansicht schließen sich eine ganze Reihe von Forschern an, während neuerdings Trinchese's Auffassung einen Verteidiger in Wirén (31, 32) gefunden hat, welcher behauptet, die ganze Radulabildung sei zu homologisieren mit der Cuticularbildung des äußeren Körperepithels, und 1) annimmt, daß diese Cuticula wie auch die ganze Radula durch Umwandlung der Zellen entstehe. Diese Ansicht sucht er namentlich dadurch zu stützen, daß er zwischen den Zellen des Körperepithels und dessen Cuticula keine scharfe Grenze wahrnehmen kann, und zweitens dadurch, daß er die Radula von Chaetoderma nitidulum einfach als Fortsetzung der äußeren Cuticula mit „lokaler Verdickung“ findet. Von der Radula dieses Tieres sagt unser Gewährsmann allerdings, daß sie „nur aus einem einzigen, kegelförmigen Stachel oder Zahn besteht, dessen Basis die ganze Radulatasche ausfülle“, und nennt dieselbe im Vergleich mit der Radula der übrigen Mollusken ein rudimentäres Gebilde. Ähnlich spricht sich Wirén über die Radula von Proneomenia acuminata aus, welche sich dem bei Prosobranchien und Chitonen herrschenden Typus nähere; seine Behauptungen, welche er verallgemeinert, beziehen sich aber außerdem auf Untersuchungen, die an Chiton, Buccinum, Littorina und anderen Prosobranchien, sowie an Helix pomatia angestellt wurden. 2) Nachdem eine Odontoblastengruppe durch Cuticularisierung in seinem Sinne einen Zahn gebildet hätten, würden sie in gewöhnliche Epithelzellen umgewandelt und durch eine neue Odontoblastengruppe ersetzt werden. — Was nun den ersten Punkt anbelangt, daß nämlich die Zelle allmählich sich in die Cuticula verwandle, ähnlich wie sich vielleicht die Cuticula der pflanzlichen Zellmembran durch Verdickung derselben bilde, so muß ich Wirén entschieden entgegentreten. Denn einmal kann ich zwischen Absonderung und absondernden Zellen mit größter Deutlichkeit eine scharfe Linie wahrnehmen, auch da, wo die Sekretion ganz frisch ist, so daß diese wichtigste Stütze der Wirén'schen Auffassung ent-
zogen wäre. Das Gleiche sagt Thiele (39) von der Cутicula der äußeren Körperhaut bei Neomenia grandis n. sp.: „Die gewöhnlichen Hypodermiszellen sind in der Regel außen etwas abgerundet und hier durch einen deutlichen Umriß gegen die Cuticularsubstanz abgegrenzt; in feinen Schnitten habe ich das deutlich gesehen, während Wirén angiebt, daß Cuticula und Zellen durch keine scharfe Grenze geschieden sind.“ Ebenso ist nach Thiele die Hypodermis von Proneomenia neapolitana Thiele und Proneomenia vagans gegen die Cuticula scharf abgegrenzt. Zu gleichen Resultaten kommt Plate (30) bei der Untersuchung der Kiefer von Dentalium dentale, und diese Kiefer wären gewiß ebenso gut wie die Radula als bloße Cuticularisierung zu betrachten, namentlich da dieselben ja in der Regel in die gewöhnliche Cuticula übergehen. Die Kiefer von Dentalium sind etwa 4 mal so dick als ihre Matrixzellen. Ebenso deutet die Figur Plate's (22), die nach den Kiefen von Daudebardia rufa entworfen wurde, darauf hin, daß wir es mit einer allmäßlichen Sekretion zu thun haben. Untersuchungen, die gegen Wirén's Auffassung sprechen, könnte ich noch eine ganze Reihe anführen, so die von Rücker (14), Kölliker (6), Sharp (15), Heuscher (35), Pruvot (27) etc. Wie endlich meine eigenen Befunde unzweideutig für die Auffassung sprechen, daß es sich um eine Sekretion der Matrixzellen handelt, so läßt sich auf der anderen Seite aus denselben schließen, daß die gleiche Odontoblastengruppe durch mehrmalige Sekretion sich an der Zahnbildung beteiligt. Denn wie aus meinen Präparaten hervorgeht (Fig. 12, 15, 7, 8, 9), sind die odontogenen Zellen viel zu hoch, als daß sie nach einmaliger Cuticularisierung im Sinne Wirén's und Abstoßung der cuticularisierten Schicht in das relativ sehr dünne basale Epithel übergehen könnten. Mindestens müßten wir dann annehmen, daß die Verwandlung der äußersten Zelleteile in die chitinösen Massen mehrere Male nacheinander erfolgte, bis diese Zellen erschöpft wären und in Bezug auf Größe die Form der basalen Epithelzellen angenommen hätten. Oder soll der ganze dicke Zellwulst (Fig. 8, 9), nachdem er durch Cuticularisierung ein relativ so dünnes Zahnplättchen gebildet hat, sich in das außerordentlich dünne Epithel verwandeln und durch ein neues Zellpolster ersetzt werden, bevor ein zweiter Zahn gebildet werden kann? Dagegen spricht doch sicher der große Unterschied der eigentlichen Odontoblasten und des Basalepithels, sowie namentlich auch der allmäßliche Übergang der einen Zellgruppen in die anderen. — Im
weiteren würde, wenn anders Wirên’s Darstellung richtig wäre, die Frage zu beantworten sein, wie sich die Zellen verhalten, die die Basalplatte absondern, welche doch eine kontinuierliche Schicht bildet, oder findet für diese Zellen doch Sekretion statt? Oder ist es möglich, daß die Odontoblasten, nachdem sie im Sinne Wirên’s durch Cuticularisierung einen Zahn gebildet haben, zuerst in die unteren Zellen übergehen, um die Basalplatte auszuscheiden? Finden hier beide Prozesse, d. h. Cuticularisierung nach der Darstellung Wirên’s und Sekretion statt? Ist es endlich bei einer solchen Annahme möglich, daß, da die Zähnchen nach ihrem ersten Auftreten bald bis vorn auf die Zunge wahrgenommen werden können, die Umwandlung der Odontoblasten in gewöhnliche Epithelzellen so rasch vor sich gehe?

Ganz anders stellen wir uns nun zur Wirên’schen Hypothese, wenn wir die Cuticularbildung als Umwandlung der Zellen betrachten, insofern eben die Ausscheidung von Sekretionsstoffen auch eine Umwandlung ist, trotzdem auch dann noch nicht vergessen werden darf, daß die Radula ein so kompliziertes Gebilde ist, daß sie nicht als eine einfache, sondern mindestens hoch differenzierte Cuticularbildung angesehen werden kann. Sie mag, wie ich nach den embryonalen Befunden selbst darzutun versuchen will, in der That aus einer ursprünglich einfachen Cuticularisierung hervorgegangen sein, hat sich aber zu einem so komplizierten Apparat entwickelt, daß von einem einfachen Bildungsmodus nicht mehr die Rede sein kann.

Wenn wir nun die Cuticularisierung in unserem Sinne auffassen, so ist es außerordentlich schwer, zwischen Cuticularbildung und Sekretion eine scharfe Grenze zu ziehen. Jedenfalls ist der Unterschied kein prinzipsieller, sondern mehr ein gradueller; d. h. wenn Zellen einmal gewisse Stoffe absondern, die dann erhärten, so pflegen wir das Cuticularbild zu nennen, während wir eher geneigt sind, von Sekretion zu sprechen, wenn eine solche Absonderung längere Zeit andauert.

Es spricht nun für eine Auffassung der Radula als das Resultat einer Cuticularisierung schon ihre ganze Entstehungsweise. Die Radulasche ist ihrer Entwicklung nach eine Einstülzung des ursprünglich an der Oberfläche des Tieres gewesenen Epithels oder Ektoderms. Die Zellen, welche die Radulasche bilden, stehen auch im erwachsenen Zustand immer in Verbindung mit jener Zellschicht und ebenso ist es Thatsache, daß ein allmäßlicher Übergang der Radula in die gewöhnliche Cuticula, die in der
Mundöhle und auf der Körperoberfläche getroffen wird, konstatiert werden kann. Außerdem ist die allererste Anlage der Radula, jene einfache erste chitinöse Lamelle (Fig. 3, 4, 5) nichts anderes, als eine starke Cuticula, gebildet durch die unter ihr liegenden Zellen, und die später von hinten verstärkt wird durch neue, sich anlagende Chitinmassen, die von neuen hinteren Zellen ausgeschieden werden. Ebenso ist das erste Auftreten der Zähnchen eine Cuticularisierung, dafür spricht ihr inniger Zusammenhang mit der basalen Cuticularplatte, sowie der Umstand, daß die absondernden Zellen auch hier mit der Zeit ersetzt werden; denn ich halte es durchaus für wahrscheinlich, daß diese sogenannten Odontoblasten, nachdem sie eine gewisse Menge Cuticula, d. h. Zähnchen gebildet haben, in das basale dünne Epithel übergehen, aber nicht, nachdem sie nach der Darstellung Wirén's einen Zahn gebildet haben, sondern ganz nach und nach, so daß dieselben Zellen, die zuerst an der Bildung der oberen Zahnstücke beteiligt sind, später an der Bildung der unteren Zähnteile und schließlich selbst der Basalplatte mitwirken, um dann endlich im basalen Epithel aufzugehen. Die Zeit der stärksten Sekretion ist die, in der die Zellen an der Bildung der Basalplatte thätig sind. Nur so können wir es verstehen, daß vom Hintergrunde der Scheide zuerst relativ nur kleine, mit der Größenzunahme des Tieres aber immer größere Zähne abgesondert werden; es werden eben die alten Odontoblasten nach und nach erschöpft und durch neue kraftigere und größere ersetzt. Und diese neuen Odontoblasten bilden sich aus jenem gleichen Zellkomplex, welcher auch das obere Epithel immer wieder neu bildet. Auch diese Annahme hat nichts Unwahrscheinliches an sich; denn sowohl das obere Epithel wie auch die gebildeten Odontoblasten haben die gleiche Aufgabe, nämlich die Absonderung von Chitin, und auch die oberen Zellen rücken allmählich nach vorn und werden langsam erschöpft. Ich stütze meine Darstellungsweise nun allerdings nicht durch beobachtete Zellteilungen und Kernfiguren, was bei diesen kleinen Zellen sehr schwer wäre, sondern hauptsächlich durch den allmäßlichen Übergang jenes eben erwähnten Zellkomplexes in die Zellen des oberen Epithels einerseits und in die Odontoblasten andererseits, sowie durch den allmäßlichen Übergang der Odontoblasten in die basalen Epithelzellen. Ebenso spricht die ganze Entstehungsweise der Taschenzellen für unsere Ansicht, und gerade darin, daß die Zellen allmäßlich erschöpft werden und sich umwandeln, sehe ich noch den Vorgang, der als Cuticularisierung zu qualifizieren ist.
daß die Chitinsekretion einer Zelle zeitweise unterbrochen werde, um dann wieder von neuem zu beginnen. Ich habe bereits oben mitgeteilt, daß an der embryonalen Radula von Paludina Zahn und Basalmembran schon vom ersten Auftreten an verbunden sind, daß aber dort, wo die Zahnspitze gebildet wird, die jüngsten Odontoblasten sind, deren Sekretion eben beginnt, die dann durch den Druck der viel stärkeren Basalplattenausscheidung von der Unterlage abgehoben wird. Bei diesem Erklärungsversuch können wir auch verstehen, warum die Zähne nicht alle völlig gleich sind und eine immerhin noch ziemlich große Formverschiedenheit bei demselben Tier aufweisen. — Für ganz unzutreffend halte ich die Meinung Simroth’s (23), welcher sagt, daß die cuticularen Sperrhaken, von denen früher die Rede war, bei der Freßbewegung die neuen eben erzeugten Zahnreihen von den bildenden Zellen loslösen, damit diese zur Abscheidung einer neuen „völlig kon- gruenten“ schreiten können. Wie bei dieser zeitlich sehr unregelmäßigen Bewegung „völlig kongruente“ Zähne entstehen sollen, kann ich nicht einsehen. Zudem müßte bei Embryonen schon eine solche Freßbewegung stattfinden; auch besitzt Paludina gar keine solche Sperrhaken, und wie müßte man sich endlich dieses Zerren vorstellen bei den Mollusken, die eine aufgerollte Radulascheide haben, die die Länge des Körpers selbst übertrifft? —

Was den Ersatz der Odontoblasten durch neue anbelangt, so sagt Foli (20): „La lamelle qui les relie (nämlich die Zähne) paraît être sécrétée par la même couche épithéliale, qui donne naissance aux dents“. „Il resterait à savoir comment se comporte cet organe odontogène pendant la naissance successive des nouvelles rangées de dents qui s‘ajoutent au bord postérieur de la radule à mesure que l‘animal grossit et que la bandelette s‘allonge. Etant donnée la forme complexe de la matrice épithéliale, un déplacement de cette dernière ou des dents en voie de formation semble inadmissible et l‘on est amené à prisermer, que de nouveaux bourrelets ou gradins dentaires doivent s‘ajouter en arrière de ceux qui existent, tandisque les plus anciens se résor- beraient. Telle est du moins l‘explication qui semble la plus naturelle.“ Während ich Foli vollständig beistimme, wenn er für nötig hält, daß an Stelle der alten Polster (bourrelets) neue treten, so muß ich der von ihm vorgeschlagenen Bildungsweise absolut widersprechen, eine Bildungsweise, die er weder durch Figuren noch sonstige Anhaltspunkte zu stützen vermag.

Im weiteren nimmt Rössler an, daß die Radula sich schneller
nach vorn bewege, als das unter ihr liegende Epithel. Ich kann mir nicht denken, wie die Basalplatte, die die Zähnchen trägt und nach den Präparaten mit ihrem Epithel in inniger Verbindung zu sein scheint, über diese Zellschicht hinweggleite. Da ist nur eine Möglichkeit, nämlich die Zellen bewegen sich mit der Basalplatte nach vorn. Zwar findet RÜCKER und RÖSSLER zwischen Basalepithel und Basalplatte noch eine Subradularmembran, welche mit der Basalplatte keinen innigen Kontakt haben und über welche hinweg die Basalplatte gleiten soll. Aber einmal ist an der embryonalen Radulascheide, die sich noch außerordentlich zu verlängern hat, noch nichts von einer solchen Subradularmembran, die eine sekundäre Ausscheidung der basalen Epithelzellen ist, zu bemerken, und andererseits giebt RÖSSLER selbst an, daß diese ebenfalls chitinöse Zwischenschicht auch bei erwachsenen Tieren erst etwa in der Mitte ihren Anfang nehme und immer schwach verbunden bleibe mit der Basalplatte. Also müsste auch nach RÖSSLER mindestens noch in der hinteren Radulahälfte die basalen Zellen mit der Basalplatte vorwärtschreiten, und es würde jene Subradularmembran erst nötig, wenn die Zellen in der Vorwärtsbewegung der starken Sekretion wegen dem Vorschreiten der Chitinmassen nicht mehr gleichlen Schritt zu halten imstande sind, was auch wahrscheinlich ist, da die Umwandlung der Odontoblasten in gewöhnliche Epithelzellen nur eine ganz langsames sein kann. — Auch nach WIREN ist die Subradularmembran ein sekundäres Gebilde, das nur bei Mollusken mit solcher Radula angetroffen wird, bei denen ein Ersatz der vorderen Teile stattfindet. Auch die Subradularmembran ist ein cuticulares Gebilde.

Nach RÖSSLER werden ferner Zahn und Basalmembran getrennt abgesondert und verschmelzen erst nachträglich. Ich habe keinen Grund, in diese Angaben RÖSSLER's Zweifel zu setzen und kann wenigstens für die Molluskengruppe mit „Odontophyten“ die Richtigkeit dieser Annahme anerkennen; aber auch das würde unseren Erklärungsversuch, wie der neu gebildete Chitinzahn sich von seiner Unterlage löst, nicht aufheben, indem dann jene Druckwirkung der vorwärtschreitenden Basalplatte sich einfach erst nach der Verschmelzung geltend machen würde. Dies scheinen namentlich auch RÜCKER's Figuren zu bestätigen, und nach SHARP sollen Zahn und Basalplatte auch bei einem Vertreter mit „Odontophyten“ schon nach dem ersten Auftreten verwachsen sein. Auch spricht er sich mit Bestimmtheit dahin aus, daß mehrere Zellen gleichzeitig, und nicht successive zur Bildung eines Zahnes beitragen. FOL (20), welcher glaubt, daß zuerst die Spitze der
Zähne, dann ihr Basalteil und endlich die Basalmembran gebildet würde, ist bereits von Plate (27) in treffender Weise widerlegt.

Endlich kann ich noch zu Gunsten meiner Auffassung die Beobachtungen Thieles (39), Pruvot's (27) und Plate's (28) anführen. Thiele findet die Basalmembran „ohne scharfe Grenze in die gelb glänzende Substanz der Platten übergehend“; so bei Proneomenia neapolitana, während für Proneomenia vagans sogar das Vorhandensein einer einheitlichen Basalmembran in Abrede gestellt wird. „Zwischen den Zähnen der einzelnen Längsreihen scheinen basale Verbindungen zu existieren, aber wahrscheinlich sind es nur die Basalteile der einzelnen Zähne, die bis zur Berührung einander genähert, mit einander verschmolzen sind.“ Da die Radula dieser Tiere äußerst einfach ist und also mehr eine embryonale Ausbildung zeigt, so kommen wir auch hier zum Ergebnis, daß Basalmembran und Zähne ursprünglich dieselbe Ausscheidung sind, die sich erst später in diese Teile trennt. Bei der Gruppe mit „Odontophyten“ tritt dann eine höhere Differenzierung ein, so daß Basalplatte und Zahnchen sogar gesondert ausgeschieden werden und erst nachträglich verwachsen, und noch im ausgebildeten Zustand eine wenn auch nicht sehr scharfe Grenze der Zähne gegen die untere Platte erkennen lassen. Auch Thiele kann sich das Vorrücken der Zähne nur durch Wachstumserscheinung des Epithels erklären, und meint namentlich, daß er noch mehrere Fälle erwähnt, wo eine wirkliche Basalmembran fehlt, daß nur durch eine solche Annahme es verständlich werden könne, wie bei diesen Tieren die Zahnchen ohne gegenseitige basale Verbindung nach vorn rücken. — Auch Wirén findet die allerdings rudimentäre Radula von Proneomenia acuminata „nicht frei, sondern mit dem Epithel zusammenhängend“. — Pruvot sagt von Paramenia impexa: „Au lieu de deux formations indépendantes, une lame chitineuse de soutien continue d’une part et de l’autre la série des denticules venant ultérieurement s’y souder, nous trouvons des crochets qui se forment chacun tout d’une pièce et restent séparés les uns des autres toute la vie.“ — Nach Plate ist endlich „die Basalarmembran der Radula von Cadulus subfusiformis an den Seitenteilen, wo sie nicht mehr mit Zahnchen besetzt ist, ganz ungewöhnlich dick.“ Auch die embryonale Platte von Paludina vivipara ist zur Zeit, da noch keine Zahnchen existieren, „ungewöhnlich dick“, ganz einfach, weil eben die Zahnchen ein Stück Basalplatte sind (vgl. Fig. 7, 12).

Ob nun die Darstellungsweise, die durch die Entwicklung
der Radula gewonnen wurde, sich auch auf jene Gruppe mit „Odontophyten“ übertragen lasse, das kann mit Sicherheit nur eine embryonale Untersuchung entscheiden.

Eine letzte Frage, die noch an dieser Stelle der Erörterung unterzogen werden muß, ist die, ob, wenn die ersten embryonalen Zähne aufzutreten beginnen, diese schon von Anfang an mit der nämlichen Reihenzahl vorhanden sind, wie im ausgewachsenen Zustand, d. h. ob die Anzahl der Längsreihen von Anfang an konstant ist. Ich habe mich mit dieser Frage, die sich nicht leicht entscheiden läßt, nicht mehr eingehend beschäftigt, glaube sie aber bejahen zu müssen. Ob die embryonalen Zähne oben mit den feinen Spitzen versehen sind, wie sie schon Lebert beschrieben hat, entgeht natürlich der mikroskopischen Beobachtung, die sich auf Schnittserien stützt, und ich kann auch hier nur die Vermutung aussprechen, daß die Zähnchen von Anfang an die definitive Form haben und später also nur noch an Größe zunehmen. Die Bestätigung dieser Annahme finde ich schon bei Troschel (1), während Semper (5) behauptet, daß an jüngeren Stadien weniger Reihen vorkommen. In allen Stadien, sagt er, können von vorn bis zu hinterst für dasselbe Individuum gleich viel Zähne, die auf eine Querreihe fallen, konstatiert werden; dadurch konnte Semper seiner Häutungstheorie eine Stütze geben. Nun habe ich in Querschnitten von Embryonen, wo allerdings die Zahnbildung schon in vollstem Gange war, die Zahl von Polstern beobachtet, die derjenigen der Zahnplattenreihen des erwachsenen Tieres entspricht; die Schnitte stimmen überein mit denen, die Rößler wiedergegeben hat, weshalb eine Reproduktion meinerseits unterlassen wurde. Jedenfalls kann Semper's Beobachtung nur irrtümlich sein; denn wenn auch noch später mehr Reihen vorhanden wären, so müßten mindestens Jugendstadien gefunden werden, wo die Zahl der Längsreihen oder der Zähne pro Querreihe in hinteren und vorderen Abschnitten variabel ist, da ja alle Reihen hinten gebildet und allmählich nach vorn geschoben werden. Sterki (38), der embryonale Mollusken untersucht hat, deren Radula eine große Zahl von Längsreihen besitzt, ist zu dem Resultat gekommen, daß auch die Form der Zähne, nicht nur ihre Größe, in der Jugend viel einfacher sei, daß der ursprünglichen Reihenzahl neue Längsreihen hinzugefügt werden, und daß die Radula eine wahre Metamorphose durchmache. Er be-
stätigt meine Beobachtung, daß die Radula sich schnell entwickelt („the Radula develop rather rapidly“), und zwar schneller verhältnismäßig, als das Wachstum des Tieres stattfinde. Sterki läßt dann die Frage offen, ob die stetige Umwandlung der Radula nur bis zum Reifezustand des Tieres gehe oder noch weiter. Jedenfalls können, und das wird auch von Sterki betont, embryonale Untersuchungen auch in dieser Hinsicht von großem Werte werden. Ich stelle nun die gewonnenen Resultate in folgende Sätze zusammen:

1) Die Radulascheide ist eine Ausstülpung des ektodermal entstandenen Vorderdarmes.

2) Der Radulaapparat bildet sich erst aus, wenn die meisten Organe im Körper schon entwickelt sind, immerhin läßt sich eine einfache Radulafalte schon ziemlich frühzeitig, in einigen Fällen sogar, bevor der Mund sich eingestülpft hat, konstatieren.

3) Zuerst wird eine chitinöse Lamelle (die Basalplatte) abgesondert, der erst später die Bildung von Zähnchen folgt.

4) Diese Lamelle ist ein Sekretionsprodukt der unteren (basalen) Zellen. Neue Chitinteile lagern sich in der länger werdenden Tasche hinten an und werden durch neue Zellen abgesondert, während die ursprünglichen Matrixzellen durch allmähliche Er schöpfung in die niedrigen Zellen des basalen Epithels übergehen.

5) Die ins Innere der Radulascheide hängenden follicelartigen Zellgruppen der oberen Taschenwand werden schon lange vor dem Auftreten der Zähnchen gebildet, und haben schon auf die embryonale Basalplatte eine besondere Schicht aufzutragen. Die Form dieser Zellen ist vor dem Vorhandensein der Zähnchen eine unregelmäßige.

6) Die Berührung dieser Zellgruppen mit den später auftretenden Zähnchen ist wenigstens bei Paludina nur eine ein seitige, so daß auch das Überziehen mit einer besonderen widerstandsähnlichen Schicht nur einseitig angenommen werden kann.

7) Die Zähnchen bilden sich bei Paludina von Anfang an in Kontakt mit der Basalplatte und sind als dieselbe Bildung aufzufassen.

8) Auch die Odontoblasten werden nach und nach durch neue sekretorische Zellen ersetzt. Sie erschöpfen sich allmählich und verwandeln sich in die Zellen, welche die Basalplatte absondern, um schließlich in den basalen Epithelzellen aufzugehen. Immerhin beteiligt sich die gleiche Odontoblastengruppe an der Bildung mehrerer Zähne.
9) Alle Gebilde der Radula stammen vom ursprünglichen gleichen einfachen und einheitlichen Epithel her.

11) Die Radula kann ihrem Entstehen nach als eine ursprünglich einfache Cuticulabildung qualifiziert werden, die sich aber zu einer hoch differenzierten entwickelt hat; so scheint es nach der embryonalen Untersuchung bei den Mollusken mit „Odontoblasten“ zu sein, wahrscheinlich ist dies auch der Fall bei den Mollusken mit „Odontophyten“.

Anhang.

Ich habe gelegentlich meiner Radulauntersuchung auch das erste Auftreten der Speicheldrüsen konstatieren können. Dieselbe bildet sich wie die Radula erst spät aus und ist ebenfalls ekto-dermaler Herkunft. Fig. 10 und 11 sind zwei aufeinanderfolgende Querschnitte durch das ganze Tier, Fig. 17a und b zwei sich folgende laterale Längsschnitte durch die obere Oesophaguswand. Dem Embryo, dem Fig. 10 und 11 entnommen sind, ist durch eine kleine Unvorsichtigkeit der eine Fühler abgerissen worden, und er wurde in der Zeichnung schematisiert wieder ergänzt. Da die Schnitte, nach denen diese Figuren entworfen wurden, als wohlgeglingene bezeichnet werden können, so will ich hier nur kurz erwähnen, daß die Speicheldrüse zuerst sich nur als kleine, paarige Ausstülpung (sp) der oberen Oesophaguswand anlegt, die dann immer mehr sich nach hinten verlängert und später auch seitliche Aussackungen treibt. Im übrigen verweise ich auf Fig. 10, 11 und 17.
Embryonale Entwicklung der Radula von Paludina vivipara. 389

Litteraturverzeichnis.
(In chronologischer Reihenfolge.)

2) Lébert, H., Beobachtungen über die Mundorgane einiger Gasteropoden. Müller's Arch., 1846.
18) Garnault, Paul, Recherches anatomiques et histologiques sur le Cyclostoma elegans. Actes de la Soc. Linn. de Bordeaux, 1887.
32) — — *Fortsetzung. II. Chaetoderma productum, Neomenia, Proneomenia acuminata in Soenska Akad. Handl., Bd. XXV, No. 6.*
Erklärung der Figuren

auf Tafel XIX, XX, XX a.

Allgemeine Bezeichnungen.

- **au** = Auge.
- **bp** = Basalplatte.
- **cg** = Cerebralganglion.
- **d** = Darm.
- **ekt** = Ektoderm.
- **fu** = Fuß.
- **fu** = Fühler.
- **h** = Herz.
- **k** = Kiemen.
- **m** = Mund.
- **mh** = Mantelhöhle.
- **msd** = Mesoderm.
- **msk** = Muskelstränge.
- **nu** = Nuchalzellen.
- **od** = Odontoblasten.
- **oe** = Oesophagus.
- **oef** = Oesophagusfalten.
- **oet** = oberes Epithel der Radula.
- **p** = Pericard.
- **pg** = Pedalganglion.
- **rd** = Radula.
- **rt** = Radulaatasche.
- **sbl** = Sublingualfalte.
- **sboe** = Subösophagealfalte.
- **sch** = Schalendrüse.
- **schl** = Schlund.
- **sp** = Speicheldrüse.
- **uet** = unteres Epithel der Radula.
- **v** = Velum.
- **vs** = Viseralstrang.
- **zc** = Zähuchen.
- **zg** = Zellgruppe.
- **zu** = Zunge.

Tafel XIX.

Fig. 1. Längsschnitt durch einen noch jungen Embryo mit beginnender Radulafaltenbildung.

Fig. 2. Längsschnitt durch ein älteres Stadium mit deutlicher Radulafalte. In beiden Figuren ist nur der vordere Abschnitt des Tieres gezeichnet.

Fig. 3. Längsschnitt durch einen ganzen Paludina-Embryo in ausgebildeterem Zustande (schematisiert).

Fig. 4. Längsschnitt durch den Kopfteil eines Embryos mit auftretender Radulaausscheidung.

Fig. 6. Querschnitt eines etwas jüngeren Embryos. Oberer und vorderer Abschnitt.

Fig. 7. Längsschnitt durch die Mundorgane, Radula, Zunge, Radulascheide etc.

Tafel XX.

Fig. 5. Wie Fig. 4, weiter entwickelt.

Fig. 8. Längsschnitt durch den hinteren Radulaabschnitt mit auftretender Zahnbildung. Über der Radula der Oesophagus.

Fig. 9. Wie Fig. 8.

Fig. 10. Querschnitt durch den vorderen Abschnitt eines Tieres. Auf diesem Schnitte kommt neben der Speicheldrüsenanlage das Nervensystem zum besonderen Ausdruck. Der abgefallene Fühler in schematisierter Weise rekonstruiert.

Fig. 11. Wie Fig. 10. Die Speicheldrüse ist hier im Schnitt getroffen.

Fig. 12. Längsschnitt einer noch jüngeren Radula ohne Zähnchen. Hinterer Teil.

Fig. 13. Spermatozoiden, die im Schlunde der Embryonen gefunden wurden.

Tafel XXa.

Fig. 14a und b. Querschnitte durch eine Radula in verschiedenen Abschnitten, noch ohne Zahnbildung.

Fig. 15. Wie Fig. 8 und 9.

Fig. 16. Längsschnitt durch den vordersten Zungenabschnitt eines bald reifen Embryos.

Fig. 17a und b. Zwei aufeinanderfolgende Längsschnitte der oberen Oesophagusswand mit Speicheldrüsenausstülpung.
Die cambrische Stammgruppe der Echinodermen.

Vorläufige Mittheilung

von

Ernst Haeckel,
Jena.

1. Die Echinodermen bilden einen abgeschlossenen selbständigen Stamm der Metazoen, welcher nur an seiner einheitlichen Wurzel durch eine verbindende Zwischengruppe mit dem ancestralen
Ernst Haeckel,

Stämme der enterocoelen Würmer zusammenhängt. Die gemeinsame Stammgruppe dieses monophyletischen Stammes ist in keiner der fünf lebenden Echinodermen-Classes zu suchen, sondern in einer ausgestorbenen Classe, welche in cambrischer oder schon in präcambrischer Zeit gelebt hat.

2. Versteinerte, wohl erhaltene Überreste dieser paläozoischen Stamm Classe finden sich zahlreich in den cambrischen und silurischen Sediment-Gebirgen vor, sind aber bisher irrtümlich zu den Cystoideen gestellt worden; sie sind von diesen letzteren als besondere Classe abzutrennen, für welche ich wegen der urnenähnlichen Gestalt ihrer Panzerkapsel die Bezeichnung Amphoridea vorschlage („Urnensterne“).

4. Die verschiedenen Genera der Amphorideen lassen sich auf vier Familien vertheilen: 1) Archaeocystida, 2) Aristocystida, 3) Palaeocystida und 4) Anomocystida. Von den echten Cystoideen, zu welchen dieselben bisher gestellt wurden, unterscheiden sie sich wesentlich durch den gänzlichen Mangel der Ambulacra, die Abwesenheit jener fünf charakteristischen „Ambulacral-Felder“, in deren perradialen Mittellinien die 5 Radial-Canäle des Ambulacralsystems, die 5 anliegenden perradialen Nerven-Stämme, Blutgefäße u. s. w. in aboraler Direction verlaufen.

6. Die äußere Gestalt der Theca oder Panzerkapsel ist bei
Die cambrische Stammgruppe der Echinodermen. 395

den meisten Amphorideen eiförmig oder birnförmig, oft einer
Ascidie ähnlich. Das dünnere (untere) Ende geht gewöhnlich in
einen kurzen Stiel über, mittelst dessen das Thier am Boden be-
festigt war (wenigstens in der Jugend); am entgegengesetzten
oberen Pole der verticalen Hauptaxe liegt die Mundöffnung.
Man würde daher die Grundform für monaxon erklären
können, wenn nicht stets durch eine zweite, excentrische Öffnung
die Lage des Afters bestimmt bezeichnet würde; derselbe ist
meistens durch eine „Klappenpyramide“ geschlossen, wie bei den
ähnlichen Cystoideen und einigen Holothurien.

7. Die Linie, welche die centrale Mundöffnung und die ex-
centrische Afteröffnung der Amphorideen direct verbindet,
be-trachten wir (— ebenso wie bei den Cystoideen und Crinoideen —)
als die Mittellinie der Ventralseite. Demnach ist die
ideale Vertikal-Ebene, welche wir durch diese ventrale Median-Linie
und die verticale Hauptaxe legen, die Median-Ebene oder
Sagittal-Ebene; dieselbe theilt den bilateral-symmetrischen
Körper in zwei spiegelgleiche Hälften, rechtes und linkes Antimer.
Die drei geometrischen Punkte, welche die Lage der Median-Ebene
im-mer klar bestimmen, sind: I. das Centrum des Mundes, II. das
Centrum des Afters, III. das Centrum des aboralen Stiel-Endes
oder der Basis.

8. Zwischen den beiden constanten Darm-Öffnungen zeigt die
Theca der meisten (— nicht aller —) Amphorideen noch eine
dritte Öffnung, die wir ebenso wie bei den Cystoideen als Geni-
tal-Mündung deuten. Dieser kleine Gonoporusrh liegt zwischen
Mund und After etwas asymmetrisch, meistens links von der ven-
tralen Median-Linie. Bisweilen rückt der Gonoporus sehr nahe an
den After heran; wenn der erstere fehlt, ist er wahrscheinlich mit
letzterem verschmolzen; die Geschlechtsproducte werden dann
durch den After entleert (Holocystis, Dendrocystis u. a.).

9. Einige Amphorideen besitzen außer den angeführten drei
Kapsel-Öffnungen noch eine vierte. Am deutlichsten ist dieselbe
bei Aristocystis; sie liegt hier als ein Querspalt gleich hinter dem
rechten Mundwinkel (etwas rechts von der ventralen Median-Linie).
Ich halte sie für den Hydroporus, die einfache äußere Öffnung
des kurzen Steincanals (Hydroductus), welcher Wasser in den
Hydrocircus führt (den Wassergefäßer des Mundes). Bei Deuto-
cystis liegt zwischen Mund und After (etwas links von der Bauch-
linie) eine große dreiteilige Öffnung; ich vermuthe, daß das vordere
(orale) Loch der Hydroporus ist, die beiden hinteren (aboralen)
Löcher die paarigen Geschlechtsöffnungen (wie bei der Tiefsee-Holothurie Elpidia purpurea).

10. Während in den älteren, anscheinend monaxonen Familien, den Archaeocystiden, Aristocystiden und Palaeocystiden, die bilaterale Symmetrie des inneren Körperbaues nur durch die Lage der beiden Darmöffnungen äußerlich angedeutet wird, erscheint dieselbe sehr scharf ausgesprochen in der merkwürdigen jüngeren Familie der Anomocystiden. Diese haben die festsetzende Lebensweise aufgegeben und sich wahrscheinlich kriechend (— vielleicht auch schwimmend —) auf dem Meeresboden fortbewegt; dadurch hat der Körper die Form eines flachen Schildkröten-Panzers angenommen, dessen convexe Rückenseite anders getäfelt ist als die plane oder concave Bauchseite; der modifizirte Stiel, dessen angeheftetes Ende sich abgelöst hat, scheint als Locomotions-Organ gewirkt zu haben.

14. Dritte Familie: **Palaeocystida** (— oder *Echinospheraida sensu restricto! —*). Genera: *Echinosphera, Arachnocystis, Palaeocystis, Comarocystis*. Amphoriden mit 3—5 oder mehr radialen Brachiolen, mit monaxoner Form der getäfelten Theca; am Meeresboden festgeheftet (im Alter bisweilen frei), daher mit vertikaler Hauptaxe, Mund oben. Die circoralen Primär-Tentakeln (3, 5 oder mehr) entwickelten sich stärker, verästelten
Ernst Haeckel,

sich und erhielten zur Stütze ein gegliedertes Skelet; auf diesen einzeiligen oder zweizeiligen Mundärmchen (Brachiola) standen die Secundär-Tentakeln vermuthlich zahlreich in alternirenden oder gegenständigen Reihen, bei Comarocystis gestützt durch Pinnulae. Auch wenn sich an der Oralseite der circoralen (— direct vom Mundrohr entspringenden! —) freien Brachiolen „Ambulacral-Furchen“ stärker ausprägten (Echinosphaera), ging doch deren Bildung niemals in aboraler Direction auf die Theca über.

16. Die innere Organisation des Malakoms der Amphorideen, über welches uns die fossilen Panzerkapseln — abgesehen von den wichtigen Öffnungen! — nur sehr wenig Aufschluß geben können, läßt sich bis zu einem gewissen Grade von Wahrscheinlichkeit erschließen aus der vergleichenden Anatomie und Ontogenie der übrigen Echinodermen, besonders der Holothurien. Wir dürfen danach annehmen, daß die Amphorideen einen einfachen Darmkanal mit Mund und After besaßen, angeheftet durch ein Mesenterium; zu beiden Seiten des letzteren hingen ein paar einfache Gonaden. Das Ambulacral-System behielt noch die ursprüngliche einfache Bildung bei, welche wir bei den heutigen Pentactula-Larven finden: Ein einfacher kurzer Steinkanal (Hydroductus) mündete nach außen durch einen einfachen Hydroporus (entweder direct oder vereinigt mit dem Gonoporus); nach innen führte derselbe in den einfachen Hydrocircus (den circoralen Wassergefaß-Ring); von letzterem gingen nur die Canäle in die circoralen Tentakeln ab, aber keine „Radial-Canäle“ an die Leibeswand; echte „Ambulacra“ fehlten noch ganz.

17. Die echten Cystoideen, deren wesentliche Verschiedenheit von den dazu gerechneten Amphorideen bisher nicht erkannt war, unterscheiden sich von ihnen in erster Linie durch die Ausbildung von echten Ambulacra, d. h. von fünf perradialen Bezirken des Kelches oder Perisoms, in welchen 5 ambulacrale „Radial-Canäle“ oder Principal-Canäle in aboraler Direction (!) verlaufen; von
Die kambrische Stammgruppe der Echinodermen. 399

18. Die äußere Gestalt und auch die Panzer-Täfelung ist bei den Cystoideen noch sehr ähnlich derjenigen ihrer unmittelbaren Vorfahren, der ascidienförmigen Amorphideen. Sie unterscheiden sich aber von ihnen sofort — innerlich wie äußerlich — durch die Pentaradial-Struktur der Theca, welche durch die Ausbildung der 5 perradialen, vom Munde ausgehenden Ambulacrallinien bedingt wird. Man darf diese, in die Kapselwand einge- lagerten „Nahrungsfurchen oder Tentakel-Rinnen“ nicht als „an-
gewachsene Arme“ bezeichnen (wie noch jetzt häufig geschieht).

19. Die Grundform der Theca ist demnach bei den Cystoideen — wie bei allen übrigen Echinodermen (nur die Amphorideen ausgenommen!) bilateral-pentaradial und zugleich stets ein wenig asymmetrisch; die ventrale Mittellinie bildet auch hier wie bei den Amphorideen und Crinoideen die Linie, welche auf der freien Oberseite der Theca die centrale Mundöffnung mit der exzentrischen Afteröffnung verbindet; die leichte Asymmetrie beider Antimeren wird auch hier dadurch angedeutet, daß der Gonoporus meistens nicht genau in der ventralen Median-Linie sich öffnet, sondern etwas seitlich von derselben (gewöhnlich links).

21. Die Struktur der Panzerplatten, welche bisher oft in erster Linie zur Unterscheidung der Cystoideen-Familien
Ernst Haeckel,

Die cambrische Stammgruppe der Echinodermen.

24. Erste Familie: Pomocystida (= Sphaeronitida p. p.).

Genera: Glyptosphaera, Protocrinus, Fungocystis, Malocystis. Cystoideen mit zahlreichen irregulären Panzer-Platten und mit 3 oder 5 langen Ambulacral-Rinnen, welche sich unregelmäßig verzweigen und in weitlautiger Anordnung der irregulären Seitenäste weit über die Kapsel hinkriechen. Oft sind, vom dreispaltigen Munde ausgehend, 3 stärkere primäre Ambulacren zu unterscheiden, ein frontales (dem After gegenüber) und 2 posterale (zu beiden Seiten des Afters); von letzteren zweigen sich als schwächere secundäre Äste die 2 lateralen Ambulacren ab.

27. Vierte Familie: Callocystida (oder Apiocystida)

30. Die Holothurien sind unter den lebenden 5 Echinodermen-Classen diejenigen, welche sich in wichtigen Merkmalen von der gemeinsamen Stammgruppe des ganzen Stammes, den Protamphoriden, am wenigsten entfernt haben. Der Übergang von der ursprünglichen bilateralen in die später erworbene penta-
Die cambrische Stammgruppe der Echinodermen.

Die radiale Organisation hat bei ihnen noch nicht die Geschlechtsdrüsen betroffen; sie besitzen nur ein Gonaden-Paar, und eine einfache Geschlechtsöffnung, gleich den Cystoideen und Amphorideen. Wir können daher diese drei Classen unter dem Begriffe der Monorchonia zusammenfassen (oder „Anactinogoniidiata“). Die fünf anderen Echinodermen-Classen hingegen besitzen ursprünglich fünf Gonaden-Paare und 5 oder $x \times 5$ Geschlechtsöffnungen; sie stehen jenen als Pentorchonia gegenüber (oder „Actinogoniidiata“).

Jena, am 15. December 1895.
Phylogenetische Beziehungen der acht Echinodermen-Classen.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Echinodermen mit einem Gonoden-Paar, ohne Paraxon-Drüse und ohne genitalen Ring-Sinus</td>
<td>2. Holothurea.</td>
</tr>
<tr>
<td>2. Holothurea.</td>
<td>3. Cystoidea.</td>
</tr>
</tbody>
</table>

|---------------------------|----------------|

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genitaler Blutschinus circoral.</td>
<td>7. Ophiura.</td>
</tr>
<tr>
<td>Gonoden-Stämme perradial.</td>
<td>8. Asteridea.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genitaler Blutschinus periproctal.</td>
<td>8. Asteridea.</td>
</tr>
<tr>
<td>Gonoden-Stämme interradial.</td>
<td>8. Asteridea.</td>
</tr>
</tbody>
</table>
Untersuchungen über die Spermatogenese von Paludina vivipara.

Von

Prof. Leopold Auerbach

in Breslau.

Hierzu Tafel XXI u. XXII.

Inhalt:

I. Vorbemerkungen.
II. Untersuchungsverfahren und Periodicität der Samenbildung.
III. Ursprung und Teilung der Samenzellen.
 a) Entstehung der Spermatogonien.
 b) Die ruhende Spermatogonie.
 c) Nebenkern und Teilung der Spermatogonien.
 d) Die folgenden Zellgenerationen.
IV. Erste Periode der Ausbildung der haarförmigen Spermien.
V. Entwicklung der wurmförmigen Spermien.
VI. Syntaxis der zweierlei Spermien und weitere Ausbildung der haarförmigen.
VII. Rückblick.
VIII. Litteraturreverzeichnis.
IX. Tafelerklärung.

I. Vorbemerkungen.

In einer früheren, im April 1894 veröffentlichten, die Samenelemente verschiedener Tiere behandelnden Mitteilung (1 b) hatte ich in demjenigen Abschnitte, der Paludina viv. betrifft, als Ergebnis meiner Untersuchung u. a. berichtet, daß mit dem durch Siebold (26) im Jahre 1836 zuerst bekannt gemachten Dimorphismus der Samenelemente jener Gattung — vgl. auch Leydig (16) und M. v. Brunn (4) — zugleich ein wesentlicher Unterschied in
der tinctionellen Reaktionsweise der zweierlei spermatischen Ge-
bilde verbunden ist. Während nämlich der Kopf der sogenannten "haarförmigen" Samenelemente, ganz wie bei anderen befruch-
tungskräftigen Samenfäden — vgl. AUERBACH (1 e) — nach meinen Doppelfärbungen sehr schön blau, der Schwanz rot gefärbt ist, enthalten die wurmförmigen Samenelemente kein Körnchen kyanophiler Substanz, erscheinen vielmehr neben je- nen ersten, also unter dem Einflusse der nämlichen Doppeltinktion rein rot, ein-
schließlich ihres sogenannten Kopfes, eines sehr kleinen vor-
dersten, übrigens nicht scharf abgesetzten Abschnittes. Aus diesen Umständen und aus dem Eindringen des Achsenstranges in den sogenannten Kopfteil habe ich auch geschlossen, daß derselbe nicht als ein dem Kopfe anderer Samenfäden homologer Abschnitt, viel-
mehr als ein dem vorderen Ende des Schwanzes, allenfalls dem Mittel- oder Verbindungsstücke der Vertebraten-Spermien ver-
gleichbaren Teil anzusehen sei, wonach also diese wurmförmigen Gebilde eigentlich Samenfäden ohne Kopf seien. Ich hob dabei hervor, daß diese Thatsache sehr gut zu einer Ermittelung M. v. BRUNN's (12) stimme, nach welcher nur die haarförmigen Elemente in die Eier eindringen, während den wurmförmigen keine Beteiligung am Befruchtungsakte zukommt. Da bekanntlich ge-
rade der Kopf des in ein Ei eingedrungenen Samenfadens und eventuell an nicht fadenförmigen Samenelementen, wie denjenigen der Nematoden, ein kyanophiler Innenkörper des Vorderteils ¹) der-
jenige Bestandteil ist, der die Karyosomen des Spermakerns liefert und so einen Hauptsfaktor der befruchtenden Wirkung dar-
stellt, so muß der Mangel solchen Materials an sich schon die wurmförmigen Gebilde als zu jener wichtigen Funktion nicht be-
anlagt stempeln. Es bliebe nur die Frage übrig, ob sie irgend eine andere Rolle bei den die Fortpflanzung vermitteln- den Vorgängen spielen. Für eine solche haben sich aber früher gar keine Anhaltspunkte gefunden, abgesehen von einer älteren Angabe LEYDIG's (16), dahin lautend, daß in dem die befruchteten Eier umhüllenden Eiweiß auch wurmförmige Spermien zu finden seien. Diese Behauptung, selbst als richtig angenommen, würde doch nur

1) Ich habe festgestellt, daß bei Ascaris megaloccephala derjenige kuglige Bestandteil des Spermiums, der nach VAN BENEDEN zum männ-
lchen Pronucleus wird, nach meiner Meinung jedoch nur für die Karyosomen dieses Pronucleus das Material enthalten dürfte, ganz aus kyanophiler Substanz besteht (1 h, S. 36).

Diese letzte Schlüssefolgerung nun schien mir über das Ziel hinauszuschießen, theoretisch unwahrscheinlich und möglicherweise durch noch tiefer in alle Phasen des Prozesses eindringende Beobachtungen widerlegbar zu sein. Ich äußerte mich darüber mit den Worten: „immerhin bleibt es befremdlich, daß so typisch und massenhaft entstehende, sehr lebendige Gebilde ganz bedeutungslos sein sollten; und ich glaube, daß wir in so weit gehender negativer Richtung ein abschließendes und absprehendes Urteil zu fällen noch nicht in der Lage sind.“ Ich dachte dabei vorzugsweise an eine in irgend einem Vorstadium des Befruchtungsprozesses stattfindende Beeinflussung der haarförmigen Spermen durch die wurmförmigen, und in Erinnerung an meine früheren Beobachtungen bei Dytiscus marginalis (1 f) namentlich an etwas, das der in diesen Käfer von mir gefundenen Konjugation je zweier Samenfäden ähnlich sein könnte. Es sei mir gestattet, die bezeichliche Stelle aus meinen „Spermatologischen Mitteilungen“ hier anzuführen:

„Früher habe ich bei Dytiscus nachgewiesen, daß in den Männchen dieser Art an einer bestimmten Stelle ihres Genitalschlauches sich gesetzmäßig immer je zwei der Samenfäden in bestimmter Weise kopulieren und nach langem, sehr innigem Aneinanderhaften später wieder auseinanderweichen, und ich habe die Vermutung ausgesprochen, daß während der innigen Vereinigung der Köpfe, die wie bei konjugierten Infusorien fast einer Verschmelzung gleichkommt, ein Stofftauschaft zum Zweck einer völligen Ausgleichung etwaiger feinerer stofflicher Differenzen stattfinden möge. Ich habe ebenso diesen merkwürdigen Konjugationsvorgang wie auch die bekannte, so weit verbreitete Bildung von Bündeln der Spermen im Hoden aus dem Bedürfnis nach einem solchen Austausch und Ausgleich zu erklären gesucht, als einem Mittel, die auf die Nachkommenschaft zu vererbenden Eigenschaften möglichst gleichmäßig unter die befruchtenden Elemente zu verteilen und so die Variabilität einzuschränken, also einen höheren Grad von Konstanz der Art zu sichern. Allerdings muß es dabei um den Ausgleich sehr feiner Mischungs- oder Konstitutionsverschiedenheiten der einzelnen Samenelemente zu thun sein, um solche, die sich für jetzt noch der direkten Wahrnehmung entziehen. Und im besonderen war auch bei Dytiscus keine äußerlich hervortretende Dualität zu ermitteln. Bei Paludina hingegen haben wir ja zwei Arten unter sich sehr ab-

Nach dieser Richtung hin meine Untersuchung weiterzuführen, lag mir also sehr nahe.

Aber noch eine zweite in meinen Erörterungen berührte Frage hatte ich offen lassen müssen und einstweilen nur durch eine Hypothese beantworten können. Sie bezog sich auf die Entstehungsweise der wurmförmigen Spermien von Paludina und der homologen Elemente der Prosobranchier überhaupt, und zwar auf den ersten einleitenden Vorgang ihrer differentiellen Ausbildung aus einzelnen der Hodenzellen; und sie war angeregt durch eine übereinstimmende Angabe der genannten früheren Erforscher des Gegenstandes. Sowohl nach der Beschreibung BRUNN'S als der späteren, die Species Murex brandaris betreffenden von KÖHLER (14) gehören die Bildungszellen, welche zu den wurmförmigen Spermien auswachsen, zu der Generationsfolge der übrigen Samenzellen. Die erste Divergenz der Entwicklung besteht nun nach jenen Berichten darin, daß, während die sozusagen zur Haarform tendierenden Zellen sich auf mitotischem Wege weiterteilen, an jenen ersteren ein ganz anderer, den Kern der Zelle betreffender Vorgang sich abspielt. Danach erleidet nämlich der Kern der betreffenden Zelle eine Fragmentation in eine Anzahl Teilstücke, so daß eine Zeit lang die Zelle 3—4 und mehr kleinere, übrigens verdichtete Kerne enthält. Die meisten derselben verschwinden, indem sie in Körrnchen zerfallen und weiter ganz aufgelöst zu werden scheinen, so daß nur einer übrig bleibt. Dieser rückt an die Wandung der Zelle und liefert das Material für die Bildung des Achsenstranges, resp. des Achsenfaserbündels im Laufe der Umgestaltung der Zelle zu dem wurmförmigen
Spermatogenese von Paludina vivipara. — Abschn. I. 409

Es lag mir also ob, auch in dieser Hinsicht meine Ergebnisse zu ergänzen.

Die beiden eben erwähnten Probleme nun, die sich bei meinen früheren Untersuchungen mir aufgedrängt hatten, waren in erster

Bd. XXX, N. F. XXIII. 27
Leopold Auerbach,

Manches klarstellend und nach meiner Meinung sichernd, habe ich freilich hinsichtlich einzelner Punkte, namentlich betreffs der Centrosomen auch Lücken bestehen lassen müssen.

Was ich nun Positives ermittelt habe, werde ich im folgenden mitteilen, Ergänzungen der Zukunft überlassend.

II. Untersuchungsverfahren und Periodizität der Samenbildung.

Man erkennt die männlichen Individuen von Paludina an der Ungleichheit der beiden Fühler. Während bei den Weibchen beide Fühler lang und spitzig sind, ist bei den Männchen der rechte kürzer, breit, platt und vorn abgerundet. Übrigens sind die Männchen durchschnittlich erheblich kleiner als die Weibchen. Man kann deshalb, falls das ersterwähnte Merkmal wegen hartnäckiger Zurückgezogenheit der Tiere in ihren Gehäusen unbenutzbare, die Chance, nach Abbruch der Schale ein Männchen vorzufinden, dadurch sehr vergrößern, daß man es an kleineren Individuen versucht, da selbst die weniger als halbwüchsigen Männchen schon geschlechtsreif sind.

Nach Herauslösung aus der Schale findet man an dem Eingeweidesacke des Männchens, und zwar an dessen der Spindel des Gehäuses zugekehrter Seite, zwei goldgelbe Partien, deren kleinere nahe der Spitze des Eingeweidesackes gelegen ist und beinahe bis an diese reicht, während die größere über die untere Hälfte des Sackes an dessen innerer Seite sich erstreckt. Dies sind die beiden durch die
dünne Haut hindurchschimmernden Hoden, die also nicht bilateral-symmetrisch, sondern hintereinander angelegt sind. Sie stellen übrigens nicht wohl isolierbare Organe dar, sondern sind nur Hoden-gewebsmassen, die ohne besondere Umhüllung oder Scheidewand nach innen zu an das Lebergewebe angefügt, außen aber von der Haut überzogen sind. — Wenn ausnahmsweise diese Hoden statt der goldgelben eine viel hellere oder sogar milchweiße Farbe zeigen, so ist die Ursache dieser Abweichung immer eine reichliche Beherbergung von Cercarien und Redien; und so massenhaft sind öfters diese Parasiten, die sich auf Kosten des eigentlichen Gewebes ernähren, eingelagert, daß sie dieses atrophisch machen. Solche Individuen sind deshalb für die Untersuchung der Spermatogenese unbrauchbar.

Schnitte von 8 μ Dicke zeigen sehr schön alle Entwicklungsphasen der beiderlei Samenelemente, sind jedoch wenig geeignet für
das Studium der fertigen Samenfäden, sowohl weil diese zumeist sehr dicht aneinander und an anderen Inhaltsbestandteilen des Hodenschlauches anliegen, als auch hauptsächlich, weil die haarförmigen Spermien nur selten, die langen wurmförmigen sogar niemals in ihrer ganzen Länge zur Anschauung kommen, sondern irgendwie durchschnitten sind, nicht selten auch in Form reiner Querschnitte sich darbieten. Es sind demnach für deren Gesamtsicht und auch, um im lebendigen Zustande ihre charakteristischen Bewegungsarten beobachten zu können, Dissociationspräparate unentbehrlich; und nebenher zeigen diese, unregelmäßig zerstreut, auch zahlreiche Entwicklungszellen, welche die verschiedenen Staffeln der Spermatogenese darstellen. Ferner finden sich darin die großen platten Wandkerne der Acini isoliert und in Flächenansicht, was in Schnitten nur selten der Fall ist. Solche Isolation der Gewebselemente gelingt leicht entweder durch Zerzupfen mit Nadeln oder in folgender Weise. Ich fasse ein mit der Schere ausgeschnittenes kleines Stückchen des Hodens an seiner äußeren Seite mit einer feinen Pinzette und streiche entweder die Schnittfläche über die trockene Glasplatte oder — und dies ist in den meisten Beziehungen noch vorteilhafter — ich verreihe in einem auf den Objekttträger geträufelten Tröpfchen des Blutes der Schnecke. Dieser Blutstropfen mag, wenn es sich um Beobachtung der Lebenserscheinungen handelt, reichlich bemessen sein, kann übrigens für den letzteren Zweck auch durch ein Tröpfchen physiologischer Kochsalzlösung ersetzt werden. Hingegen darf, wenn Herstellung eines Dauerpräparates beabsichtigt wird, das Bluttröpfchen nur minimal, etwa stecknadelkopfgroß sein und ist bei raschem Verreiben des Gewebesstückchens zu einer dünnen Schicht auszubreiten, weil sonst die isolierten Gewebeteilchen flotierend bleiben, ohne zu einer Haftung an der Glasplatte zu gelangen, und so von der hinzuzeigenden Härtungsflüssigkeit fortgespült werden. Durch Antrocknen aber die Teilchen festzulegen, ist im allgemeinen durchaus unratsam und nur für einen ganz besonderen Zweck zu empfehlen, nämlich zur Demonstration des Achenstranges der wurmförmigen Samenfäden in Längsansicht, eines Bestandteils, der nach Eintrocknung besonders scharf hervortritt, während im übrigen bei diesem Verfahren der feinere Bau aller Gewebselemente und namentlich der Zellen in hohem Maße geschädigt, außerdem auch die Färbbarkeit beeinträchtigt wird. Es muß deshalb auch bei den erwähnten Manipulationen rasch verfahren und namentlich nach Verstreichen des Objekts auf der trockenen Glasplatte die Härtungsflüssigkeit augenblicklich aufgeträufelt, aber auch nach Verteilung in einem Bluttröpfchen sehr bald übergeschichtet werden. Als Fixierungsmittel ist für solche Präparate einfache wässerige Sublimatlösung nicht brauchbar, weil diese zwar die histologischen Elemente härter, nicht aber zugleich das Menstruum, in welchem diese suspendiert sind, so daß sie in der Flüssigkeit schwebend bleiben und bei den weiteren Operationen abgeschwemmt werden. Wohl aber ist für unseren jetzigen Zweck Alkohol oder auch eine mit einer mäßigen Menge Alkohols versetzte Sublimatlösung geeignet. Besonders bewährte sich die schon früher (1 d) von mir empfohlene Mischung, be-

Sowohl die Broi- als auch die Schnittpräparate wurden, eben noch etwas vom Alkohol feucht, auf dem Objekträger tingiert, und zwar meistens einer Doppelfärbung in Rot und Blau unterworfen.

Zu diesem Zwecke benutzte ich abwechselnd mehrere Kombinationen, nämlich — außer einer später besonders zu erwähnenden — entweder Methylgrün, einige Male kombiniert mit Karmin, meistens jedoch mit Säurefuchsin, oder letzteren Rotstoff kombiniert mit Vitiolblau, in bald genauer anzugebender Weise. Alle drei Kombinationen haben mir übereinstimmende und vortreffliche Resultate geliefert. Nur dürfen einerseits die Objekte, resp. die Schnitte nicht gar zu lang, d. h. nicht Wochen und Monate lang in Alkohol gelegen haben; andererseits darf auch das färbende Material nicht zu alt sein, was besonders von wässrigen, namentlich verdünnten Lösungen der Anilinfarbstoffe, aber auch des Hämatoxylins, und noch mehr von Gemischen solcher gilt.

Des genauerer aber habe ich die genannten kombinierten Färbungen nach mehreren besonderen Methoden bewerkstelligt, die sich im ganzen gleich gut bewährt haben. Ich hebe folgende hervor:

A) Karmin mit Methylgrün.

Das Präparat kommt für 36 Stunden oder länger in GERLACH'sche Karminlösung, wird dann nach Abspülung in Wasser in beliebig ver-
dünnter wässerige Methylgrünlösung für einige Zeit, je nach der Konzentration derselben für eine halbe bis zu mehreren Stunden eingestellt und dann zur Beseitigung der Überfärbung für 5—15 Minuten in absoluten Alkohol gebracht. — Diese Methode liefert im allgemeinen sehr schöne Präparate und ganz dieselben Ergebnisse wie die anderen. Ich habe sie indessen nur selten angewandt und kann deshalb auch nicht sagen, ob sie alle die vielen Einzelheiten, auf die es ankommt, ebenso deutlich zeigt wie die jetzt folgenden.

B) Säurefuchsin und Methylgrün.

B) Simultan.

Während es für diese Art der Doppelfärbung bei den ausgebildeten Samenelementen und so manchen anderen Zellen auf ein sehr genaues Mischungsverhältnis der beiden Farbstoffe nicht ankommt und die beizügliche, früher (1 d) von mir angegebene Verfahrensweise, obwohl sie nicht gerade exakt ist, sich dennoch als ganz ausreichend erwiesen hat, so ist es hingegen nicht ganz ebenso bei spermatogenetischen Untersuchungen. Ich bin aber jetzt in der Lage, eine geneuere, auch für diesen Zweck sich bewährende Vorschrift zu geben. Man bereite sich zwei einfache Lösungen, indem man einen Teil Methylgrün und ebenso einen Teil Säurefuchsin in je 1000 Teilen Wasser löst. Der letzteren, nämlich der roten Lösung, füge man ein klein wenig Essigsäure hinzu und zwar auf je 50 g einen Tropfen einer 10-proz. wässerigen Eisessiglösung. Dann mische man 2 Teile der roten mit 3 Teilen der blaugrünen Flüssigkeit. Filtrieren des Gemisches ist kaum nötig; will man es aber thun, so benutze man ein vorher mit Methylgrün gefärbtes Filter, weil das Papier von diesem Farbstoff viel mehr absorbiert als vom Säurefuchsin und dadurch, namentlich bei kleiner Quantität der zu filtrierenden Flüssigkeit, das Mischungsverhältnis derselben nicht ganz unwesentlich ändert. In die kombinierte Lösung wird nun die das Präparat tragende Glasplatte für 5—15 Minuten eingestellt, nachdem von letzterer der Alkohol möglichst beseitigt und nur das Präparat selbst noch etwas feucht gelassen worden ist. Es darf übrigens auch länger, als angegeben, in der tingierenden Flüssigkeit verweilen, was jedoch meistens nicht nötig ist und die folgende Operation umständlicher macht. Das notwendige Minimum der Tinktionsdauer wächst naturlich mit der Dicke der zu färbenden Schicht, bei einem Schnitte aber auch mit der Flächenausdehnung desselben, indem, wie aufmerksame Beobachtung ergibt, die Aufnahme der Farbstoffe immer viel stärker als von der freien Fläche vom freien Rande des Schnittes her erfolgt, an diesem schnell sich steigert und von hier aus langsam nach der Mitte hin fortschreitet, so daß eine Zeit lang ein mittleres, nur sehr schwach gefärbtes Feld vorhanden ist, während eine Randzone schon intensiv tingiert ist. Aber auch die Temperatur hat einen sehr merklichen Einfluß und zwar derart, daß höhere Temperatur vorzugsweise die Absorption des Methylgrüns beschleunigt, niedere die letztere
Spermatogenese von Paludina vivipara. — Abschn. II. 415

hemmt. Als Optimum der Temperatur glaube ich nach meinen Er-
fahrungen eine solche von 20—25° C ansehen zu müssen. Aus der
kombinierten Färbelösung werde das Präparat unmittelbar, namentiich
ohne inzwischen mit Wasser in Berührung zu kommen, in stärksten Alkohol übertragen, und zwar je nach dem Grade der
Überfärbung für 5—15 Minuten, kann jedoch diesem Extraktions-
mittel öfters ohne Schaden auch bis zu einer Stunde und darüber aus-
gesetzt bleiben. Bei noch länger und namentlich tagelang andauern-
der Einwirkung des Alkohols bleibt zwar an den Köpfen der ent-
wickelten Samenfäden die blaue Färbung (selbst nach Monaten) voll-
ständig erhalten; hingegen sieht man an den sonstigen Zellen die
blaue Färbung ihrer kyanophilen Bestandteile mit der Zeit mehr und
meer erblasen, und dies um so schneller, je weniger die Qualität des
sogen. absoluten Alkohols sich der eines wirklich absolut wasser-
freien nähert. Es liegt deshalb nahe, zu vermuten, daß der, wenn
noch nur 1—2 Proz. betragende Gehalt an Wasser mit der Zeit die
unerwünschte Wirkung hervorbringt 1). Jedoch reicht die angegebene
kurze Zeitdauer der Entfärbung vollständig zu der nötigen Differen-
zierung aus.

Bb) Successiv.

1) Das Präparat verweilt zuerst in der angegebenen Säurefuchsin-
Lösung, die ihm binnen 5—15 Minuten eine brillant rote Färbung
die, wird dann in absolutem Alkohol abgespült und darauf wie oben
mit der kombinierten Lösung behandelt. Diese Modifikation hat nur
betreffs eines einzelnen, später noch zu besprechenden Punktes einen
Vorzug, während ihr im übrigen das sub Ba) angesührte einfachere
Verfahren gleichkommt. Der Fuchsingehalt der Nachfärbungslüssig-
keit erfüllt hier nur den Zweck, durch eine gewisse Sättigung des
Wassers mit diesem Farbstoff dessen Extraktion aus den vorher damit
tingierten Teilen zu verhindern. Es ist nämlich nicht etwa auf das
Fuchsinbad folgend auch eine einfache wässerige Methylgrünlösung
zulässig; und ebensowenig würde eine Umkehrung dieser Folge zum
Ziele führen, weil bei derartigem Vorgehen die zuerst eingedrungene
Farbe durch das Wasser der zweiten Lösung wieder ausgezogen wird.
Wohl aber ist die successive Anwendung einfacher Lösungen in
folgender Weise mit gutem Erfolge thunlich.

2) Das Präparat wird zuerst in wässriger Methylgrünlösung
tingiert, dann 5—10 Minuten lang in absolutem Alkohol entfärbt,
darauf in eine absolut-alkoholische möglichst konzentrierte Lösung des
Säurefuchsin für 5—10 Minuten eingestellt, um dann nach Abspülung
in absolutem Alkohol der Xylol-Balsam-Behandlung unterworfen zu
werden. Da, wie ich höre, im Handel auch ein in Alkohol ganz un-

1) Wie ich hier nur beiläufig andeutung will, geht aus der eben erwähnten
Thatsache wie auch noch aus anderen hervor, daß es gewisse Abstufungen der
Kyanophilie gibt. Den höchsten Grad derselben besitzen die Köpfe der
Samenfäden.

C) Säurefuchsin und Viktoriablau.

Da diese beiden Farbstoffe, in wässerigen Lösungen zusammen-gemischt, sich sofort unter Bildung eines Niederschlages zersetzen, so ist nur eine successive Anwendung derselben in einer der soeben unter B b 2) angeführten entsprechenden Weise, so aber mit bestem Erfolge, ausführbar. Das dem Alkohol entnommene Präparat wird 12—20 Stunden lang in einer wässerigen, mäßig verdünnten Lösung des Viktoriablau gebadet, sodann entweder unmittelbar oder allenfalls nach kurzem Abspülen in Wasser durch starken Alkohol ca. 10 Minuten lang von dem überschüssigen Blaustoff befreit. Das Alkoholbad darf nicht viel über die angegebene Zeit verlängert werden, weil ja das Präparat dann nochmals in alkoholischer Flüssigkeit zu verweilen hat und bei prolongierter Einwirkung des Alkohols die Extraktion dieses Blaustoffes zu weitgehend wird. Nach genügendem Erblassen, dessen richtigen Grad man mit bloßem Auge erkennen lernt, wird das Präparat für 5—10 Minuten in die alkoholische Lösung des Säurefuchsin gebracht, worauf wieder kurze Abspülung in Alkohol und die Xylo-Balsam-Behandlung folgt. — Auch vom Viktoriablau gilt übrigens, daß eine alkoholische Lösung desselben keine Färbekraft besitzt; und schon eine mäßige Beimischung von Alkohol zur wässerigen Lösung beeinträchtigt merklich die Wirksamkeit.

Außer den genannten Doppeltinktionen habe ich aber zum Zwecke der Nachprüfung gewisser Angaben Platner’s vielfach auch:

D) Alaunkarmin kombiniert mit Bleu de Lyon

versucht, nacheinander auf die Präparate einwirkend, des Vergleichs halber in einzelnen Fällen mit Umkehrung der Reihenfolge, und außer auf unser diesmaliges Hauptobjekt auch auf die Samenzenellen und Samenfäden anderer Tiere angewandt, worüber ich weiter unten noch Näheres mitteile.
Sodann aber habe ich mehrfach auch mit:

E) Hämatoxylin

gefärbt, und zwar teils Börner'sches nach bekannten Regeln benutzt, teils die Verbindung mit Eisen nach der von M. Heidenhain angegebenen Methode, mit besonderen, später zu erwähnenden Ergebnissen.

Die irgendwie gefärbten Präparate wurden aus dem Alkohol immer successive in eine Reihe von Alkohol-Xylol-Mischungen mit steigendem Xylolgehalt, sodann in reines Xylol gebracht, um schließlich in mit etwas Xylol verdünntem Kanadabalsam eingeschlossen zu werden.

So viel über das Technische, dem ich jedoch noch einiges andere hinzufügen muß.

Es hat sich mir herausgestellt, daß zur richtigen Beurteilung der spermatogenetischen Vorgänge genaue Messungen der Samenzellen unentbehrlich sind. Sie können ohne wesentliche Verschiedenheit der Resultate ebenso wohl am frischen wie auch an dem mit Sublimat oder der obigen Sublimat-Alkohol-Mischung gehärteten Objekte vorgenommen werden, da, wie ich mich durch besondere Versuche überzeugt habe, im letzteren Falle die Gesamtschrumpfung der Zellen, d. h. die Verringerung ihres Durchmessers nur gering, etwa \(\approx \frac{1}{15} \) im Durchmesser, jedenfalls im Verhältnisse zu denjenigen Differenzen, auf die es ankommt, unbeträchtlich ist. Hingegen tritt, wie ich schon erwähnte, bei der Behandlung mit der Flemming'schen Mischung eine Quellung der Zellen ein, die bis zu \(\frac{1}{4} \) im Durchmesser betragen kann, sei dies nun unmittelbare Wirkung des Reagens oder Folge des nachträglichen Auswaschens. Für vergleichende Messungen bietet sich übrigens auch Gelegenheit genug an Objekten, die ohne den gleichen Vorbedingungen ausgesetzt waren. Da in Schnittpräparaten angeschnittene Zellen, resp. kleine abgetrennte Segmente solcher vorkommen, die gelegentlich Irrtum veranlassen, nämlich einen zu kleinen Durchmesser vortäuschen können, so ist es am sichersten, die Messungen an Dissociationspräparaten anzustellen; doch schützt einige Vorsicht auch bei der Untersuchung von Schnitten vor den zu vermeidenden Fehlern.

Genauerer Messungen bedarf man besonders zur Bestimmung der Zellgeneration, mit der man es im Einzelfalle zu thun hat. Und zwar ist die Unentbehrlichkeit dieser indirekten Bestimmungsweise verursacht durch gewisse Eigentümlichkeiten des thätigen Paludina-Hodens. Dieser bietet nämlich in jedem einzelnen unter-
Leopold Auerbach,
suchten Individuum nur einen Bruchteil der sehr zahlreichen Entwicklungphasen dar; und dabei ist weder in der räumlichen Anordnung der Elemente noch in einer etwa mit der Jahreszeit fortschreitenden Aufeinanderfolge eine Richtschnur gegeben für die Kombination der Einzelbefunde. Die in dieser Hinsicht thatsächlich obwaltenden Verhältnisse will ich, so schwierig dies ist, versuchen, etwas näher zu charakterisieren.

Die von einzelnen Flecken der Wandung der Hodenröhren ausgehende Produktion der Spermatogonien erfolgt schubweise mit langen Pausen. Ist nun an einem solchen kleinen Felde eine Lage von Spermatogonien erzeugt und gehören diese zur Entwicklungreihe der haarförmigen Spermien, so bleiben sie an ihrer ursprünglichen Stelle, dicht an dem Entstehungsfelde liegen, allenfalls zu einem rundlichen Häufchen sich zusammenscharend, und machen hier ihre sämtlichen Teilungen durch, nämlich vier, wie ich anticiierend hinzufüge, und außerdem noch in der letzten, d. i. der fünften Generation einen Teil der Umbildung zum Samenfaden bis zu einem bestimmten Punkte hin. Dann aber zerstreuen sich diese halbfertigen Samenfäden in das geräumige Innere des Schlauches

Nun könnte man meinen, daß diese Art fortwährender Samenproduktion, dieses so oft wiederholte, an verschiedenen Stellen nacheinander erfolgende Einsetzen des spermatogenetischen Prozesses für den Beobachter sehr günstig sein müsse durch Darbietung aller Entwicklungsstufen in jedem untersuchten Individuum. Leider ist es jedoch bei weitem anders. Es waltet da ein sehr merkwürdiges Verhalten ob, das sich vielleicht auch an anderen Tieren wiederfinden dürfte, mir jedoch bei Paludina besonders auffällig gewesen ist. Wenn man nämlich an einem einzelnen Individuum die Häufchen der Samen-
Leopold Auerbach,

zellen untereinander verglichen, so zeigt sich, daß sie zwar auf verschiedenen, jedoch weit auseinanderliegenden Staffeln der sehr langen Entwicklungspunkte jedesmal nur einige Glieder der langen Kette vertreten. Im besonderen aber ergibt sich dabei, daß, so weit es den mitotischen Zellteilungsprozeß anlangt, alle zu einer und derselben Zellgeneration gehörenden Elemente im ganzen Hodengewebe, und zwar in beiden Ansammlungen desselben, genau oder doch fast genau auf der gleichen Stufe des Prozesses stehen. Es ist dabei wahrscheinlich der rasche Ablauf desselben von einigem Einfluß, was ich bald noch näher zu erklären versuchen werde. Etwas anders ist es deshalb auch mit der letzten Zellgeneration, die keiner Teilung unterworfen ist, sondern sich zu den Samenfädten ausbildet, eine Umgestaltungsperiode, die selbst wieder aus einer großen Reihe von Phasen zusammengesetzt ist und offenbar eine lange Zeit in Anspruch nimmt. Da pflegen sich denn aus dieser Periode in jedem Männchen, ja sogar im einzelnen Präparate eine größere Anzahl von Abstufungen vorzufinden, ohne jedoch eine vollständige oder eng geschlossene Reihe zu bilden, sondern immer noch lückenhaft, übrigens immer gruppenweise verteilt, d. h. so, daß in jedem einzelnen Häufchen nur eine Phase vertreten ist. Andererseits haben auch die Zellen erster Generation als solche eine längere Lebensdauer, weil sie vor ihrem Eintritt in die Mitose Zeit zu ihrem eigenen und eigenartigen Heranwachsen und Individualisieren brauchen. Es kommt deshalb vor, daß sich an verschiedenen Stellen eines Präparates eine solche Spermagogenien in solchen Anfangsständen, anderenteils solche mit späten Stadien der Mitose darbieten. Für die Kernprozesse hingegen gilt das oben Gesagte. Trifft man z. B. Zellen der zweiten Generation im Schleifenstadium, so ist im gesamten Hodengewebe des Individuums massenhaft das Gleiche zu finden, und zwar in Samenzenlen dieser Größe ausschließlich nur dieses Stadium anzutreffen, während in den übrigen der Teilung unterworfenen Zellgenerationen noch die eine und andere Phase vertreten ist, hingegen die viel größere Anzahl der Zwischenstufen fehlt. Diese letzteren kommen dann wieder in anderen Individuen zum Vorschein. Es trifft sich freilich ausnahmsweise, daß z. B. in einem Häufchen, dessen Zellen sich im Stadium der Faser-
spindel mit „Aquatorialplatte“ befinden, eine oder ein Paar dieser Zellen ein wenig vorausgeeilt sind, so daß die Teilplatten schon mehr oder weniger voneinander abgerückt sind. Und ähnliches geringes Vorausgehen oder Zurückbleiben einzelner Zellen findet sich hier und da auch in den anderen Stadien. Diese kleinen und seltenen Abweichungen ändern jedoch kaum etwas an der im großen und ganzen sich bewährenden Regel.

Wenn es nun schon nach dem vorerst Mitgeteilten unzweifelhaft ist, daß an jeder einzelnen Stelle der samenerzeugenden Fläche nur von Zeit zu Zeit eine Neuproduktion von Spermatogenien stattfindet, so ist aus dem jetzt Hinzugefügten meines Erachtens weiter zu schließen, daß eine periodische Neuproduktion jedesmal an sehr vielen Stellen genau gleichzeitig in Gang kommt, und daß die gleichzeitig entstandenen Zellen sich a tempo weiterentwickeln. Während sie aber damit noch beschäftigt und in ihren Teilungen schon vorgeschritten sind, setzt von anderen Stellen aus ein neuer Nachschub ein, der das gleiche Tempo innehält u. s. w. Ein solcher Gang der Dinge ließe sich in gewissem Grade vergleichen mit einem von einem großen Chore gesungenen Kanon, bei dem man zu jedem einzelnen Zeitpunkt nur eine kleine Anzahl der in der ganzen Melodie enthaltenen Töne gleichzeitig zu hören bekommt. Das plötzlich abgetötete Organstückchen gibt aber ebenfalls nur das Bild des in einem bestimmten Zeitpunkte nebeneinander Vorhandenen. Nur möchte ich den Vergleich insofern nicht zu weit treiben, als ich nicht behaupten will, daß die Zwischenzeiten der Nachschübe so genau geregelt und so gleich abgemessene seien, wie bei einem Kanon, und daß also, wie in letzterem immer bestimmte Töne zusammentreffen, so auch in unserem Falle immer genau bestimmte Entwicklungsstufen nebeneinander vorkommen. Wenn aber jene Pausen nur überhaupt beträchtliche sind, und wenn andererseits die Mitosen alle gleichmäßig rasch ablaufen, und damit auch zur unmittelbaren Folge die Zellteilung haben, d. h. Überführung in die nächste Zellgeneration, so kann offenbar kein späterer Produktionsschub mit einem früheren in der gleichen Nummer der Generationsfolge zusammentreffen, ausgenommen die erste und die letzte Generation. Es ist nämlich leicht erklärlich, daß in der sich nicht mehr teilenden fünften Zellgeneration, die als solche sehr lange im Hoden verweilt, weil sie noch eine langwierige Umgestaltung durchzumachen hat, daß also in dieser sich Gruppen aus mehreren Produktionsschüben

Nach der praktischen Seite hin ergibt sich aber aus dem Gesagten die Notwendigkeit, die Untersuchung auf eine große Anzahl Individuen auszudehnen, wobei man immer noch vom Zufall begünstigt sein muß, um annähernd alle Zustände der Zellen zu Gesicht zu bekommen. BRUNN hat von den Mitosen zu seiner großen Verwunderung fast nur das Knäuelstadium gesehen, diese Kernknäuel aber meist in großen Mengen beisammen gefunden, welche letztere Thatsache ja ganz zu meinen Erfahrungen stimmt. Mit Recht glaubt er, daß trotzdem spätere Kernfiguren wohl vorhanden und ihm nur aus irgend einem Grunde entgangen sein mögen. Wenn nur die Untersuchung extensiv genug und zugleich unter Anwendung der stärksten optischen Hilfsmittel durchgeführt wird, so gelingt es, in Samenzellen von vier verschiedenen Größen alle für die Mitose im allgemeinen charakteristischen Phasen, und in einer dieser Zellgenerationen noch eine ungewöhnliche, besonders eingeschobene, für die Spermatogenese specifische zu erkennen.

III. Ursprung und Teilung der Samenzellen.

IIIa) Entstehung der Spermatogonien.

Indem ich jetzt zu der Darstellung meiner Befunde im einzelnen übergehe, beginne ich mit dem, was mich meine Beobachtungen betreffs der Entstehungsweise der primären Samenzellen gelehrt haben, zunächst mit besonderem Hinblick auf diejenigen
Spermatogenese von Paludina vivipara. — Abschlu. III a. 423

unter ihnen, deren Nachkommen die haarformigen Spermen sind.

Ich bemerke, daß von letzteren nach Einbettung in Paraffin und an Balsampräparaten überhaupt nichts zu sehen ist, falls Alkohol, Sublimat, Pikrinsäure zur Härting des Objekts angewandt waren, weil die mit jenem Verfahren verbundene Xylolbehandlung oder irgend eine analoge alle fettigen Substanzen aus dem Objekte auszieht. Selbst starker Alkohol extrahiert schon bei gewöhnlicher Temperatur einen grüngelben Stoff, der nur zu einem kleinen Teile den Pigmentzellen der Haut entstammt, größtenteils aus jenen Einlagerungen in das Hodenprotoplasma. Um in letzterem die Erscheinung der goldgelben Kügelchen
als solche wahrzunehmen, muß man entweder ein dem lebenden Tiere entnommenes Stückchen des Hodens in dessen Blute zerzupfen, und zwar ohne allzu weit gehende Zertrümmerung, oder nach Hartung in Sublimat und kurzem Auswässern aus freier Hand einen möglichst dünnen Schnitt anfertigen und diesen nach Aufhellung durch Oxyerin untersuchen. Es zeigt sich, daß die goldgelben Körperchen von sehr verschiedener Größe sind, von feinsten Körnchen bis zu 3 und selbst 4 μ Durchmesser. Meist überwiegen die feinen; doch kommen auch Stellen vor, und besonders gehäuft in einzelnen Individuen, wo die großen, tropfenähnlichen vorherrschen. Ich erwähne diese Einzelheiten, weil sie später bei einer kontroversen Frage in Betracht kommen werden, und weil diese fettigen Körperchen, wie schon Braun hervorgehoben hat, in die Samenzellen übergehen und eine Art Dotterstoff darstellen, der in den Zellen allmählich verbraucht wird. — Man kann indessen diese Dotterkugelchen auch für Balsampräparate fixieren und so, wenn auch mit anderer Färbung, in haltbarer Weise zur Anschauung bringen dadurch, daß man eine Osmiumsäure enthaltende Lösung, am besten die Flemings'sche, zur ersten Hartung benutzt. Die gelben Tröpfchen werden da geschwärzt und in dieser Verbindung widerstehen sie der lösenden Kraft des Xylols und der ätherischen Öle; oder vielleicht bleibt auch nur an ihrer Stelle das reduzierte Osmium zurück. Genug, sie erscheinen als schwarze Körperchen im Balsampräparate wieder. Man sieht dann in den Durchschnitten der Hodenröhrchen das Lumen eines jeden umsämt von einem Kranze der schwarzen Kugelchen (Fig. 1), was namentlich bei stärkerer Vergrößerung ein sehr zierliches Bild darbietet. Auch kommt erst so die wahre Dickes des Wandbelages oder Keimlagers zur richtigen Anschauung, während in anderweitigen Präparaten nach Extraktion der so zahlreichen Dottertröpfchen die ganze Schicht in sich zusammensinkt und zum Teil wie zerrissen aussieht. Auch ist die Verfolgung des Schicksals der Dotterkörperchen nach deren Übertritt in die Samenzellen nur bei diesem Verfahren möglich, bei dem man freilich auch einige Nachteile mit in den Kauf nehmen muß.

Die erwähnten Kerne des Wandungs-Protoplasmas sind (Fig. 2 Smid u. Fig. 3), entsprechend ihrer Einlagerung in eine dünne Substanzlage, sehr abgeplattete Gebilde, in der Flächenansicht aber von stattlicher Größe. Umfang und Form derselben kann man vorzugsweise in Dissociationspräparaten ermitteln, in denen sie vielfach isoliert sich darbieten und sich natürlich meist auf die flache Seite legen. Aus solchen Präparaten würde man freilich nicht er- schließen können, wo diese Kerne in situ sich befunden und welchen feineren Teilen sie angehört haben. Es ist deshalb günstig, daß doch auch in Schnittpräparaten einzelne Stellen sich finden, wo ein Teil der Schlauchwand flächenhaft in die Ebene des Schnittes gefallen ist und so eine Flächenansicht und Identifizierung der Kerne gestattet, die übrigens auch durch ihre sonstigen Eigen-
tümlichkeiten erleichtert wird. Hinsichtlich ihrer Form zeigt sich nun, daß sie in der Ansicht auf die flache Seite bald einer ziemlich lang gestreckten Ellipse, bald mehr dem Längsschnitt einer dicken Spindel gleichen oder auch von unregelmäßigem Kontur begrenzt, übrigens aber, obwohl alle von ansehnlicher, doch von ungleicher Größe sind. Der Längsdurchmesser schwankt zwischen 15 und 34 μ, der Querdurchmesser von 14—24 μ, und es kommen Verhältnisse vor, wie 26 : 8, 24 : 15, 19 : 15, 15 : 14 und andere dazwischen liegende. Der mittlere Durchmesser des einzelnen Kerns aber wechselt nach meiner Schätzung von 14—30 μ, was ich nur anführe, um von der ungleichen Größe dieser Kerne eine ungefähre Vorstellung zu geben. Sie lassen eine sehr deutliche und scharf begrenzte Kernmembran erkennen und sind im Innern sehr reichlich granuliert. Diese Granulierung hat aber das Charakteristische, daß immer neben sehr feinen Körnchen eine Schar größerer, kugelig geformter Innenkörper hervortritt (Fig. 3), die in jedem einzelnen dieser Kerne von ziemlich gleichmäßigem Durchmesser sind, hingegen bei Vergleichung der Kerne untereinander an Größe variieren. Und zwar sind sie um so ansehnlicher, je geringer ihre Anzahl im Verhältnis zur Größe des ganzen Kerns ist. Ihr Durchmesser schwankt demnach von ca. 1—2,5 μ, ihre Anzahl im einzelnen Kerne von 4—20—30. In den letzteren Fällen sind nur sparsam feine Körnchen dazwischen gelagert. Es läßt dies alles vermuten, daß während des Lebens mannfache Veränderungen an ihnen vor sich gehen mögen, Anwachsen, Teilungen, Verschmelzungen jener größeren und kleineren Inhaltskörperchen, Vorgänge, die möglicherweise zu der noch zu erwähnenden Vermehrungsweise der Kerne in Beziehung stehen. — Was die tintionellen Reaktionen dieser Kerne anlangt, so hat schon Brunn bei seinen einfachen Tinktionen gefunden, daß sie durch eine hochgradige Chromatophylie ausgezeichnet sind. Bei meinen Doppel- tinktionen nun zeigte sich, daß sie in allen ihren Bestandteilen nicht nur zunächst beide Farbstoffe, den roten wie den blauen, in reichlicher Menge aufnehmen, sondern auch während der Entfärbung in Alkohol den blauen sehr lange festhalten, demnach erst später als die übrigen Bestandteile des Präparats eine farbige Differenzierung erhalten. Ist aber diese erreicht, so erscheinen die feinen Körnchen teils lichtblau, teils reinrot, während die größeren Innenkugeln eine violette bis kirschrote Färbung zeigen. Letztere Mischfarbe scheint mir dafür zu sprechen — und ich werde später noch weitere Gründe für diese Auffassung bei-

Bd. XXX. N. F. XXIII.
bringen — daß die Substanz der größeren Kugeln aus zweierlei durcheinander gemischten Molekülern besteht, die nach der Tinktion, wenn man jedes für sich betrachten könnte, teils rot, teils blau aussehen würden. Die Dunkelheit des kombinierten Farbeneindrucks würde sich aus der abwechselnden und summier ten Absorption roter und blauer Lichtstrahlen erklären, wie es ja ganz ähnlich bei der oben, S. 414, sub. Ba aufgeführten kombinierten Farbstofflösung der Fall ist.

Hinsichtlich der Form dieser Kerne aber bedarf das oben Angegebene noch einer Ergänzung. BRUNN hat eine Proliferation dieser Kerne auf dem Wege multiplier Teilung beschrieben. Ich habe nun auch öfters tiefe und scharfe Einschnürungen gefunden, durch die der Kern ein gelapptes Aussehen erhält, ferner dicht an einen solchen anschließend einen kleinen runden Kern von sonst ähnlicher Beschaffenheit, was ganz den Eindruck machte, als sei er ein abgeschnürter Teil des größeren. Ferner kam es vor, daß eine Kette von 3 bis 4 ähnlichen Kernen von mittlerer Größe die Stelle eines großen vertrat (Fig. 3 c und d). Hinsichtlich der Deutung dieser Erscheinungen trage ich kein Bedenken, mich BRUNN anzuschließen in der Annahme einer Proliferation auf dem Wege amitotischer Teilung. Diese scheint mir übrigens vorzugsweise in den ersten Frühlingsmonaten reichlich im Gange zu sein. Ich mache noch darauf aufmerksam, daß sich auf diese Weise auch die auffallend ungleiche Größe der besagten Kerne erklärt, die doch ihre Ursache haben muß und sehr wohl darin haben kann, daß einerseits die einzelnen durch reichlichere und geringere Abschnürung von Tochterkernen mehr oder weniger an Substanz und Umfang verloren haben, und daß andererseits manche der kleinen Tochterzellen unter Bewahrung ihres allgemeinen Charakters allmählich wieder zur vollen Größe heranwachsen. Letztere Annahme hat zur Voraussetzung, daß mindestens ein Teil der Tochterkerne zum Ersatz ihrer Mutterkerne und zur Fortführung derselben Funktion bestimmt ist. Daran schließt sich aber die weitere Frage, ob nicht den anderen, und zwar dann wohl der Mehrzahl jener Tochterkerne eine weitergehende Bestimmung, nämlich eine direkte Beziehung zur Spermato genese zukomme. Hierfür aber kommen die folgenden Thatsachen in Betracht.

Neben jenen großen, zum Teil gelappten oder kettenförmig zerfallenden Kernen sind in dem Wandungsprotoplasma der Hoden schlüche zeitweise in großer Menge kleine runde Kerne sichtbar,
Leopold Auerbach,

Es wäre demnach in unserem Falle kaum nötig gewesen, die gleiche Ansicht ausführlicher zu verteidigen, wenn nicht neuerdings, da das Vorkommen amitotischer Kernteilungen nicht mehr zu bestreiten ist, doch die Neigung herrschend wäre, der letzteren mindestens jede nachhaltige und nachwirkende reproduktive Bedeutung abzusprechen und sie sogar als Anzeichen einer gewissen Entartung, namentlich eines Rückschrittes der produktiven Fähigkeit anzusehen. Wenn der direkten Kernteilung überhaupt eine Zellteilung folge, resp. um einen so abgespaltenen Kern eine junge Zelle sich bilde, so sollen doch diese Tochterzellen zu keiner weiteren Vermehrung Anlage haben und namentlich nicht mehr imstande sein, wieder in mitotische Prozesse einzutreten. — Vergl. u. a. E. H. Ziegler u. vom Rath (20a, 29, 30). Dieser Ansicht würde ja der vorhin angenommene Verlauf unseres Falles gänzlich widersprechen. Indessen ist die allgemeine Frage des Wertes der mitotischen Teilung doch wohl noch nicht in jenem Sinne spruchreif; und es ist jene ihr ungünstige Meinung, so sehr sie für eine Reihe von Fällen zutreffen mag, doch noch nicht der Ausdruck eines derartig gesicherten allgemeinen Gesetzes, daß im einzelnen Falle die Beurteilung des Thatsächlichen sich danach zu richten hätte. So denkt über die Sache neuerdings auch Flemming (8f). Übrigens sind mir Degenerationserscheinungen an den fraglichen Kernen, wie solche Rath an den homologen Wandungskernen bei Astacus beobachtet hat, an unserem Objekt in keiner Jahreszeit begegnet. Betreffs unseres Falles aber spricht eben — wenigstens für so lange, als nicht positive gegenteilige Wahrnehmungen vorliegen werden — aller Anschein dafür, daß die großen Protoplasma-kerne der Hodenschläuche als Samen- mutterkerne fungieren, indem sich von ihnen durch amitotische Teilung, resp. durch multiple Zer-
schnüren Tochterkerne abspalten, die später die Kerne der Samenzellen liefern, wie das schon Brunn angenommen hat.

Von letzterer Variante einstweilen abgesehen, ist aber die gewöhnliche unmittelbare Entstehungsweise der Spermatogonien so, wie sie schon Brunn und Koehler geschildert haben. Indem der Rundkern gegen die innere freie Fläche der Protoplasmamischicht vorrückt, wölbt sich ein Buckel der letzteren über ihn empor, und dieser streckt sich allmählich immer weiter in die Höhlung des Schlauchs hinein aus, den Kern unter seiner Kuppel tragend und an seinem entgegengesetzten Ende sich erst halsartig verengend und dann zuspitzend, worauf er eine Zeitlang mittels eines kurzen, dünnen Fächchens an dem Wandbelag hängen bleibt. Der so heraushervorgebrachte Körper hat also die Gestalt eines auf der Spitze stehenden Kegels mit gewölbter Basis. Da fast immer von einer ganzen Gruppe nahe bei einander gelegener Kerne der nämliche Bildungsprozeß gleichzeitig ausgeht, so sieht man in den Schnittbildern meistens eine Reihe solcher kegel- oder keulenförmiger Zellen, eine dicht neben der anderen, zum Teil sich an den Seitenwänden abplattend, ihre Kerne aber alle nahe der freien Basalfläche tragend (Fig. 1, 2, 4, 9). Jedoch kommt es bei sehr dichter Zusammendrängung dieser herauswachsenden Körper auch vor, daß ein und der andere derselben die umgekehrte Gestalt annimmt,
mit der breiten Basis in den Wandbelag übergehend und sich mit dem zugespitzten Teile in die Lücke zwischen den benachbarten, normal gestellten Kegeln einzwängend; und dann liegt sein Kern außer der Reihe der übrigen in dem breiten, der Wandung nahen Teile des Kegels (Fig. 4 bei a). Die normal gestellten aber bleiben nicht lange im Zusammenhange mit dem Wandungsprotoplasma. Der kurze, von der Spitze ausgehende Faden reißt; und damit ist die Zelle von ihrem Mutterboden losgelöst, worauf sie sich bald zu einer vollkommenen Kugel abrundet und das freigewordene Spermatogonium darstellt. Auch diese Veränderungen machen im allgemeinen die zu einer Gruppe gehörigen Elemente gleichzeitig durch, infolgedessen gewöhnlich ein Haufen solcher kugelförmiger Spermatogonien in unmittelbarer Nähe der Schlauchwandung zu finden ist (Fig. 1 und 2 Sg.). Bei sehr praller Anfüllung eines Schlauchs durch Zellen und Samenfäden können auch die Spermatogonien eines Haufens durch gegenseitige Pressung zeitweise polyedrisch werden. Nur die wenigen umgekehrt gestellten Kegel können den beschriebenen Ablösungsprozeß nicht ebenso schnell mitmachen wie die anderen, bedürfen vielmehr zu diesem Zwecke erst einer Umformung. Nachdem sie durch Abrücken ihrer Nachbarn freien Raum gewonnen haben, schiebt sich die Hauptmasse der Leibessubstanz mit dem Kerne nach dem freien Ende, so daß das aufsitzende Ende dünn und so die Ablösung der Zelle vorbereitet wird. So erkläre ich mir den gelegentlichen Befund einzelner, noch keulenförmiger, in das Häufchen der Kugeln hineirragender Zellen.

Im typischen Verlaufe der Spermatogenese treten die so gebildeten Samenzellen erster Generation, welche nach ihrer Abrundung im natürlichen Zustande gegen 15 μ Durchmesser aufweisen und einen bläschenförmigen Kern von ca. 7 μ Durchmesser enthalten, ohne vorher zu wachsen, in kurzer Frist in diejenigen inneren Veränderungen ein, die mit der Bildung eines Nebenkerns beginnen, dann in einen mehrgliedrigen mitotischen Prozeß übergehen und eventuell durch diesen hindurch zur Zweiteilung und damit zur Herstellung der zweiten, aus kleineren Zellen bestehenden Generation führen. Ich sagte „eventuell“, weil letzteres nur bei denjenigen Zellen der Fall ist, deren Nachkommen zu haarförmigen Spermien werden. Die Einleitung zur weiteren spezifischen Umstellung beginnt also meist binnen kurzer Zeit nach Ablösung der Primärzelle. Ja es ist sogar, obwohl nicht die Regel, doch gar nicht selten, daß schon zur Zeit der Kegelform der Zellen,
Spermatogenese von Paludina vivipara. — Abschn. III a. 431

noch während ihrer Anheftung am Keimlager die Bildung des Nebenkerns in Gang kommt und bis zu dessen vollständiger Herstellung abläuft (Fig. 9), und daß dann erst, jedoch vor Beginn der eigentlichen Mitose, die Ablösung der Zelle erfolgt. Dies mußte ich hier vorläufig im allgemeinen erwähnen, obwohl ich nicht sogleich zu einer genaueren Schilderung dieser wichtigen Vorgänge übergehen kann, weil vorher noch gewisse bemerkenswerte Varianten der anfänglichen Schicksale der Zellen erster Generation, resp. modifizierte Entstehungsweisen der Spermatogonien zu besprechen sind und außerdem der feinere Bau der letzteren noch etwas näher ins Auge zu fassen ist.

Anlangend den ersteren Punkt, so sei nochmals betont, daß der eben angegebene Gang der Dinge der regelmäßige und bei weitem vorherrschende ist. In den wärmeren Monaten des Jahres ist bei der Mehrzahl der Individuen im Hoden überhaupt keine Zelle zu finden, die einen Durchmesser von mehr als 14 μ hätte; diese größten aber sind ihrem Volumen nach augenscheinlich übereinstimmend mit den noch kegelförmigen, der Wandung anhängenden, sind also Zellen erster Generation, die sich im übrigen entweder durch wiederholte Teilungen in immer kleinere Tochter- und Enkelzellen als Spermatogonien erweisen, oder aber zum anderen Teile, wie wir noch sehen werden, als Bildungszellen der wurmförmigen Spermien fungieren. Daneben kommen jedoch zeitweise, und zwar anscheinend am häufigsten zu Ende des Winters und im ersten Frühjahr, frei in der Höhlung der Hodenschläuche liegend, größere Rundzellen und eigentümliche Zellenkomplexe vor. Bei deren Beschreibung werde ich diejenige Größe des Zellkerns, die nach Obigem den Spermatogonien eigen ist, also einen Durchmesser desselben von 7 μ als Normalgröße bezeichnen. Zuerst erwähne ich nun einkernige, meist auch gruppenweise vorkommende Kugeln von 15—16 μ Durchmesser mit entsprechend vergrößertem Kerne, sodann noch größere, zweikernige von 17 μ Durchmesser, also nach einer leicht anzustellenden Rechnung von dem doppelten Volumen der Spermatogonien, während ihre beiden Kerne wieder normalen Durchmesser haben (Fig. 6 a), ferner andere zweikernige von 18—20 μ Durchmesser mit wieder vergrößerten Kernen und schließlich vierkernige Ballen von 21—22 μ Durchmesser, also dem vielfachen Volumen der Spermatogonien mit Kernen, die wieder von normalem Durchmesser sind (Fig. 6 c). Eine noch höhere Steigerung der Gesamtgröße und der Kernzahl ist an solchen ungegliederten Kugeln von
mir indes diese Deutung der Dinge schien, sobald ich die erwähnten Befunde gesammelt hatte, so litten doch die Beobachtungen einstweilen noch an einem Mangel, der einige Zweifel in mir aufrecht erhielt, namentlich nach der Richtung hin, ob nicht etwa Zusammentreten und Verschmelzung von Zellen die beschriebenen Erscheinungen verursachen könnte. Gegen einen solchen Modus sprachen freilich die unverkennbare Vergrößerung einzelner Kerne und einkerniger Zellen. Was mir aber noch fehlte, lag darin, daß ich längere Zeit hindurch von dem Vorgange der Kernteilung selbst an diesen großen Gebilden nichts zu Gesichte bekommen hatte, weder Mitosen noch Anzeichen einer direkten Kernzerschnei-

rung. Später aber stieß ich doch auf ein Individuum, das reichlichs Material zur Ausfüllung auch dieser Lücke bot, nämlich zahlreiche jener übergrößen, ein- bis vierkernigen Rundzellen, und unter den zweikernigen reichlich solche, deren beide Kerne sich in deutlichster Mitose, namentlich im Knäuel- und Schleifenstadium befanden, resp. in einem Dauerpräparate noch befinden. Es sind also mitotische Prozesse, die in den hypertrophischen Primärzellen des Hodens zur Kernvermehrung und Furchung führen. Eine sich darbietende Frage wäre noch die, ob in mehr als zwei-

gliedrigen Komplexen immer die Furchung erst nach Herstellung von vier oder mehr Kernen eintritt, oder ob auch nach der ersten Zweiteilung der Zelle noch ein weiteres Anwachsen der agglutiniert bleibenden Tochterzellen stattfinden und von er-

neuter Mitose und Zerkliiftung gefolgt sein kann. Jedoch habe ich für letzteren Modus keine Anhaltspunkte gefunden, während für den ersteren die vierkernigen ungeteilten Protoplasmaballen sprechen. Wenn sich nun hierin ein Unterschied gegen den ge-

wöhnlichen Typus der Eifurchungen zeigt, so ist nicht zu ver-

gessen, daß in unserem Falle ein anderes Moment hineinspielt, indem die gesteigerte Zerkliiftung an Zunahme der Gesamtmasse durch Wachstum geknüpft ist. Im ganzen haben diese Vorgänge auch Ähnlichkeit mit den Anfangsstadien desjenigen, der im Hoden verschiedener Tiere zur Bildung von Samenfollikeln oder Spermato-
cysten führt, deren oberflächliche Elemente eine Hüllemembran konstituieren 1). In unserem jetzigen Falle kommt es indessen niemals zu einer solchen und überhaupt nicht zu so kleinzelligen Anhäufungen. Auch ist die Bestimmung des Vorganges eine andere. Das Ziel desselben kann nur darin bestehen, daß auf

1) z. B. auch bei Dytiscus marg. (6, S. 186).
einem Umwege wiederum Spermatogonien geliefert werden, und zwar Spermatogonien in dem weiteren Sinne des Worts, daß darin die Ursprungszellen ebensowohl der haarförmigen, wie der wurmförmigen Spermien inbegriffen sind. Wenn zu irgend einem Zeitpunkte die halbkugeligen oder keil- oder pyramidenförmigen Zellen sich voneinander lösen und abrunden, so müssen sie nach ihrer Größe, ihrem Bau und ihren ererbten Qualitäten den direkt entstandenen Spermatogonien gleichen. Auf diesem Wege sind sie auch gelegentlich zu ertappen. In Zupfpräparaten fand ich wiederholt eine Gruppe entsprechend großer kegelförmiger Zellen, die mit ihren in kurze Fäden ausgezogenen Spitzen in einem Punkte zusammenhingen, also radial gegen ein gemeinschaftliches Centrum gerichtet waren, eine Anordnung und ein Rest von Zusammenhang, die sich leicht auf die eben erörterten Verhältnisse zurückführen lassen, hingegen, so viel ich sehe, auf nichts anderes.

Es schiebt sich demnach unter Umständen zwischen die Entstehung der primären Hodenzellen und deren typisch spermatogenetische Teilung, eine intermediäre, andersartige, nämlich mit Wachstum verbundene und der Form nach furchungsähnliche Proliferation ein, deren Endprodukte wieder den Primärzellen gleichen und deren gewöhnliche Rolle übernehmen.

Das letztere ist freilich eine Annahme, die augenblicklich nicht ganz positiv bewiesen werden kann, jedoch höchst wahrscheinlich ist, weil eine andere Verwendung nicht abzusehen ist.

In dem Falle, der in Fig. 6 d abgebildet ist, hat in den 4 keilförmigen Tochterzellen bereits die Bildung des Nebenkerns stattgefunden. Diese Einleitung zur Mitose könnte nun auf die Herstellung eines achtteiligen Komplexes hinzielen. Noch wahrscheinlicher ist es jedoch, daß die 4 Zellen nahe daran sind, sich voneinander zu trennen, sich abzurunden und dann unmittelbar in die spermatogenetischen Prozesse einzutreten, ganz analog, wie öfters auch in den noch am Keimlager haftenden kegelförmigen Primärzellen eine antizipierte Herstellung des Nebenkerns erfolgt.

Wenn ich im Hinblick auf die zweierlei Samenfäden unseres Tieres anfangs daran dachte, daß jene irregulär entstandenen Zellen vielleicht ausschließlich dazu bestimmt seien, die wurmförmigen Spermien zu liefern, so mußte ich doch diese Idee bald fallen lassen, hauptsächlich wegen der geringen Häufigkeit jener Vorkommnisse im Verhältnis zu der regelmäßigen massenhaften
Produktion der wurmförmigen Elemente, und weil sich im übrigen zeigte, daß letztere für gewöhnlich auf kurzem Wege aus primären Hodenzellen sich herleiten, wie später noch beschrieben werden soll. Es ist also viel wahrscheinlicher, daß die durch die Furchungen gelieferten Zellen mit den primären Hodenzellen gleich rangieren; und es liegt gar kein Grund vor, zu glauben, daß nicht auch die zur Befruchtungsfunktion bestimmten haarförmigen Samenfäden aus ihnen hervorgehen könnten. Daß andererseits eben diese Zellen zuweilen auch die Entwicklungsrichtung zum wurmförmigen Samenkörper einschlagen können, geht aus einer Thatensache hervor, die ich im Abschnitt V beibringen werde.

Gleichwohl könnte hinsichtlich ihrer Benennung eine etwas unbequeme Frage erhoben werden, die freilich eben nur einen Namen betrifft. Sollen wir sie, weil sie ja Abkömmlinge, zum Teil sogar Enkel der primären Hodenzellen sind, nach der von La Valette eingeschriebenen Terminologie Spermatocyten nennen oder Spermatogenen, welches letztere ich oben schon gethan habe? Es wird sich aber zeigen, daß sie, um eventuell haarförmige Spermien zu liefern, nach den Gesetzen der Spermatogenese bei Paludina genau dieselben Schicksale, auch die gleiche Anzahl von Teilungen durchzumachen haben, wie die gewöhnlichen, regulär entstandenen Spermatogenien, also mit diesen den gleichen Wert haben würden. Und das ist ja in sachlicher Hinsicht das Wesentliche. Indem sie aber teilweise auch wurmförmigen Spermien den Ursprung geben, so treten sie auch hiermit wiederum, wie später ebenfalls ersichtlich werden wird, an die Seite gewisser primärer Hodenzellen und sind in einem weiteren Sinne des Worts auch Spermatogenen.

So können wir sagen: Bei Paludina haben die Spermatogenen eine zweifache Entstehungsweise, indem sie teils unmittelbar, teils mittelbar aus dem protoplasmatischen Wandbeilage der Hodenschläuche entstammen. Die meisten sind primäre, aus dem Keimlager hervorgesprossene Zellen, andere jedoch aus einer intermediären, furchungsähnlichen Proliferation eben jener Zellen hervorgegangen.

Hier ist nun der Ort, auf einen anderen besonderen Punkt einzugehen, um einer gewissen, m. E. nicht zutreffenden Behauptung einige Worte zu widmen. Die früheren Beobachter haben die Meinung ausgesprochen, die Spermatogenien blieben andauernd durch einen Faden in Zusammenhang mit dem Mutterboden, dem sie entsprossen, und ebenso blieben ihre, durch wiederholte Teilung ent-

IIIb. Die ruhende Spermatogonie.

Die jungen Spermatogonien sind also nach ihrer Ablösung kugelförmige, eventuell und vorübergehend durch Pressung poly-
edrische Zellen. Betreffs ihres inneren Baues kommt es zwar, wie gesagt, ziemlich oft vor, daß gewisse vorbereitende Veränderungen, die der Mitose vorangehen, schon vor der Ablösung vom Mutterboden in ihnen ausgebildet sind; jedoch ist dies nicht gerade die überwiegende Regel. Sehen wir also einstweilen hiervon ab und betrachten wir ihren gewöhnlichen Anfangszustand, der relativ ein Ruhezustand ist, etwas näher, und zwar zunächst in seiner möglichst natürlichen Erhaltung, wie er nach Zerzupfung des frischen Objekts im Blute des Tieres, ohne weiteren Zusatz, unmittelbar sich darstellt. Das ist um so nötiger, als dabei Ergänzungen des in Balsampräparaten Wiederzufindenden gewonnen werden.

Die mattgraue Protoplasmakugel von 14—15 μ Durchmesser schließt einen, ein wenig excentrisch gelegenen, bläschenförmigen Kern von 6—7 μ Durchmesser ein, in welchem meist zwei verhältnismäßig große Nucleoli bemerkbar sind. Letztere heben sich wohl von dem übrigen, helleren Inhalte des Kernbläschen deutlich genug ab, sind jedoch kaum stärker lichtbrechend als die Zellsubstanz, vielmehr von fast dem gleichen Aussehen wie diese. Statt der zwei Kernkörperchen kann auch ein einziges, etwas größeres, oder es können andererseits auch drei vorhanden sein, von denen dann mindestens zwei kleiner sind als gewöhnlich (Fig. 5a). Der Zellkörper ist an seinem Umfange von einer feinen, dunkeln Linie eingefaßt; und durch Zusatz von Essigsäure von 1—2 Proz. kommt hier aufs deutlichste eine auch nach innen sehr scharf begrenzte Zellmembran zum Vorschein, von welcher das innere Cytoplasma unter der Einwirkung des Reagens ganz oder teilweise sich zurückgezogen und abgelöst hat (Fig. 5b). Es wird sich später zeigen, daß im Laufe der weiteren Entwicklung eine solche membranöse Hülle ganz von selbst erkennbar und durch organische Veränderungen großenteils isoliert wird, daß sie indessen bei aller scharfen Begrenzung doch nur eine besonders verdichtete, sonst aber kaum chemisch veränderte Grenzschicht des Cytoplasmas sein dürfte. Um so mehr ist es von Belang, dieselbe auch schon im Ruhezustande als einen dauernden Bestandteil der Zelle nachweisen zu können. — In der Zellsubstanz selbst aber ist außer dem Kerne noch ein anderer Einschluß sehr auffällig, nämlich ein in der Nähe der Zellperipherie eingebettetes, farbloses, aber sehr glänzendes Kugelchen (Fig. 5a, b), das in seltenen Fällen auch durch zwei kleinere vertreten ist. Mit etwa ausgetretenen Nukleolen haben diese

Nehmen wir nun auch an, daß bei Paludina wirklich Dotter in die Zellen übertritt, so bedarf doch zweierlei einer Erklärung, nämlich erstens die Farblosigkeit des in den Spermatogonien eingeschlossenen Dotterstoffs und zweitens der Umstand, daß fast immer nur eine kugelige Dottermasse von ziemlich genau bestimmtem, nämlich 2 μ betragendem Durchmesser zu finden ist, während doch die gelben Tröpfchen des Keimlagers von sehr verschiedener, zwischen weiten Grenzen schwankender Größe sind. Brunn hat freilich angegeben, die Samenzellen enthielten, gleich den Eiern derselben Species, zahlreiche und zwar gelbe Fetttröpfchen, die sich auch auf ihre Tochterzellen übertrugen; jedoch kann ich dieser Schilderung nicht beitreten. Ich habe niemals
goldgelbe Einschlüsse in irgend einer Samenzelle von Paludina und habe auch die Dotterkörperchen des eben geschilderten Aussehens nur in den Spermatogonien, nicht in deren Nachkömmlingen angetroffen, wenn ich mich vor Täuschungen, wie sie Zupfpräparate mit sich bringen können, hüte. Ich glaube demnach, daß aus dem Keimlager in das hervorkommende Spermatogonium nur kleinste Dotterkörperchen eintreten, und zwar gerade so viele, daß sie zusammen einen Kugelraum von ca. 2 μ Durchmesser ausfüllen würden, daß diese dann, während die Zelle sich individuell abschließt, zu einem runden Haufen dicht versammelt werden und vielleicht sogar zu einem Körper zusammenfließen, dabei aber sehr schnell ihre gelbe Färbung derart verlieren, daß sie ganz farblos werden. Letzteres ist wohl das erste Zeichen ihrer intracellulären Assimilation. Diese macht übrigens sehr bald weitere und weitgehende Fortschritte, in einer Art, die sich namentlich in mit FLEMMING’scher Mischung hergestellten Präparaten gut verfolgen läßt. Die Dotterkugel wird allmählich verzehrt. Und zwar beginnt der Schwund an einem Punkte ihrer Oberfläche, wo sich ein konkaver Ausschnitt bildet, der, größer werdend, zu einer Sichelform des Restes der Masse führt (Fig. 5 c, 9 b), bis auch dieser verschwindet. Öfters dringt auch schon frühzeitig von dem anfänglichen Ausschnitt her die Auflösung in Form feiner Spalten in den Rest der Dottersubstanz ein, wodurch dieser in eine Anzahl keilförmiger oder polygonaler Stücke zerklüftet und durch deren Verkleinerung dann wieder zu einem losen Körnerhaufen wird, um so desto leichter ganz verzehrt zu werden. Dies alles geht freilich langsam vor sich. Die Aufzehrung des Dotters zieht sich bis zum Anfangsstadium der Kernmitose hin. Namentlich ist auch nach der bald zu beschreibenden Herstellung des Nebenkerns oftmals noch ein Rest des geschwärzten Körnerhaufens wahrnehmbar. Wenn jedoch das Knäuelstadium erreicht ist, hat er sich ganz verloren. Und dementsprechend habe ich auch in den Tochter- und Enkelzellen nichts mehr davon finden können.

Betrachten wir nun aber die Spermatogonien in Sublimatpräparaten — in denen sie übrigens, wenn isoliert liegend, um ein weniges geschrumpft, nämlich auf einen Durchmesser von 13 bis 14 μ reduziert sind — nach der Doppeltinktion, so ergibt sich, daß aus letzterer der Zellenleib mit roter Farbe hervorgeht. Dabei erscheint die Zellsubstanz, in toto angesehen, fast homogen, obwohl sie dies thatsächlich nicht ist. Hat es nämlich der Zufall
gefügt, daß der Schnitt ein dünnnes Segment der Zelle abgetrennt hat, so sieht man dieses differenziert in ein dunkler rot gefärbtes, sehr zierliches Netzwerk feiner Fäden mit engen Maschen und breiten, sternförmigen Knotenpunkten und eine die Zwischenräume des feinen Netzwerkes ausfüllende klare, nur ganz bläss rosafarbige Grundsubstanz (Fig. 8a 1). Es stellt sich also deutlich eine Zusammensetzung der Zellsubstanz aus einem Spongio- und einem Hyaloplasma oder einer Filar- und Interfilar-Substanz heraus. Das Netzwerk aber ist, wie die Vergleichung derartiger Bilder untereinander ergibt, durch die ganze Zelle hindurch gleichmäßig dicht und nur an der Grenze des Kerns zu einer Membran des letzteren verdichtet. Ich betone die eben geschilderte Struktur der Zells substanz besonders noch deshalb, weil sie in einem späteren Stadium eine wesentliche Änderung erfährt.

Im Inneren des Kerns aber sind die feinen Körnchen lichtblau, die größeren Nukleolen hingegen sind in einer dunklen Nuance tingiert, die je nach der angewandten Art der Doppeltinktion etwas verschieden ausfällt, immer aber auf eine Summierung von Rot und Blau zurückzuführen ist. Im besonderen nach dem oben sub B.b.1 angeführten Verfahren erscheinen die Nukleolen in einem dunkel violetten oder sogenannten kirschroten Farbenton. Als Ursache dieser Mischfarbe aber ergibt sich ein Strukturverhältnis, das freilich nur bei sehr heller ABBE'scher Beleuchtung mit der Immersionslinse zu erkennen ist. Der Nucleolus zeigt nämlich einen centralen granatroten Teil und eine diesen umhüllende blaue Rinde 1). Ich vermute, daß der centrale Teil an sich hochrot tingiert sein mag, und daß nur, weil die Lichtstrahlen zweimal, unterhalb und oberhalb, eine absorbierende blaue Schicht zu durchdringen haben, jene düstere Abart von Rot verursacht wird. Viel leichter ist übrigens die innere Differenzierung des Nucleolus zu erkennen, wenn man nur einfach mit Methylgrün oder Viktoria-blau tingiert und dann genügend durch absoluten Alkohol entfärbt hat, indem dann der Nucleolus eine ganz farblose helle Mitte zeigt, die von einer blauen Randschicht eingefaßt ist. Ebenso ist es aber auch meistens, wenn nach dem oben sub B.b.2 und C angegebenen Methoden tingiert worden war, wahrscheinlich weil

Leopold Auerbach,
der rote Farbstoff nicht durch die vorher mit blauem imprägnierte Rinde durchzudringen vermag\(^1\)). Es besteht also mindestens eine Zeit lang der Nucleolus aus einer erythrophilen Centralmasse und einer kyanophilen Rinde. Daran knüpft sich die Frage, ob dieser Bau der Nukleolen vielleicht von Anfang an und auch schon in den Mutterkernen durchweg vorhanden ist und sich nur oftmals der Wahrnehmung entzieht, oder vielmehr sich aus einer anfänglichen Durchmischung beider Substanzen nachträglich herausbildet. Letzteres würde bedeuten, daß die kyanophilen Moleküle an die Oberfläche rücken, um hier die Rindenschicht zu bilden. Ich kann einen solchen Vorgang nicht für unwahrscheinlich halten, da ich Ähnliches schon früher bei der Entwicklung der Blutkörperchen von Rana beobachtet habe (I d, S. 744).

IIIc) Nebenkern und Teilung der Spermatogonien.

Zunächst gilt die Beschreibung derjenigen vorherrschenden Modalität, bei welcher der Beginn der inneren Veränderungen in dem schon kugelförmigen Spermatogonium einsetzt. Sie betreffen gleichzeitig den Kern und den Zellenleib. Fassen wir zuerst den letzteren ins Auge. Die Zellsubstanz erfährt eine allmählich vor

\(^1\) Gerade deshalb war ich darauf gekommen, die Methode B. b. 1 zu versuchen, was auch den erstrebten Erfolg hatte.
sich gehende innere Differenzierung, die zur Bildung eines Nebenkers führt. BRUNN sagt ausdrücklich, er habe von Differenzierung im Protoplasma der Samenzellen nichts gesehen und weiterhin (4, S. 498): „Die Nebenkerne habe ich nicht beobachtet“, und auch KOEHLER erwähnt solcher nicht, wohl aber PLATNER. Der Nebenkern ist aber gerade in den Samenzellen von Paludina sehr deutlich ausgebildet und in meinen Präparaten scharf hervortretend. Hinsichtlich seiner Entstehung kann ich nach meinen Befunden nur mit La VALETTE, der zuerst eine solche Bildung in gewissen Samenzellen entdeckt hat (15), darin übereinstimmen, daß er in einer Ansammlung stark verdichteten Protoplasmas besteht, also aus der Zellsubstanz selbst sich herausbildet. Und zwar kann ich diesen Vorgang durch eine Reihe von Zwischenstufen hindurch verfolgen, die jetzt so, wie sie im axialen Schnittbild sich darstellen, beschrieben werden sollen. Es stellt sich nämlich bald heraus, daß ein Durchmesser der Zelle den Wert einer Hauptachse bekommt; und die Beschreibung soll nun diejenige Ansicht des Objekts wiedergeben, die dann entsteht, wenn die Achse horizontal, d. h. in der Ebene des mikroskopischen Gesichtsfeldes liegt, ein Fall, der in allen Phasen des Vorgangs oft genug zu finden ist. Es ergibt sich nun aus der Vergleichung der Einzelfälle folgendes.

Während anfangs die Leibessubstanz der Zelle von gleichmäßiger Beschaffenheit ist, bildet sich dann zuerst an der Peripherie, dicht an der Zellenmembran eine schmale Zone von hellarem, blasser gefärbtem Aussehen (Fig. 8 b), welche hierdurch sowohl die scharf begrenzte dunklere Zellmembran deutlicher hervortreten läßt, als auch mit weniger scharfer Begrenzung von der inneren Hauptmasse des Cytoplasma absticht. Allmählich verbreitet sich die Zone des blassen Außenprotoplasma, jedoch nicht gleichmäßig, sondern am meisten an der von dem exzentrisch gelegenen Kern entferntesten Stelle, infolge dessen die entsprechende Hälfte der Zone Sichelform annimmt; und zugleich wird der übrige, mehr nach innen gelegene Teil des Cytoplasma immer dichter, was sich durch größere Dunkelheit, bezw. intensivere Rotfärbung zu erkennen giebt (Fig. 8 b). Es ist offenbar, daß diesem Innenprotoplasma feste Substanz aus dem lockerer werdenden Außenprotoplasma zugeführt wird. Wegen der exzentrischen Stellung des Kernes ist auch die Zone des dunkleren Innenprotoplasma in der Mittelgegend der Zelle viel breiter als jenseits des Kernes, wo sie sich nur als schmaler Substanzstreifen
zwischen Kern und Zellmembran darstellt, während sie in der breiten Hälfte ebenfalls Sichelform hat. Unter steigender Verbreiterung der blassigen Außensichel wird nun die innere schmaler und würde es noch mehr werden, wenn nicht die Substanz ihrer jenseits des Kernes befindlichen Fortsetzung größtenteils nach der Seite der Sichel herüberwanderte und in diese einbezogen würde. Hierdurch wird der Kern in eine noch mehr exzentrische Stellung gebracht und ganz nahe an die Zellmembran hinangeschoben. Diese Stelle der Zelle mag deshalb als Kernpol und der ihm gegenüberliegende Punkt als Gegenpol bezeichnet werden. Die die beiden Pole verbindende Linie also, die durch den Kern und die breitsten Teile der Sicheln zieht, können wir als Achse der Zelle ansehen. Weiterhin geht nun in der Innensichel eine fernere sekundäre Verdichtung in folgender Art vor sich. Es treten in ihr, in ziemlicher Anzahl zerstreut, noch intensiver gefärbte, brillant rote Kugelchen von verschiedener Größe auf, jedenfalls durch Zusammenballung feinster Teilchen entstehend, indem die Zwischensubstanz dabei an Intensität der Färbung verliert (Fig. 8 c). Allmählich rücken dann diese Kugelchen samtlich nach dem axialen Teile der Sichel und lagern sich hier zu einem dichten Haufen zusammen, der noch eine Zeitlang als ein Konglomerat zu erkennen ist, dann aber zu einem kompakten rundlichen Körper zusammenschmilzt, der mit dem Kerne in Berührung und kleiner als dieser ist, immerhin aber einen Durchmesser von 4—5 μ aufweist und in grelem Rot aus seiner Umgebung hervorspringt (Fig. 8 d). Währenddessen hat sich durch die Konzentrierung der dichteren Substanz auf den rundlichen Nebenkern die Erscheinung der beiden Sicheln verwischt, und diese sind bald gar nicht mehr zu unterscheiden, sondern nur noch der kompakte rundliche Körper und das restierende Cytoplasma, das voluminöser und lockerer ist. Ersterer aber ist nicht bloß durch die Intensität seiner Färbung ausgezeichnet, sondern auch durch einen anderen Farbenton, indem er durch eine hochrote Nuance von dem mehr karmoisinroten oder sogar rötlichgrauen Außencytoplasma absticht (Fig. 8 d). Ich erachte diesen scharf begrenzten, verdichteten Teil des Zellenleibes als homolog mit den sonst als Nebenkerne der Samenzellen beschriebenen Gebilden und behalte deshalb für ihn die Bezeichnung als „Nebenkerne“ bei, obgleich es ungünstig ist, daß dieser Name leicht die Vorstellung erwecken kann, als handle es sich dabei um einen zweiten Kern oder auch nur um etwas kernähnliches. Er soll eben nur einen neben dem Kern in

war, so handelt es sich wohl bei der jetzigen Rarefikation in der Hauptsache darum, daß viele Querverbindungen des Netzes zerriessen und dadurch die Maschenräume größer werden. Aber ich muß doch hinzufügen, daß letztere jetzt völlig farblos, wie ganz leer aussehen, also wohl nur mit Zellsaft erfüllt sein mögen. Zuletzt aber steigert sich dieser Schwund des Außenprotoplasmas derart, daß schließlich der Kern samt dem ihm anhaftenden Nebenkerne in einer Zellflüssigkeit schwebt, nur suspendiert durch eine geringe Anzahl sehr feiner Protoplasmafäden, die im großen und ganzen radial gegen eine an der Peripherie der Zelle übrig gebliebene, kontinuierliche Grenzschicht, die Zellmembran, gerichtet und mit dieser verbunden sind. (Fig. 8 e). Hie und da zeigen diese Fäden nach der Peripherie gerichtete Gabelungen und heften sich also mit zwei oder mehr Zweiglein an die Grenzmembran, während ich es zweifelhaft lassen muß, ob auch einzelne Verbindungsbrücken der Fäden untereinander bis zuletzt sich erhalten. Dieser bemerkenswerte, für das vorliegende Stadium charakteristische Bau der Zelle zeigt sich ganz ebenso an solchen Präparaten, die auf Grund einer Vorbehandlung mit Chrom-Osmium-Essigsäure oder Pikrin-Schwefelsäure gewonnen wurden. Daß die ganze Erscheinung nicht etwa auf eine durch die Erhärtungsmittel verschuldete Verunstaltung zurückzuführen ist, lehrt die Vergleichung mit dem intakten Protoplasma anderer in dem nämlichen Präparaten vorhandener Samenzellen früherer Stadien und die Verfolgung des ganzen Entwicklungsganges. Auch konnte ich, nachdem ich diese Verhältnisse einmal kennen gelernt hatte, das Wesentliche derselben sogar auch an frischen im Blute des Tieres verteilten Zellen mit Hilfe des aprochromatischen Trockensystems: 0,95—4 von Zeiss wiederfinden. Es sind also der große, von Zellsaft erfüllte Raum und die diesen durchsetzenden Suspensionsfäden natürliche Bildungen; nur mögen letztere im Leben nicht ganz so fein, sondern etwas breitere und weiche Stränge sein. Wenn ich übrigens dieselben der Anschaulichkeit wegen Suspensionsfäden genannt habe, so will ich doch nicht unterlassen zu bemerken, daß sie nicht sämtlich straff gespannt sind, daß man vielmehr einzelne in einem Bogen oder auch mehrfach gekrümmt verlaufen sieht. Ihre Aufgabe dürfte also nicht eine bloß mechanische, sondern auch die sein, den organischen Zusammenhang des im Nebenkerne konzentrierten Teils der Zellsubstanz mit der äußeren Grenzschicht zu erhalten.
Zur Ergänzung dieser Schilderung muß ich nun auch noch auf diejenigen Fälle eingehen, in denen die innere Umgestaltung schon in den noch kegel- oder keulenförmigen, mit ihrer Spitze dem Wandbelage aufsitzenden Spermatogonien beginnt und mehr oder weniger weit, selbst bis zur völligen Herstellung des Nebenkerns fortschreiten kann. Damit sind natürlich gewisse, wenn auch nicht wesentliche Modifikationen der Formverhältnisse verbunden (Fig. 9 a und b). Der Kern liegt dann immer ziemlich hart an der dem Lumen des Schlauchs zugewandten, gewölbten Basis des Kegels. Die betreffende Stelle der Basalfläche entspricht also dem Kernpole, die Spitze der Zelle dem Gegenpole. Der dem letzteren zugewandten Seite des Kerns liegt der Nebenkern an, welcher unter diesen Umständen selbst eine kegelförmige, nach der Zellspitze hin verjüngte Gestalt anzunehmen pflegt. Da hier das Außenprotoplasma nicht auf einen sichelförmigen Raum verteilt ist, sondern einen breiteren, mehr geschlossenen, fast dreieckigen Bereich einnimmt, so läßt sich seine Beschaffenheit und Struktur fast noch besser erkennen als in den kugelförmigen Exemplaren der Spermatogonien. Es kommt zuweilen auch in der ersteren zu der beschriebenen Rarefizierung des Außenprotoplasmas. Spätestens aber nach Herstellung dieses Zustandes oder schon etwas früher müssen sich auch diese Zellen von dem Keimlager ablösen und abrunden; denn alle späteren Stufen des Entwicklungsfortschritts habe ich nur in abgelösten kugelförmigen Spermato- gonien vorgefunden.

Einige Worte muß ich jetzt auch dem Verbleib der Dotter- substanz während der geschilderten Vorgänge widmen, nach Beobachtung an mit Flemming'scher Mischung behandelten Objekten (s. oben S. 411 u. 424). Anfangs ist meist noch ein Rest jener Substanz als ein halbmondförmiges oder diiformes Häufchen geschwärzter Körnchen zu sehen, und zwar bald in der inneren, bald in der äußeren Sichel oder an der Grenze beider. Später, wenn der rundliche Nebenkern sich konstituiert, liegt ein etwaiger Rest dieser Körnchen immer im lockeren Außenprotoplasma, eventuell, d. h. wenn es noch kegelförmige Zellen betrifft, immer nahe der Spitze der Zelle. Ist es aber bereits zu der hochgradigen Rarefizierung des Außen-Cytoplasma gekommen, so sind nur selten noch ein Paar jener Körnchen an einem der Suspensionsfäden zu finden; meist ist jetzt der Dotter ganz aufgezehrt.

Nach dieser Schilderung der Entstehungsweise des Nebenkerns liegt es mir nun noch ob, meine Ergebnisse mit denjenigen früherer
besteht. — Im übrigen aber herrscht, wie gesagt, zwischen La Valette's und meinen Ergebnissen eine mir sehr erfreuliche Übereinstimmung, die um so mehr die Richtigkeit der Thatsachen verbürgt, als ich letztere an ganz anders vorbehandelten Objekten festgestellt habe.

Leopold Auerbach,

vielleicht schon im Stadium der beiden Sicheln, jedoch anfangs in sehr langsamen Tempo, so daß sie zu dieser Zeit noch geringfügig und zuweilen kaum zu konstatieren ist. Sobald jedoch der Nebenkern hergestellt ist, steigert sie sich progressiv derart, daß die Kernhöhle schließlich einen Durchmesser erreicht, der mehr als 0,9 desjenigen der ganzen Zelle beträgt (Fig. 8 f und g), dabei im ganzen ihre kugelige Gestalt beibehaltend. Es führt dies zu einem völlig veränderten Aussehen des ganzen Zellgebildes. Da nämlich der Kern bei Beginn dieses Vorgangs sehr exzentrisch, nahe dem Kernpole seine Lage hat, so findet sich natürlich Raum zu seiner Ausdehnung am meisten in der Richtung nach dem Gegenpole, in abnehmendem Maße nach den Seiten hin, am wenigsten in der Richtung nach dem Kernpole. Es verschiebt sich also das Centrum des Hohlrums unter Annäherung an das Centrum der ganzen Zelle; und die dem Gegenpole zugewandte Hälfte des Kernenfanges nähert sich diesem mehr und mehr. Hierdurch wird der ihr anliegende Nebenkern allmählich nach dem Gegenpole hingeschoben bis zur Berührung mit der Zellmembran. Und weiterhin wird sogar unter wachsendem Drucke seitens des anschwellenden Kernes der Nebenkern in eine andere Form gepresst, nämlich in diejenige eines plankoconvexen oder konkavoconvexen Meniscus, der im optischen Querschnitte sichelförmig erscheint und zwischen Kerngrenze und Zellmembran eingeschlossen ist (Fig. 8 g, h, i, k). Die Suspensionsfäden scheinen sich während des Vorgangs, nach einigen Anzeichen zu schließen, selbständig zu verkürzen, indem sie im allgemeinen mehr als früher geradlinig ausgespannt erscheinen. Am Ende dieses Akts ist von ihnen schon deshalb nichts mehr zu sehen, weil die übrigens mit der Auftreibung immer dünner gewordene Kernmembran sich schließlich nicht nur der Zellmembran dicht anlegt, sondern sogar mit dieser, sowie auch mit dem Material der Suspensionsfäden und mit dem Nebenkern zu einer einzigen, auch dann noch dünnen Haut verschmilzt, die nur am Gegenpole eine flach-linsenförmige Verdickung, aus der Substanz des Nebenkerns gebildet, darbietet. Die Verschmelzung dieser Teile kann uns deshalb nicht erstaunlich sein, weil sie ja aus dem gleichen Stoff bestehen, nämlich sämtlich nur verdichtete Partien der wesentlichen Substanz des Zellenleibes sind. Die erwähnte linsenförmige Verdickung am Gegenpole springt
gewöhnlich nach innen hin vor und schneidet so ein kleines Segment des kugelförmigen Hohlrums ab; jedoch kommt es auch gar nicht selten vor, daß sie unter gesteigertem Druck nach außen hin verdrängt wird, somit wie ein kleiner Hügel der Oberfläche der Kugel aufsitzt, im mikroskopischen Bilde die Form eines Fingerringes mit angefügtem Steine nachahmend (Fig. 8 h, i). Wer die so veränderten Zellen ohne Vorbereitung sieht, könnte sie sehr leicht für freie Kerne halten, die mit etwas dickerer Kernmembran versehen sind, namentlich in Dissociationspräparaten mit dem Verdachte, daß sie infolge der angewandten Manipulationen aus den Zellen ausgetreten seien, und dies um so eher, als ja bei der verschiedenen zufälligen Lage der einzelnen Zellen nur in wenigen derselben die lokale Verdickung der scheinbaren Kernmembran im Profilbilde sichtbar ist, sonst aber vielfach nur bei sorgfältigster Beachtung der oberen und unteren Fläche als ein mehr dunkelroter Fleck bemerkbar wird. Bei den ähnlichen Bildern in Schnitten freilich, in denen solche Gebilde meist massenhaft ganz dicht bei einander liegen, würde die irrtümliche Auffassung nicht lange vorhalten. In der That ist aber die Zellsubstanz auf eine sehr dünne Schicht an der Oberfläche reduziert, und der Kern ist nur noch eine sehr große, das Fadenwerk borgende Höhle, die aber vorläufig noch scharf begrenzt ist. Die ganze Zelle aber ist jetzt wirklich ein Bläschen. — Wenn wir nun noch die Frage aufwerfen, wohin denn der Zellsaft d. i. die vorher so reichliche extranukleär angesammelte Flüssigkeit gekommen ist, so kann es darauf nur eine Antwort geben. Sie ist in die Kernhöhle (endosmotisch?) eingedrungen, hat das Material zu deren Vergrößerung und mittels steigenden intranukleären Drucks die Kraft zur Verdrängung und Umformung der festen Zells substanz geliefert, so weit nicht etwa in dieser eigene Bewegungskräfte mitgewirkt haben. Falls die Suspensionsfäden an der Kernmembran ziehen und diese damit zugleich ausdehnen sollten, so müßte dies direkt auf Filtration des Zellsaftes in den Kernraum hinein hinwirken. In jedem Falle aber wird diese Einströmung dadurch begünstigt, daß schon vorher der Zellsaft aus den feinen Interstitien der festen Zells substanz ausgepreßt war und, in größeren Räumen angesammelt, die Kernmembran unmittelbar umspülte. Hingegen ist das Cytoplasma überall nach außen zurückgewichen; von ihm ist auch in die so sehr vergrößerte Höhle vorläufig noch nichts eingedrungen.

Letztere sieht sehr hell aus, enthält im Verhältnis zu ihrer
näher verfolgen können, wobei sich zeigte, daß an einem oder einigen oberflächlichen Punkten des Nucleolus die Aufzehrung beginnt und von da aus weiterschreitet, so daß gleichsam angefressene Nucleoli zur Fixierung kamen. Wenn übrigens in unserem Falle Auflösung der Nucleolen früher erfolgen sollte, als man ihr Verschwinden erkennen kann, so könnte dieses Ereignis auch ursächlich mitwirken bei der enormen Anschwellung der Kernhöhle. Durch die Vermischung der Nucleolarsubstanz mit dem Kernsaft würde dieser ja konzentrierter werden und endosmotisch Wasser aus der umgebenden Zellsustanz anziehen und so unbeschadet der früher von mir hypothetisch berührten Momente zu dem Erfolg beitragen können. — Indessen hat die Sache doch noch eine andere Seite, welche eine Entscheidung in obigem Sinne erschwert. Es wird sich zeigen, daß während der nächstfolgenden Phase des Prozesses, nämlich während des Knäuelstadiums, in derselben Höhle wieder ein bis zwei rote Kügelchen auftauchen. Diese müßten also Neubildungen sein. Wir dürfen jedoch andererseits auch daran denken, daß sie vielleicht mit den Centralkörpern der früheren Nucleolen identisch sind, die sich doch erhalten und nur eine Zeitlang dem Blicke des Beobachters entzogen haben, etwa dadurch, daß sie über die Kerngrenze hinaus in den Bereich der Zellsustanz verschlepppt waren. Das ist um so eher möglich, als während der Anschwellung des Kerns die Kernmembran zwar noch vorhanden ist, aber immer zarter wird, also diese am Umfange der Kernhöhle verdichtete Grenzschicht des Cytoplasma

zu erweichen beginnt. Daß ein solcher Übertritt sich wirklich ereignen kann, dafür sprechen wiederum die Beobachtungen Rosen's, nach dessen Angaben in manchen pflanzlichen Zellen die Nucleoli trotz ihrer regulären Tendenz zur Auflösung zuweilen doch ganz oder bruchstückweise in das Cytoplasma hinausrücken und hier leicht wiederzufinden sind, weil sie aus dem zerteren, nur schwach tingierten pflanzlichen Cytoplasma durch dunklere Färbung hervorstehen. In unserem Falle wären die Bedingungen für ihre Bemerkbarkeit um so weniger günstig, als es eigentlich nur der an sich dichtere Nebenkern sein könnte, in welchem die Kugelchen sich verstecken. Ich erinnere daran, daß F. Hermann in seiner Arbeit über die Samenbildung bei Salamandra und Mus domestica (11) ein mit dem Nebenkerne verbundenes, nach seiner Art der Doppeltinktion durch besondere Färbung ausgezeichnetes Kugelchen beschrieben und betreffs seines Ursprungs zwar nicht festgestellt, aber doch vermutet hat, daß es wohl aus dem eigentlichen Kern hervorgekommen sein möge. Für unseren Fall wüßte ich freilich etwas Positives zur Unterstützung einer solchen Vorstellung nicht beizubringen. Daran könnte schuld sein, daß rote Kugelchen, eingebettet in eine andere intensiv rote Substanz, sich leicht der Wahrnehmung entziehen. Eventuell nun würde diese Einlagerung

lich hat er sie in 28 c zu öfters wiederholten Malen (S. 481, 483, 530, 533, 534, 569) und ebenso auch in 28 d (S. 30) mit immer erneuerter Nachdruck ausgesprochen, und zwar ganz in Übereinstimmung mit der früher von mir entwickelten Vorstellung, dabei jedoch diese von ihm vorher bekämpfte und erst später angenommene Anschauung durchweg so vorgetragen, daß der Ursprung derselben in Vergessenheit geraten und die Meinung entstehen konnte, sie gehe von ihm aus, wie denn auch Heuser (18) und Guignard (10), denen wohl meine älteren Publikationen unbekannt waren, die aus diesen herstammende Aufassung als eigenste Originalansicht Strasburger's angesehen haben.

Leopold Auerbach,
nur vorübergehend sein; in einer etwas späteren Zeit würden jene Kügelchen wiederum in die Kernhöhle hinein ausgestoßen werden. — Dies ist jedoch alles sehr zweifelhaft. Fest steht nur, daß in dem Netzstadium die Nucleoli als solche verschwinden, und daß ihre Randsubstanz auf die angegebene Art zu einem Teile des intranukleären Netzwerks wird, der anfangs noch unterscheidbar ist, dann aber durch Auseinanderrücken der Knotenpunkte sich in dem übrigen Fadennetz verliert.

Bald aber erfährt dieses eine Umwandlung. Es folgt jetzt das Knäuelstadium (Fig. 8g). Der intensiv blau tingierte Knäuel besteht anscheinend aus einem einzigen ansehnlichen und durchweg gleichmäßig dicken Faden. Es sind nämlich jetzt freie Fadenenden nicht zu sehen, und man könnte sogar an einen in sich selbst zurückkehrenden Faden denken. Mit Sicherheit jedoch läßt sich die Kontinuität deshalb nicht behaupten, weil da, wo der Knäuel den Nebenkern berührt, die Verhältnisse nicht so klar zu durchschauen sind, daß etwaige, gerade in dieser Gegend vorhandene Unterbrechungsstellen des Fadens für ausgeschlossen gelten könnten. Wären solche vorhanden, so würde das verschlungene Gebilde von vorherein aus mehreren Fäden bestehen. Viele Gipfel der Fadenbiegungen kommen der Grenze der Kernhöhle oder, wie man sie jetzt auch nennen könnte, der Zellhöhle ziemlich nahe, so daß der lockere Knäuel den Hohlraum beinahe ausfüllt. In Betreff der feineren Verhältnisse dieses Stadiums sagt BRUNN, der gerade dieses Stadium reichlich angetroffen hat, folgendes: „Charakteristisch ist, daß dem Knäuel eine scharfe Begrenzung gegen das Protoplasma fehlt; der glänzende bestimmte Umriss des Kerns ist verschwunden, und die Räume des Knäuels stehen in direkter Kommunikation mit dem umgebenden Protoplasma“ (4, S. 449). Dies würde ja sehr gut zu dem, was ich an einigen anderen Arten von Zellen schon in diesem Stadium der Mitose gesehen habe, und zu meiner längst geäußerten Ansicht über das Wesen der indirekten Zellteilung stimmen; aber ich muß doch sagen, daß jene Äußerung auf das jetzige Stadium unseres Objekts nicht zutrifft. Richtig ist daran, daß die Kernmembran als besondere Schicht nicht mehr existiert, und zwar deshalb, weil sie mit der Zellmembran und dem Nebenkern verschmolzen ist. Ferner kommt in Betracht, daß die Flüssigkeit, welche früher die Zellsubstanz durchtränkte, größtenteils in die Kernhöhle hinein diffundiert ist, also jetzt die Zwischenräume des Knäuels ausfüllen hilft. Diese Räume kommunizieren nun
mit der peripherischen Zone der Höhle, nicht aber mit dem Cytoplasma. Die Grenzfläche der Höhle aber gegen die dünne, sie blasenartig umgebende Cytoplasmaschicht ist noch scharf ausge- sprochen; und da an dieser Grenzfläche eine Flüssigkeit und eine feste Substanz zusammenstoßen, so kann hier von einer Kommunikation nicht gut die Rede sein, außer etwa einer intermolekulären, die ja aber nie fehlt.

In der sehr erweiterten Zellhöhle ist aber jetzt außer dem gewundenen blauen Fadenwerk nicht selten noch etwas anderes zu sehen, worauf ich schon oben hindeutete, nämlich ein rot tingiertes, scharf konturiertes Kugelchen. Dieses hat seine Lage meist zwischen den Windungen des blauen Fadenwerks, durch dieses sehr verdeckt, so daß es, wenn überhaupt, doch nur mit Schwierigkeit zu erkennen ist. Ausnahmsweise jedoch liegt es zur Seite des Knäuels und fällt dann von selbst ins Auge (Fig. 8 g). Es erhält sich bis in das bald zu beschreibende Schleifenstadium hinein, während dessen es noch lange als gesondertes, frei schwebendes Körperchen zu konstatieren ist (Fig. 8 h). Einige Male konnte ich übrigens sogar zwei solcher roter Kugelchen erkennen. Ob diese Zweizahl etwa Regel ist und nur, teils infolge Angeschnittenseins vieler Zellen, teils wegen der Schwierigkeit der Beobachtung, selten festzustellen ist, oder wirklich nur ausnahmsweise vorkommt, oder auch eine typische Zweiteilung des ursprünglichen Kugelchens bedeutet, muß ich dahingestellt sein lassen, ebenso auch, ob sie etwa bestimmt sein mögen, später als Centrosomen zu funktionieren. Letztere Natur ihnen zuzusprechen, wäre ich um so mehr geneigt, als ja auch in anderen Fällen in diesem Stadium schon Centrosomen gesehen worden sind; nur will damit nicht recht stimmen, daß sie so leicht tingierbar sind, und daß sie später wieder zeitweilig verschwinden. Die Ungewißheit ihrer Herkunft resp. ihrer etwaigen Beziehungen zu den früheren Nukleolen habe ich schon oben besprochen. Ihre Existenz im Knäuel- und im Schleifenstadium ist jedoch eine Thatsache, die ich auch in anderen, ebenfalls Gasteropoden betreffenden Fällen, nämlich in den Samenzellen von Limnaeus stagnalis, von Planorbis und von Helix Pomatia, und zwar an diesen Pulmonaten als eine noch leichter zu beobachtende Erscheinung aufgefunden habe. Ich hatte bei Paludina diese Thatsache lange Zeit übersehen, weil sich hier der Erkennung Schwierigkeiten gegenüberstellten. Erst als ich durch die viel leichteren Wahrnehmungen an den Pulmonaten auf die Sache aufmerksam geworden war, fand ich sie auch an Paludina.
Einige anzuknüpfende Erwägungen verschiebe ich bis zur Be sprechung des folgenden Stadiums.

Der Knäuelzustand kann kaum sehr lange andauern; denn es finden sich zwischen den dieses Bild darbietenden Zellen öfters eine ziemliche Anzahl, die schon dem folgenden, dem Schleifen stadium angehören, welches dann wieder in anderen Individuen unvermischt vorliegt. Jetzt sind in dem Hohlräume einige ge sonderte Fadenstücke enthalten, deren jedes in einem etwa lu feisenförmigen Bogen gekrümmt ist, also eine Anzahl „Schleifen“, um diesen üblich gewordenen Terminus beizubehalten. Und zwar habe ich oft genug feststellen können, daß vier solcher Schleifen für die Samenzellen von Paludina typisch sind. Es ist also ent weder ein langer Faden in vier Stücke zerfallen, oder es ist eine schon von Anfang an vorhandene Diskontinuität jetzt durch eine gewisse Streckung der Einzelteile erst erkennbar geworden. Dies ist so gemeint, daß die Fäden unter Ausgleichung ihrer mehr fachen Krümmungen die größere Bogenform annehmen. Fast hat es den Anschein, als ob damit eine Verkürzung und Verdickung der Fadenstücke verbunden sei, also schon jetzt die später viel weiter gehende Kontraktion derselben beginne. In vielen Zellen dieses Stadiums zeigt sich nun eine gewisse typische Anordnung der vier Schleifen, indem diese ihre Scheitelwölbungen sämtlich nach einer Seite hin richten, nämlich nach der der Cytoplasma sichel gegenüberliegenden Seite, also nach der Gegend des Kern pols hin. Und zwar fällt jeder der Bogen mit seinen zwei freien Enden auf jener Sichel und ragt mit seinem Gipfel mehr oder weniger weit über die Mitte des Hohlrums hinweg, öfters bis in die Nähe der gegenüberliegenden Protoplasmawandung, ohne jedoch diese ganz zu erreichen. Manche der gekrümnten Bogenschenkel schmiegen sich in erheblicher Strecke dem seitlichen Umfange der Höhle an, aber auch diese an der Grenzfläche verlaufende Strecke wendet sich schließlich nach innen, so daß die verbindende Scheitelkrümmung in einem gewissen Abstande von dem oberen Pole verbleibt (Fig. 8 h). Dieses polare Segment bleibt also frei von blauen Fäden. Es entspricht dies im wesent lichen einer zuerst von Rabl bemerkten Anordnungsweise der Schleifen. Der Mittelpunkt des freien Feldes ist aber identisch mit dem oben von mir aus bestimmtem Grunde so bezeichneten „Kernpol“; und es ist also jetzt die Umgebung des Kernpols zu dem Rabl'schen Polfelde geworden. Freilich ist die Erschei nung in unserem Falle meist nicht besonders elegant, schon des-
Spermatorogenese von Paludina vivipara. — Abschn. III c. 459

halb, weil viele der Schleifen ganz im Innern der Höhle stecken, ohne mit deren Seitenwand in Berührung zu kommen, außerdem aber auch, weil sich im einzelnen mancherlei Unregelmäßigkeiten einmischen, betreffend sowohl die gegenseitige Stellung der Schleifen zu einander, als auch die Höhenlage ihrer Gipfel. Insofern nämlich jede Schleife als eine ungefähr ebene Figur betrachtet werden kann, so stehen diese Schleifenebenen zuweilen ziemlich parallel zu einander und zur Achse der Zelle; viel öfter jedoch sind sie nicht bloß divergent nach dem Kernpole, sondern auch seitlich in Winkeln gegen einander gestellt. Ja es kommt sogar nicht selten vor, daß eine Schleife die andere umgreift, ihre Linien sich also kreuzen. Sodann aber kommen die vier Schleifen mit ihren Scheitelkrümmungen fast niemals dem Kernpole gleich nahe, ohne daß doch auch in diesen Differenzen irgend eine Regelmäßigkeit stattfände. Diese Ungleichheit in der Höhenlage der Schleifengipfel ist aber einseitig bedingt durch verschiedene Krümmung der Schleifen, die bald schlanker geformt, bald breit ausgebogen sind; anderenteils aber ist sie verursacht durch wirklich verschiedene Länge der Fäden, eine Ungleichheit, die vielleicht theoretischen Voraussetzungen widersprechen mag, jedoch thatsächlich nicht abzuweisen, zuweilen sogar sehr beträchtlich ist, möglicherweise aber hinsichtlich der Quantität der Substanz durch verschiedene Dicke, namentlich der knopfartig angeschwollenen Fadenenden kompensiert und sekundär entstanden, nämlich Folge vorzeitiger Kontraktion einzelner Schleifen ist. Infolge aller dieser Umstände kommen nur selten so regelmäßige und zierliche Bilder heraus, wie eines in Fig. 8 h dargestellt ist. Immerhin ist in allen diesen Fällen die Orientierung der Schleifen nach den Polen gut kenntlich. Die beiden Enden jedes Fadens fußen nahe bei einander auf der Sichel, und die Scheitelkrümmung sieht nach dem Kernpole hin. Es ist dies eine erste Phase des Schleifenstadiums, die wir als die Phase der geordneten Schleifen bezeichnen können.

In einem bald folgenden Zeitraume aber lösen sich die Schleifen von dem Boden, dem sie aufsaßen, ab und nehmen bald andere Arten von Krümmungen und andere, sehr unregelmäßige Lagen in dem Hohlraume an, der sie birgt (Fig. 8 i). Indem an jedem einzelnen Fadenstücke die freien Enden auseinanderweichen, bekommt es öfters eine haarnadelähnliche Form und geht dann in diejenige eines flachen Bogens oder auch einer S-förmigen oder selbst ein wenig spiraligen Krümmung über. Dabei geraten die
vier Fäden in die mannigfachsten Lagen zu einander und zu der Achse der Zelle, so daß ihre freien Enden nach den verschiedensten Richtungen hinsehen. Teilweise, jedoch eben nur teilweise, schmiegen sie sich auch jetzt der Grenzfläche der kugelförmigen Zellhöhle an. Zellen dieses Zustandes sieht man öfters massenhaft beisammen, aber auch denjenigen der vorigen Erscheinungsweise vereinzelte beigemischt, als Fälle, die in der Entwicklung ihren Genossen ein wenig vorausgeeilt sind. Die jetzigen Krümmungen der Fäden würden es ja an sich kaum noch rechtfertigen, von Schleifen zu sprechen; immerhin können wir in Rücksicht auf den vorangegangenen Zustand den jetzigen als Phase der abgelösten und verlagerten Schleifen bezeichnen (Fig. 81). Jetzt ist übrigens öfter als bei der früheren Anordnung zu erkennen, daß die Enden der Fäden wie ein Sondenknopf verdickt sind. Dies ist wohl der Beginn einer Längskontraktion, die, wie ich bald begründen werde, wahrscheinlich mit Zerfallung eines jeden Fadens in vier kurze Stücke verbunden ist. — Da übrigens bei der Umwandlung des vorigen Zustandes in den jetzigen die Frage entsteht, durch welche Kräfte die Änderungen bewirkt werden mögen, und im besonderen, ob etwa zwischen den Schleifen ausgespannte kontraktile Fäden im Spiele seien, so habe ich mich sehr bemüht, solche Linienfäden zu finden, habe aber nichts davon erschauen können. Sollten sie dennoch vorhanden sein, so müssen sie nicht bloß sehr fein sein, sondern namentlich auch der Tingierbarkeit durch die von mir benutzten Farbstoffe gänzlich entbehren, was ich besonders betone, weil es für eine später zu besprechende Frage von Wichtigkeit ist. Hinzufügen muß ich noch, daß von dem einfachen oder doppelten roten oder rotbraunen Kügelchen, das noch zur Zeit der geordneten Schleifen zu konstatieren ist, in der jetzigen Phase nirgends mehr etwas aufzufinden war. Es muß sich also wieder verloren oder durch Eindringen in das Cytoplasma, resp. in die Nebenkernsubstanz versteckt haben.

Von der durch Flemming zuerst entdeckten, so wichtigen Längsspaltung der Fäden, die ja für eine Reihe von Fällen festgestellt ist, habe ich an unserem Objekte nichts wahrnehmen können. Eine solche würde auch nicht recht in den weiteren Gang der Dinge hineinpassen, da, wie wir sehen werden, die Fäden nicht als solche, d. h. nicht in Fadenform in das Spindelstadium eintreten. Hingegen tritt eine andere Art der Zerteilung der Fäden ein, nämlich Zerfall derselben in sechzehn, bald sich ab-
rundende Stücke, also jedes einzelnen Fadens in vier solche. Ich finde vielfach, und zwar meist untermischt mit mehr oder weniger Formen des letzt besprochenen Schleifenstadiums, ebensolche blasenartige Zellen, deren große Höhle jedoch nicht mehr die Fäden, sondern statt deren 16 oder beinahe 16 rundliche, zum Teil fast genau kugelige, blau tingierte Körperchen enthält, die ziemlich gleichmäßig im Raume zerstreut und vielleicht durch un-sichtbare, aber ganz gewiß nicht durch tingierte Fäden mit- einander verbunden sind, übrigens im Durchmesser die Dicke der früheren Fäden übertreffen (Fig. 8 k). Diesem Befunde gegenüber habe ich mich anfangs skeptisch verhalten, aus Besorgnis vor einer optischen Täuschung, die etwa dadurch bedingt sein könnte, daß die verdickten Enden der Fäden und einzelne Umbiegungs-stellen derselben besonders stark hervortreten. Allein die große Zahl der Einzelfälle, in denen niemals etwas von verbindenden Fadenstrecken zu finden war und der Vergleich mit den nebenan liegenden, noch Schleifen enthaltenden Zellen beseitigte jeden Zweifel. Außerdem aber fügt sich der jetzt vorliegende Zustand als notwendiger Uebergang zu dem nächstfolgenden, in Fig. 8 I dargestellten vortrefflich in die Kette der Veränderungen ein. Anlangend die Anzahl der Zerfallsstücke, so glaube ich die Zahl 16 als die gesetzmäßige ansehen zu dürfen. Zuweilen konnte ich genau 16 zählen, niemals mehr. Wenn in anderen Einzelfällen nur 13—15 zu unterscheiden waren, so kann dies in Schnittpräparaten sehr wohl durch Anschnitt der Zelle, sonst auch durch gegenseitige Deckung einzelner Innenkörperchen ver- ursacht gewesen sein. Es ist wohl kaum etwas anderes zu vermuten, als daß die Zerfällung der Fäden durch Querteilungen erfolgt, die übrigens nicht einfache Zerspaltungen zu sein brauchen. Zu meinem Bedauern habe ich gerade an den Spermatogonien, deren Größe eine relativ leichtere Beobachtung ermöglicht hätte, keine Zwischenstufen zwischen den Phasen i und k angetroffen; nur bei der gleichen Folge von Veränderungen an den Samenzellen der dritten Generation glaube ich vermittelnde Zustände erkannt zu haben. Danach würde der Faden außer seinen beiden Endan- schwellungen noch zwei mittlere bekommen, die auf Kosten der drei verbindenden Fadenstrecken anschwellen, und es würden die letz- teren, nachdem sie sehr dünn geworden sind, einreißen, zuerst die mittlere, dann die beiden anderen. Da jedoch bei der Kleinheit der genannten Zellenart die Beobachtung der feinen Innenteile und besonders die Sicherstellung dieser Verhältnisse schwierig ist, so
möchte ich das oben Gesagte nur mit Vorbehalt ausgesprochen haben. Wie aber auch die Zerfällung in vier Stücke herbeigeführt werden möge, so ist doch das Resultat als Thatsache sehr auffallend. Welchen Sinn und Zweck dieselbe wohl haben könne, wird erst aus dem weiteren Verlaufe des Prozesses vermutungsweise sich beurteilen lassen; und ich werde auf diese Frage weiter unten zurückkommen.

So reichlich nun aber einerseits das oben Geschilderte und andererseits die später folgende Hauptphase, nämlich die Faserspindel mit Äquatorialplatte in meinen Präparaten vertreten sind, so stehen mir doch betreffs des Übergangs des ersteren Zustandes in den letzteren leider nur sehr sparsame Beobachtungen zu Gebote, darunter freilich eine m. E. sehr lehrreiche Zwischenform. In einem meiner Präparate befindet sich in einem Hodenschlauche eine Gruppe von acht Zellen, von je 13—14 μ Durchmesser, also acht Samenzellen erster Generation, die alle die in Fig. 81 wiedergegebene Verfassung zeigen. Die Zelle ist ein klein wenig in die Länge gezogen, kurz-elliptisch. Da sich die eine Achse als Hauptachse der Zelle erweist, so können wir die auf ihr senkrechte Ebene als äquatoriale ansehen. In der äquatorialen Zone aber zeigen mehrere der Zellen eine leichte Ausbauchung des Umrisses, so daß die Gesamtform sich derjenigen einer breiten Spindel mit abgestutzten und abgerundeten Spitzen nähert. Die wesentlichste Veränderung aber betrifft den inneren Bau. Während in den vorigen Stadien nur an einer Stelle der cytoplasmatischen Außenschicht eine halbmondförmige Verdickung da war, sind jetzt deren zwei gleich große vorhanden, und zwar an zwei sich diametral gegenüber stehenden Punkten. Nämlich an den Enden der längeren Achse befindet sich je eine solche Anhäufung von dichtem, rot tingiertem Protoplasma, mit der Zellmembran scheinbar verschmolzen, wenigstens ohne bemerkbare Scheidung von dieser, hingegen an der nach dem Hohlraum hinsehenden Seite nicht mehr so scharf begrenzt, sondern wie flockig oder gefranst. Und von diesen letzteren Zacken gehen in der Richtung nach der Äquatorialebene hin divergierende, äußerst feine und blasse, eben noch erkennbare Fäden aus. In der Mittelgegend des hellen Hohlraums aber, und zwar in einer Querrzone von einer gewissen Breite, die etwa einem Fünftel der Längsachse entspricht, sind eine Anzahl kleiner, rundlich-ekiger Körperchen zerstreut. In den einzelnen Zellen zähle ich 9—14 solcher Karyosomen. Da jedoch diese Zellen unzweifelhaft sämtlich der Länge nach etwas

Die sechzehn Teilstücke der Schleifen sind nun alle in eine äquatoriale Zone der Zelle gerückt. Noch liegen sie weder genau in einer Ebene noch sehr nahe bei einander, sondern gleichsam zwischen zwei Wendekreisen zu beiden Seiten des Äquators zerstreut, immerhin diesem viel näher als den Polen. Bei ihrem Zusammenrücken in diese Gegend mögen wohl die feinen Fädchen mitgewirkt haben, die von den beiden polaren Cytoplasmamaassam- lungen nach dem Äquator hin ausstrahlen; und eben dieselben werden sie später einander noch näher bringen. Der ganze Komplex dieser Fädchen ist übrigens vorläufig noch sehr verschieden von der späteren Faserspindel; denn jener besteht nur aus wenigen, äußerst feinen und deshalb kaum als gefärbt erkennbaren, aus- einander gespreizten Fäserchen, deren Gesamtmasse vergleichs-
Leopold Auerbach,

weise sehr gering ist. Ich will deshalb auch nicht die Möglichkeit bestreiten, daß die jetzigen Faserchen nicht in ihrer ganzen Länge Ausstrahlungen des Protoplasmas seien, sondern vielleicht nukleäre Lininfäden, die an die Fransen der cytoplasmatischen Sicheln angeheftet sind. Auch andere wesentliche Veränderungen hat der jetzige Übergangszustand noch durchzumachen, wie bald einleuchten wird. Alle die Umgestaltungen aber, die von dem Stadium der zerfallenen Schleifen zu demjenigen der eigentlichen Spindel hinüberführen, scheinen relativ schnell abzulaufen, wenn man dies aus der Seltenheit der Befunde von Zwischenstufen schließen darf.

Sehr häufig dagegen anzutreffen sind kleinere oder größere Häufchen von Zellen, welche durch die eingeschlossene Faserspindel mit Äquatorialplatte in vollendeter Ausbildung charakterisiert und sehr in die Augen fallend sind (Fig. 8 m u. n). Die sogenannte achromatische Spindel, die aber bei meinen Tinktionsweisen immer lebhaft rot gefärbt erscheint, ist im Verhältnis zu ihrer Höhe sehr breit, so daß der Querdurchmesser dem Höhendurchmesser gleichkommt oder diesen noch um etwas übertrifft. Im Äquator der Spindel sind nach ihrer Herstellung anfangs vier dunkelblau gefärbte Körner, d. h. kurz-spindelförmige Chromosomen, ein jedes etwa von der Gestalt eines Weizenkorns, in Längsstellung nebeneinander angebracht. Die Vierzahl ist sehr bequem in Polarsichten festzustellen, welche im Mittelfelde der Spindel vier runde blaue Fleckchen zur Anschauung bringen, aber auch ganz gut bei Seitenansichten unter wechselnder Einstellung des Focus. Oft genug sieht man bei höherer Einstellung drei der Körner, wie in Fig. 8 m, bei tiefer dann noch das vierte. Diese vier Karyosomen sind aber nicht auf die ganze Breite der Spindel verteilt, sondern, wie ich schon andeutete, in deren Mitte zusammengedrängt, so daß auch hier derjenige Teil der Spindel, in dem sie sitzen, als Centralspindel von einem diese umhüllenden äußeren Fasermantel unterschieden werden kann. — Sehen wir uns aber die Umgebung der Spindel näher an, so ergiebt sich jetzt eine eigentümliche Beschaffenheit der Zelle. Diese ist jetzt eine sehr zartwandige Blase mit rot tingierter, durchweg gleichmäßig dünner Grenzmembran und einer Höhlung, die außer der roten Spindel mit ihren blauen Be satzkörperchen und sehr kleinen polar situierten Centrosomen, entweder gar nichts von sichtbarer fester Substanz enthält oder höchstens von einigen wenigen, überaus zarten Fädchen durchsetzt ist. Gänzlich sind die beiden Cytoplasmaanhäufungen, die eben noch in polarer
Gegenüberstellung auffällig gewesen waren, von ihrem Orte verschwunden. Die Spitzen der Spindel kommen der dünnen Zellmembran recht nahe, sind aber immer noch durch einen merklichen Zwischenraum von ihr getrennt. Letzterer ist in vielen dieser Zellen anscheinend leer, während in anderen mit den stärksten optischen Hilfsmitteln eine den kleinen Raum überbrückende feinfaserige Substanz zu bemerken ist, die sich öfters als aus einigen wenigen, an der Spitze der Spindel entspringenden und nach der Zellmembran hin divergierenden Fäden bestehend erkennen läßt und also einer Polstrahlung im kleinsten Maßstabe entspricht. Wahrscheinlich sind diese zarten polaren Suspensionsfäden der Spindel im Leben jedes Mal vorhanden und nur öfters bei der Erhärtung zerrissen und zusammengeschnurrt. Der Breite nach nimmt in frei liegenden, kugelförmigen Zellen die Spindel \(\frac{2}{3} - \frac{3}{4} \) des Querdurchmessers der ganzen Zelle ein. Die Spindel ist also rings herum von einer Art Spaltraum umgeben, der, abgesehen von den kurzen Polfäden, anscheinend nur Flüssigkeit, jedenfalls in der Regel nichts Gefärbtes enthält. Das ist sehr verschieden von dem, was bei der gleichen Behandlungsweise an sonstigen Zellen und sogar an den homologen Samenzellen anderer Tiere, z. B. Helix Pom., im Stadium der Faserspindel zu finden ist, indem hier der die Spindel umgebende Zellraum von einem freilich lockeren und blassen Cytoplasma erfüllt ist. Es geht also bei Paludina in den Samenzellen fast das ganze Cytoplasma in verdichtetem Zustande in der Faserspindel auf, indem nur ein geringer Rest desselben für die winzigen Polstrahlungen verwandt wird, im übrigen aber die Spindel von Flüssigkeit umspült ist. Noch auffallender als in frei liegenden, kugelförmigen Zellen ist der die Spindel umgebende Hohlraum dann, wenn die Zellen massenhaft zusammendrängt sind, wie es in Schnittpräparaten häufig zu finden ist. Die Spermatogonien sind dann zu polyedrischen Körpern geworden; und die dünnen Zellmembranen sind so einander geschmieg, daß sie zusammen ein Wabenwerk ausmachen, ähnlich manchen pflanzlichen Zellparenchymen, und in jedem dieser Fächer schwebt frei eine Spindel. In diesem Zustande sind aber sämtliche Einzelzellen etwas größer als sonst die isolierten kugigen Spermatogonien nach der Erhärtung; sie haben im Mittel etwa 15 \(\mu \) Durchmesser und gleichen somit in der Größe mehr den frischen Spermatogonien. Ich glaube mir dies so erklären zu können, daß der Zusammenhalt der Zellen in etwas die mit der Erhärtung sonst verbundene Flächenschrumpfung der Zellmembranen

Von Centrosomen etwas zu sehen, ist mir an unserem Objekte lange Zeit hindurch nicht gelungen, obwohl mir solche in den Samenzellen anderer Tiere, z. B. von Ascaris meg., nach ganz der gleichen Behandlungsweise sehr schön zur Anschauung gekommen waren. Es lag nahe, zu vermuten, daß sie an unserem Objekte besonders klein, zart und leicht zerstörbar seien, vielleicht aber bei anderer Vorbehandlung doch hervortreten könnten. Um etwas in dieser Richtung zu versuchen, unterwarf ich zunächst einige Hodenstückchen einer dahin abgeänderten Vorbehandlung, daß ich der fixierenden Sublimatlösung Eisessig im Verhältnis von 1/4, 1/2 und 1 Proz. beimischte, kam aber damit nicht zum Ziele; viel mehr hatten diese Zusätze noch die üble Wirkung, daß bei guter Erhaltung der Karyosomen doch die Faserspindel destruiert, nämlich in eine kraumlige und schlecht begrenzte Masse verwandelt wurde. Sonstige für Sichtbarmachung jener Strukturlemente empfohlene Fixierungsgemische gaben auch kein besseres Resultat. Auf anderem Wege jedoch erreichte ich mehr, und zwar indem ich meine einfach mit Sublimat fixierten Präparate mit Eisenhämatoxylinlack nach M. Heidenhain tingierte. Die Centrosomen zeigten sich dann zwar nicht an jeder im Spindelstadium befindlichen Zelle, jedoch an vielen derselben, nämlich an den beiden Spitzen der Spindel je ein schwarz gefärbtes Kügelchen, sehr klein, von nur 0,3 μ Durchmesser (Fig. 10 a). Von diesen Kügelchen gehen nach den Polen zu die schon erwähnten divergierenden Fäden ab. Teilungssymptome habe ich in der Regel an diesen Kügelchen nicht gefunden, jedoch vollendete Verdopplung derselben in einigen Fällen (Fig. 10 b).

Ich kann mich freilich nicht der Meinung anschließen, daß besagte schwarze Farbenreaktion ein spezifisches Characteristicum der Centrosomen sei. Diese halten sogar den Farbstoff weniger fest, als
Spermatogenese von Paludina vivipara. — Abschn. III c. 467

dies andere Bestandteile der Präparate thun. Anfangs nämlich
färben sich intensiv schwarz: in erster Linie alle kyanophilen Be-
standteile, wie die Köpfe der Samenfäden (abgesehen von den wurm-
förmigen bei Paludina), ferner während der Mitose die Karyosomen
und ebenso im ruhenden Kerne alle sonst blau färbbaren Körnchen
und Fäden, sowie auch bei Paludina die Rindensubstanz der Nucleoli
— außerdem aber auch in zweiter Linie die Nebenkerne und deren
Derivate, z. B. auch den Achsenstrang der wurmförmigen Spermien,
hingegen nur schwach das gewöhnliche lockere Cytoplasma. Für die
weitere Differenzierung kommt nun alles auf die Zeitdauer der zum
Verfahren gehörenden Entfärbungsprozedur an. Wenn man die Wirkung
der letzteren näher verfolgt, so zeigt sich folgendes: Zuerst giebt die
lockere Zellsubstanz den schwarzen Farbstoff ab; dann thun es ziem-
lich gleichzeitig die Centrosomen und die Nebenkerne, bald darauf
auch die Derivate der letzteren, viel später die Chromosomen, und
ganz zuletzt auch die Köpfe der reifen Spermien, d. h. bei Paludina
der haarförmigen 1), während die wurmförmigen schon länger entfärbt
sind, was ich weiter unten auf seine Ursachen zurückführen werde.
Freilich treten, wie das ja bei allen Tinktionsmethoden so geht, nicht
alle Zellen eines Präparats ganz genau gleichzeitig in den nämlichen Grad
der Entfärbung ein. Vielmehr ist diese infolge von mancherlei Neben-
umständen an einzelnen Zellen etwas weiter vorgeschritten als an anderen.

Auf letztere Art und aus der angegebenen Reihenfolge mag man
es dann vielleicht auch erklären können, daß an mancher Faserspindel
wolch noch im Äquator die Karyosomen unangegriffen in tiefer
Schwärze sich darstellen, ohne daß von den Centrosomen noch etwas
to sehen wäre, an anderen hingegen beiderlei Körperchen gleichzeitig
zur Anschauung kommen, während das Umgekehrte, nämlich Hervor-
treten der Centrosomen neben entfärbten oder auch nur blasser ge-
wordenen Karyosomen, niemals zu finden ist. Wenn also selbst
nach Anwendung dieser relativ günstigsten Färbungsweise an so
manchen Faserspindeln mit Äquatorialplatte Polkörperchen nicht zur
Erscheinung kommen, so würde deren Fehlen nach obiger Deutung
nur ein scheinbares sein. Ob indessen diese Erklärung durchweg an-
nehmbar ist, erscheint mir zweifelhaft.

1) Das Gleiche gilt auch für die Samenfäden der Amphibien; und ich
will namentlich gegenüber einer Behauptung Fick's (7) hervorheben, daß das
Mittelstück bei der Eisenhämatoxylinfärbung gar keinen Vorzug vor dem übrigen
Schwanzfäden genießt. Es wird freilich etwas später als letzteres völlig ent-
färbt; aber das liegt nur daran, daß es dicker ist. Man kann genau verfolgen,
wie die Entfärbung von der Oberfläche nach der Achse hin fortschreitet, und
sieht deshalb eine Zeitlang, namentlich im Mittelstück, einen axialen schwarzen Streifen.
Zu dieser Erscheinung trägt wohl auch bei, daß in der That der Achsenstrang länger der Extraktion des Farbstoffes widersteht, als der ihn um-
gehende Mantel. Jedoch ist man bei dieser Methode nio sicher, ob man den
Achsenstrang in seiner richtigen Breite sieht; denn die schwarze Achse wird im
Eisenalzbade mit der Zeit immer dünner, um schließlich ganz zu verschwinden.
Noch längere Zeit aber bleibt dann bei ganz entfärbtem Mittelstück der Kopf
noch schwarz tingiert. Mit der Zeit indessen wird auch dieser völlig entfärbt.
Durch diese Thatsachen ist eine materielle Identifizierung des Mittelstücks
mit einem Centrosom nicht zu begründen; und damit ist auch den aus einer
solchen Voraussetzung hergeleiteten Folgerungen der Boden entzogen.
Vielleicht stellen die scheinbar negativen Fälle ein vorgeschrittenes Stadium dar, indem das Centrosom, nachdem es seine Schuldigkeit bei Herstellung der Faserspindel gethan hat, entweder überhaupt oder doch von dem Orte an der Spitze der Spindel verschwindet. In dieser Beziehung sei nochmals erwähnt, daß ich in einem Falle, freilich nur an einer einzigen Zelle, an beiden Spitzen der Spindel statt eines Centrosoms je zwei kleinere schwarze Kugelchen ziemlich nahe bei einander vorfinde, was also auf Zweiteilung des Centrosoms als Vorbereitung für die nächste Zellteilung hindeutet. In Verfolgung dieser letzteren Angelegenheit weiter zu sicheren Ergebnissen zu gelangen, war mir bisher unmöglich. Ich muß mich deshalb mit dem Gesagten begnügen.

Wenn wir uns nun fragen, wie dieser Zustand der Zelle aus der oben, S. 462—463 beschriebenen und in Fig. 81 veranschaulichten Zwischenphase der zwei Cytoplasmaanhäufungen hervorgegangen sein mag, so scheinen mir folgende Annahmen naheliegend und natürgemäß zu sein. Zum ersten müssen die dort in der Mittelzone zerstreut gewesenen kyanophilen Körperchen genau in die Äquatorebene, und in dieser ganz nahe aneinander gerückt worden sein. Da ferner statt jener 16 kleinen Körperchen jetzt nur 4 größere da sind, so ist weiter zu folgern, daß je 4 der ersteren von neuem zu einem verschmolzen sind. Dies mag nach der ganzen Vorgeschichte dieser Körperchen einen Augenblick lang als eine hinsichtlich ihres Zwecks schwer begreifliche Umständlichkeit erscheinen. Gleichwohl braucht die vorangegangene Zerfallung der 4 Fäden des Schleifenstadiums in 16 Teilstücke und die Wiedervereinigung der letzteren zu 4 größeren Körpern nicht sinnlos und überflüssig zu sein. Es ist nämlich durch diese Folge von Vorgängen Gelegenheit gegeben, daß Teilstücke aus mehreren Fäden zu einem neuen Karyosom zusammentreten; und im günstigsten Falle werden von den 4 zu einer Einheit verschmelzenden auch nicht 2 aus einem und demselben Faden herstammen, sondern jedes aus einem anderen, so daß der resultierende Körper Substanz aus allen 4 Fäden in sich zusammenfaßt. Darin wäre, indem bei der Verschmelzung die feinsten Teilchen der Einzelstücke durcheinander gemischt werden, ein Mittel gegeben, die Übertragung etwaiger feinerer substantieller Verschiedenheiten der 4 Fäden auf die Karyosomen des Spindelstadiums zu verhindern, also diese qualitativ gleich zu machen. Dies wird auch eine Versorgung der beiden Tochterzellen mit qualitativ gleicher Kernsubstanz begünstigen. Zwar gibt jedes
der vier Äquatorialkörperchen des Spindelstadiums einen Teil seiner Substanz an jede der beiden Tochterzellen ab; jedoch scheint, wie wir sehen werden, nicht oft eine genaue Halbierung jedes einzelnen Karyosoms zu gelingen. Eine solche Ungenauigkeit wird nur wenig auf sich haben, wenn die 4 Körper substantiell gleich be- schaffen sind und ein Minus seitens des einen durch ein Plus seitens eines Genossen kompensiert wird, während im Falle differenter Qualität daraus eine Verschiedenheit in den Tochter- zellen resultieren würde. — Sei nun aber dieser Gedankengang zutreffend oder nicht, so weisen jedenfalls die von mir beobachteten Thatsachen deutlich eine solche Abwechslung von Zerfallung und Wiederverschmelzung der Karyosomen in unserem Falle nach.

Eine zweite wesentliche Frage aber betrifft die Herstellung der Faserspindel selbst. In diesem Punkte nun kann in unserem Falle m. E. nicht der geringste Zweifel darüber obwalten, daß die rot tingierte und faserige Hauptmasse der Spindel im wesentlichen von der Zellsubstanz geliefert worden ist, und daß im besonderen die beiden vorher dagewesenen, hauptsächlich aus Nebenkernsubstanz gebildeten polaren Menisci zur Herstellung der Spindel verwendet worden und in dieser aufgegangen sind. Denn einerseits ist es undenkbar, daß die Spindel sich aus den winzigen, nicht tingierbaren Lininfäden des Kernes gebildet haben könnte. Wenn wir auch annehmen, daß die in Fig. 81 von den Menisci nach dem Äquator hinziehenden blassen Fäden nukleäre Lininfäden seien, so würde doch ihre Quantität nur einem kleinen Bruchteile der späteren Faserspindel entsprechen; und außerdem müßte sich ihre Färbbarkeit wesentlich geändert haben; denn die Spindelfasern werden durch Säurefuchsin intensiv rot tingiert. Andererseits aber sind ja die beiden Cytoplasmaportionen, die in Form der Menisci an den Polen ihren Sitz hatten, jetzt nicht mehr an der Peripherie zu finden. Sie können auch nicht in der übrigen peripherischen Substanzlage, der Zellmembran, sich verloren haben; denn diese ist nicht dicker geworden als im vorigen Stadium. Es ist also gar nicht abzusehen, wohin die beiden Massen gekommen sein sollten, wenn sie nicht in die Spindel übergegangen sind, bezw. diese formiert haben. Auch ist allem Anschein nach das aus den beiden Polarsegmenten entwickelte Quantum protoplasmatischer Substanz gerade ausreichend zur Herstellung der Spindel, besonders unter Berücksichtigung des Umstandes, daß ja in dieser nicht mehr eine so kompakte Masse, sondern die mehr lockere Füllung eines Faseraggregates vorliegt. Die Umbildung in dieses ist wohl aber kaum anders als so zu
denken, daß die Menisci zu einem gewissen Zeitpunkte, vielleicht unter Mitwirkung eines in jedem derselben steckenden Centrosoms, in die Höhle hinein divergierende Pseudopodien, Substanzstrahlen ausstrecken, von denen einige auf die Karyosomen treffen, sich an diese heften und sie nach dem centralen Teile der Zelle hinüberziehen, so zur Centralspindel zusammentretend, während andere Ausläufer sich entweder mit ihnen entgegenkommenden Strahlen direkt verbinden oder auch bis zum entgegengesetzten Pole hinverlängern und nach der axialen Gegend der Zelle verschieben, um durch Zusammenlagerung hier die Außenspindel, d. i. den Fasermantel der Centralspindel zu bilden. Wenn die zwischen den Menisken und den Karyosomen ausgespannten zarten Fäden der letzten Zwischenphase Lininfäden sind, so mögen sie wohl den Ausstrahlungen des Cytoplasmas gewissermaßen als Leitfäden dienen, an denen entlang jenes sicher zu seinen Zielen hingelangt. Der bei weitem größte Teil der Masse jedes Meniscus würde so in die Spindel hinübergetreten, während ein sehr kleiner Rest sich zu den wenigen und kurzen, von den Spindel spitzen aus, resp. von den Centrosomen nach außen hin divergierenden Fäden umbilden würde, die den Polstrahlen der Eier entsprechen. Jedenfalls geht aus der vergleichenden Betrachtung der letzten Stadien so viel mit Sicherheit hervor, daß die Materie der Spindelfasern Zellsubstanz ist, und zwar hauptsächlich aus denjenigen Teile derselben stammend, der sich in dem Nebenkern verdichtet hatte, welcher letztere allerdings bei Paludina fast die gesamte Zellsubstanz in sich aufgenommen hat, wie aus früher Dargelegtem ersichtlich war 1).

Ein Zellkern als Ganzes existiert nun gewiß nicht mehr. Wenn man, nachdem schon längst die Kernmembran als differenzierte Schicht verschwunden und in dem Zellenleibe aufgegangen war, doch in den beiden, dem jetzigen vorangegangenen Stadien die große Höhle der Zelle allenfalls noch

als sehr vergrößerte Kernhöhle auffassen und damit wenigstens diesen geschlossenen Raum als Repräsentanten des Zellkerns ansehen konnte, so geht das doch jetzt nicht mehr an; denn dieser Raum ist größtenteils durch Zellsubstanz erfüllt; und die Höhle existiert nur noch als ein schmaler, schalenförmig die Spindel umgebender Spalt, der überdies in den Polgegenden von Protoplasmafäden durchsetzt ist 1). Die Spindel selbst aber kann nicht als metamorphosierter Kern angesehen werden, sowohl wegen ihrer Entstehungsweise, als wegen ihrer Zukunft, die nachweislich darin besteht, daß ihre beiden Hälften in den Leib der Tochterzellen übergehen oder, wie für unser Objekt beinahe gesagt werden darf, zum Leibe der Tochterzellen werden. Die Karyosomen aber sind 4 getrennte Körperchen, die nur eine, wenn auch gewiß sehr wichtige, Art der stofflich verschiedenen Bestandteile des Kerns repräsentieren, und sie sind überdies in Protoplasmafäden

Leopold Auerbach,

eingelagert. Sie können demnach, auch wenn wir sie in Gedanken zusammenfassen, weder qualitativ, noch der Form nach als ein Kern gelten. Der Zellkern ist eben im morphologischen Sinne nicht mehr da; er ist dadurch untergegangen, daß seine Bestandteile auseinandergefahren und teilweise molekular mit der Zellsubstanz vermischt, teilweise als sichtbare Körpchen in diskrete Strukturteile des Cytoplasmas eingefügt sind. Wenn aber kein Zellkern vorhanden ist, so kann auch von keiner Kernteilung, weder einer indirekten noch sonst wie zu benennenden, die Rede sein. Vielmehr können die weiter folgenden Veränderungen nur eine Neubildung zweier junger Kerne zum Ziele haben, wobei natürlich diejenigen spezifisch nukleären Materialien, die zur Konstitution des früheren Kerns gehört haben, unter Verteilung auf die beiden neuen Kerne Verwendung finden werden. Und wenn dabei auch teilweise das Prinzip morphologischer Zweiteilung zu wichtiger Mitwirkung gelangt, so betrifft diese doch nicht den Kern als solchen, sondern eine Anzahl geformter Überreste derselben.

Ein weiterer Schritt nämlich ist die bald eintretende Zweiteilung der Karyosomen, deren jedes, obwohl vor kurzem aus vier kleineren Stücken zusammengebacken, doch in der Zwischenzeit eine kompakte Masse gewesen war. Die vier Körpchen zerfallen in acht, und zwar durch Längsspaltung jedes einzelnen. Diese greift also nicht in der Äquatorialebene ein, sondern in einer auf dieser senkrechten, wenn auch nicht gerade meridionalen Ebene. Das ergeben während und nach erfolgter Zerfallung sowohl Seitenansichten als auch solche vom Pole her. Erstere gestatten zwar keine genaue Zählung, lassen jedoch so viel erkennen, daß eine größere Anzahl jetzt schlanker Spindelkörperchen in einer Ebene nebeneinander gruppiert sind (Fig. 8 n). Und zwar halten diese in der Regel sehr genau die gleiche Front inne; und nur ausnahmsweise zeigt sich eines nach einem Pole hin etwas verschoben. In Polansichten aber sind oft genug gerade acht kleine rundliche Querschnitte der blauen Körperchen in einer Ebene sichtbar, andere Male freilich nur sieben oder sechs, darunter aber ein oder zwei viel größere, was auf manchmal ungleichzeitige Längsteilung der einzelnen Karyosomen hinweist, die auch zuweilen in der Längsansicht bemerkbar ist (Fig. 8 n und o). Die Körperchen sind jedoch nicht in einem Kranze um ein Mittelfeld herum angeordnet, sondern zum
Teil nach innen gerückt, also unregelmäßig in einem centralen Felde der Äquatorebene der Spindel zerstreut. Sie müssen also nach der longitudinalen Zerspaltung seitlich auseinanderweichen. Bemerkenswert ist noch, daß diese Querschnitte der Karyosomen, auch wenn deren acht beisammen sind, nur selten gleich groß erscheinen, und daß kleinere unregelmäßig zwischen größeren verteilt sind. Die Gesamtheit der Umstände gestattet nicht, diese Ungleichheit auf Schiefschnitte zu beziehen, die eine Anzahl der Körperchen in ihrer dicken Mitte, andere näher dem schmalen Ende getroffen hätten, und ebenso auch nicht auf die seltenen Fälle von Längsverlagerung einzelner derselben. Es scheint demnach, daß wirklich öfters die Zerfallung zwei etwas an Größe verschiedene Teilstücke liefert. Darauf bezog sich das, was ich oben, S. 469, über ungenaue Halbierung der Karyosomen und die dadurch gesteigerte Wichtigkeit ihrer qualitativen Übereinstimmung gesagt habe. Außerdem aber zeigen sich ziemlich oft statt der acht kleinen Querschnitte nur sieben oder sechs, dann aber unter diesen ein bis zwei ungewöhnlich große, Fälle, die wohl auf ungleichzeitige, bei einzelnen Gliedern der Gruppe verzögerte Teilung schließen lassen.

Bisher hatten die Karyosomen die Äquatorebene noch nicht verlassen. Dies erfolgt jedoch einige Zeit darauf in der bekannten Weise. Es bilden sich zwei Gruppen von je vier Karyosomen, die nach den beiden Polen hin auseinanderweichen. Daß sich dabei jedes Paar von Schwester-Karyosomen auf die beiden Gruppen verteile, ist unter den obwaltenden Umständen nicht durch positive Anhaltspunkte zu begründen, jedoch aus theoretischen Gründen sehr wahrscheinlich. Bei der Bewegung nach den Polen hin bleiben die vier Körperchen jeder Gruppe immer nebeneinander in einer Querebene angeordnet; und so im Gleichschritt vorrückend, gelangen sie, und zwar anscheinend sehr rasch, bis nahe an die Spitzen der Spindel, wo sie ohne sofortige Umwandlung wieder etwas länger verweilen; denn sie sind in dieser Endlage sehr oft anzutreffen, während sie viel seltener auf ihrer Wanderung ertappt werden. — Der Weg aber, den sie zurückgelegt haben, ist erheblich länger, als es die ursprüngliche Form der Spindel und der ganzen Zelle gestatten würde. Diese werden nämlich während des Vorgangs in axialer Richtung gedehnt, so daß Formen entstehen, wie sie in Fig. 8 p u. q wiedergegeben sind. Fassen wir einen Zeitpunkt nahe vor dem Schlusse der Wanderung ins Auge (Fig. 8 q), so
sehen wir zwischen den beiden Karyosomengruppen ein relativ langes cylindrisches Bündel geradliniger, rot tingierter Verbindungsfäden ausgespannt, das an sich schon etwas länger ist als die frühere Achse der Spindel, entsprechend aber auch schmaler, als diese früher in der Aquatorebene war. Die Art der Tingen-
runung und alle sonstigen Verhältnisse lassen keinen Zweifel darüber, daß das Bündel der Verbindungsfasern ein Teil der früheren Spindel ist. Es müssen also bei der unter Spannung und vielleicht auch aktiver Kontraktion erfolgenden Geradstreckung der Fasern die Mittelteile derselben näher an die Zellachse herangerückt sein. Jenseits der Karyosomengruppe ist einstweilen noch eine kurze Fortsetzung des Faserkörpers bemerkbar, indem eine Anzahl Fäden nach einem nahen Punkte hin konvergieren und so in den beiden Polarsegmenten je ein niedriges, kegelförmiges Endstück der Figur formieren. Dieses wird aber bald, indem die Karyoso-
men noch etwas weiter vorrücken, fast ganz abgeflacht, so daß

die Spindel jetzt zu einem beträchtlich größeren, faserigen Cylinder wird, dessen Enden die beiden Querreihen der blauen Körperchen einnehmen. Gleichzeitig wird aber auch die ganze Zelle, deren Umriß durch die Zellmembran markiert ist, zu der Form eines Cylinders mit gewölbten Endflächen umgewandelt. Die kleinen Zwischenräume zwischen diesen Endflächen und den Karyosomengruppen werden von einer blaßrot tingierten, zarten Substanz ausgefüllt, deren Struktur nicht genauer zu erkennen ist. Die Mechanik dieser Um-
gestaltung der äußeren Form der Zelle dürfte nicht leicht zu er-
kären sein. Sie ist jedenfalls eine Folge der Ausstreckung des inneren Faserkörpers. Da jedoch letzterer nicht starr genug erscheint, um leicht einen wirksamen Druck desselben auf die Pol-
gegenden der Zellmembran annehmen zu lassen, so dürfte noch ein anderer, verschleierter Faktor mitwirken. Falls etwa trotz des Mangels positiver Nachweisbarkeit von den Seitenflächen der Spindel einige zarte Fäden quer nach der Zellmembran hinüber ausgespannt sein sollten, so müßte die Annäherung der Mantel-
fasern der Spindel an die Zellachse auch einen Zug auf die Zell-
membran in der Richtung zur Achse hin ausüben, was weiter ein Ausweichen des flüssigen Teils des Zellinhalts nach den Polen und damit Verlängerung der Zelle zur Folge haben würde.

Betreffs der weiteren Veränderungen der Karyosomen habe ich öfters so viel gesehen, daß diese aus ihrer kurzen, gedrungenen Gestalt wieder in fadige Form übergehen, und daß diese ge-
bogenen oder geschlängelten Fäden zu einer Art dichten Knäuels
zusammentreten, also das Dispirem FLEMMING’S. Bei der Umbildung zu Fäden scheint es aber so zuzugehen, daß das Körperehen sich nicht einfach verlängert, sondern zuerst ein Loch bekommt und damit in einen kleinen Ring verwandelt wird, der dann, an einer Stelle aufbrechend, einen anfangs kurzen, später sich verlängernden Faden liefert; doch spreche ich das nur mit Vorbehalten aus, da mir aus dieser Übergangszeit nur einige wenige, deutlich in diesem Sinne sprechende Bilder aufgestoßen sind.

Bald aber lockern sich die Knäuel etwas, und es werden helle, farblose Interstitien zwischen den blauen Fäden sichtbar. Und weiterhin sind an Stelle der beiden Knäuel richtige blaschenförmige Kerne vorhanden mit einer rot tingierten Kernmembran, einem oder zwei kirschroten Nucleolus und einer größeren Zahl feiner blauer Innenkörnchen, von denen ich es wegen der Kleinheit und Feinheit des Objekts zweifelhaft lassen muß, ob sie bis zur nächsten Mitose durch zarte Fäden netzartig verbunden bleiben oder für eine Zeitlang isoliert werden. Abgesehen von dieser Umordnung der kyanophilen Substanz kann die Vervollständigung und Neuergestaltung des Kerns nur dadurch erreicht worden sein, daß zwischen den Knäuelfäden und um sie herum eine Flüssigkeit, Kernsaft, sich ansammelte, in Form eines Tropfens und mit dem Aussehen einer Vakuole im Protoplasma, daß ferner in diese hinein

31*
Nukleolarsubstanz ausgeschieden wurde und eine Grenzschicht des Protoplasmas zur Membran sich verdichtete.1)

Erst nach Herstellung dieses Zustandes folgt die Zweiteilung des Zellenleibes, und zwar auf dem Wege einfacher Durchschnürung im Äquator. Eine anfangs oberflächliche konkave Einsenkung wird bald spitzwinklig und geht in eine scharfe Ein- und Durchschnürung über, wobei die in der Trennung begriffenen Hälften sich zu Kugeln abrunden und nach der vollständigen Zertrennung zuweilen noch eine Zeitlang in Berührung beisammen bleiben, später aber sich voneinander mehr entfernen. Dies sind die Samenzellen zweiter Generation.

III) Die folgenden Zellgenerationen.

Unmittelbar kann man aus den mikroskopischen Bildern die Zahl der Generationen nicht erkennen; denn welche Orientierung der Schnittrichtung man auch wählen möge, so zeigt sich doch

1) Ich kann demnach nicht umhin, auf Grund sowohl der hier dargestellten Beobachtungen, wie anderer Fälle mitotischer Zellteilung in den wesentlichen Hauptpunkten diejenige Ansicht über die Neubildung der Kerne bei der indirekten Zellteilung festzuhalten, welche ich schon im Jahre 1874 und 1876 (I-a-c) ausgesprochen habe, nur daß mir damals, weil ich zu jener Zeit bloß am lebenden Objekte und mit weniger vollkommenen Hilfsmitteln untersuchte, das Aggregat fadiger Substanz, das als Anregungs- und Ausgangspunkt für die Kernbildung dient, unsichtbar geblieben war.
Spermatogenese von Paludina vivipara. — Abschn. III d. 477

nirgends eine Schichtung oder Aufreihung jener, vielmehr, wie schon früher erörtert wurde (S. 418), ein buntes Durcheinander der verschiedensten Entwicklungsstufen. Unter diesen Umständen ist man ganz darauf angewiesen, aus der verschiedenen Größe der Samenzellen auf die Anzahl der Generationen zu schließen, was aber auch nur dann thunlich sein wird, wenn eine gewisse Regelmäßigkeit der Abstufungen mit größeren Intervallen sich herausstellt. Ich führte deshalb sehr zahlreiche, möglichst genaue Messungen der Zelldurchmesser aus, und zwar unter Benützung des apochromatischen Öl-Immersions-Objektivs 1,30 — 3 von Zeiss und eines in Hundertstel eines Millimeters eingeteilten Okular-Mikrometers. Als ich nun die so erhaltenen Zahlen verglich, zeigte sich zu meiner Befriedigung die eben ausgesprochene Voraussetzung erfüllt. Es ergaben sich an den Sublimatpräparaten einschließlich der Spermatagonien fünf Größenstufen von folgenden Durchmessern: 1) 13—14 μ, 2) 10—11 μ, 3) 8—9 μ, 4) 6—7 μ, 5) 5—6 μ. Die beiden letzten Stufen sind durch den unmittelbaren Augenschein noch leichter zu unterscheiden, als die angegebenen Zahlen vielleicht vermuten lassen würden, und zwar erstens deshalb, weil die meisten Zellen der vierten Stufe sich mehr der Zahl 7, die meisten der fünften Stufe sich mehr der Zahl 5 nähern, und zweitens aus dem allgemeinen Grunde, weil bei der einfachen Besichtigung nicht die lineare, sondern die viel bedeutendere Flächendifferenz zur Geltung kommt. Es würden also schon nach dem Ergebnisse dieser Messungen fünf Generationen anzunehmen sein.

Ich kam aber dann noch auf folgende Erwägung. Es handelt sich ja durchweg um Zweiteilung in zwei gleich große Tochterzellen. Nun ist einerseits gar kein Grund vorhanden, anzunehmen, daß dieser Vorgang mit einem Substanzverluste verbunden sei, und andererseits ist es bei der raschen Folge der Teilungen höchst unwahrscheinlich, daß in den kurzen Pausen die Tochterzellen wachsen sollten. Es ist also zunächst zu vermuten, daß das Volumen jeder Tochterzelle der Hälfte des Volumens ihrer Mutterzelle gleich ist und gleich bleibt, bis sie selbst wieder zur Teilung gelangt oder, wie die Zellen letzter Generation, anderweitige bedeutende Umwandlung erfährt. Ich beschloß nun, durch Rechnung zu ermitteln, wie sich zu diesem supponierten Prinzip die Ergebnisse der Messungen stellen mögen. Das Volumen einer kugeligen Zelle läßt sich ja aus dem Diameter, resp. dem Radius nach
Leopold Auerbach,
der bekannten Formel $\frac{4}{3} \pi r^3$ berechnen; und für die zweite bis fünfte Stufe ist das so erhaltene kubische Maß mit dem halben Volumen der vorangegangenen Stufe zu vergleichen. Zu meiner Genugthuung ergab sich auf diese Art eine sehr gute Übereinstimmung der zu vergleichen Zahlen, wie die hier folgende tabellarische Zusammenstellung zeigt:

Maasse der 5 Generationen der Samenzellen von Paludina vivipara.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>Durchmesser der Zellen</td>
<td>Angenommener mittlerer Durchmesser</td>
<td>Radius</td>
<td>Volumen der Zelle berechnet als $\frac{4}{3} \pi r^3$</td>
<td>Volumen d. Zelle berechnet d. Halbierung d. vorigen Generation</td>
<td>Bemerkung</td>
</tr>
<tr>
<td>I = Spermato gonien</td>
<td>13—14</td>
<td>13,5</td>
<td>6,75</td>
<td>1288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II = Spermato cyten</td>
<td>10—11</td>
<td>10,5</td>
<td>5,25</td>
<td>606</td>
<td>644</td>
<td></td>
</tr>
<tr>
<td>III = Spermato cyten</td>
<td>8—9</td>
<td>8,5</td>
<td>4,25</td>
<td>322</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>IV = Spermioblasten, unmittelbar nach ihrer Entstehung</td>
<td>6—7</td>
<td>6,5</td>
<td>3,25</td>
<td>144</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>V = Spermioblasten, unmittelbar nach ihrer Entstehung</td>
<td>5—6</td>
<td>5,5</td>
<td>2,75</td>
<td>87</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Spermatogenese von Paludina vivipara. — Abschn. III d.

auch für andere Fälle der Spermatogenese vorausgesetzt werden darf, würde sich übrigens das hier betonte Prinzip der wiederholten Halbierung, wie ich meine, auch heuristisch fruchtbar erweisen können, indem schon aus dem Verhältnis der Durchmesser der ersten und letzten Generation die Anzahl der dazwischen liegenden zu erschließen wäre, natürlich mit Vorbehalt der Bestätigung durch Wahrnehmung, und indem ebenso auch Lücken in der Reihe zu erneuter Untersuchung auffordern würden.

<table>
<thead>
<tr>
<th>Generation</th>
<th>Zell- durchmesser</th>
<th>Volumen berechnet aus dem Radius</th>
<th>Volumen berechnet durch Halbierung d. vorigen Gen.</th>
<th>Theoretisch berichtigter Durchmesser</th>
</tr>
</thead>
<tbody>
<tr>
<td>I = b nach Flemming</td>
<td>29 nach Fl.</td>
<td>12 767</td>
<td>6383,5</td>
<td>29</td>
</tr>
<tr>
<td>II, von mir supponiert</td>
<td>23</td>
<td>6369</td>
<td>3191,5</td>
<td>23,1</td>
</tr>
<tr>
<td>III = c nach Fl.</td>
<td>19 n. Fl.</td>
<td>3589</td>
<td>1595,5</td>
<td>18,3</td>
</tr>
<tr>
<td>IV = d nach Fl.</td>
<td>14,5 n. Fl.</td>
<td>1596</td>
<td>14,5</td>
<td></td>
</tr>
</tbody>
</table>

Sollte aber etwa die hier supponierte Zellgeneration von ca. 23 μ Durchmesser nicht aufzufinden sein, so würde gleichwohl die hier angestellte Betrachtung eine Belehrung enthalten, betreffend den bei dem Übergange von b nach c eintretenden Substanzverlust. — Auch

Was nun die Art und Weise der weiteren Zellteilungen anlangt, so verlaufen diese im großen und ganzen so wie die erste, oben genauer beschriebene. Es wiederholen sich also die gleichen

RATH (20 b) nimmt bei Salam. mac. eine Zellgeneration mehr an als Flemming. Jedoch würden die von ihm beobachteten neu hinzukommenden Zellen an den Anfang der Reihe zu stehen kommen; denn sie sind größer als die von Flemming's erster Generation, und zwar bis 45 μ im Durchmesser, was nicht recht mit dem hier vertretenen Prinzip stimmen will. Vollständige Aufklärung der Verhältnisse bei Salam. mac. wird erst von weiteren darauf gerichteten Untersuchungen zu erwarten sein.

Einer besonderen Besprechung bedarf der Übergang des Schleifenstadiums in dasjenige der Faserspindel. Jedesmal tritt wiederum Zerfallung der kyanophilen Fäden ein, und zwar bei der zweiten und dritten Zellgeneration in sechzehn zu Kugeln sich abrundende Teilstücke, bei der vierten Generation in eine vielleicht noch größere, aber nicht bestimmbare Zahl feinster Körnchen. Und zwar geschieht dies schon zu einer Zeit, wo noch ein einheitlicher, ungeteilter Meniscus als Verdickung der cytoplasmatischen Schicht vorhanden ist, also ähnlich wie in Fig. 8k, nur in kleinerem Maßstabe. Wie mir die Zerfallung der Fäden in runde Teilstücke nach Beobachtungen an der dritten Zellgeneration vor sich zu gehen schien, habe ich schon oben bei den Spermatogonien angegeben.

An den Zellen zweiter Generation habe ich etwas weiteres zur Überführung nach der Faserspindel hin nicht finden können, halte es jedoch für wahrscheinlich, daß jetzt die Zweiteilung des Meniscus mit der in ihm enthaltenen Nebenkernmasse, die Versammlung der kleinen Karyosomen in einer äquatorialen Zone und überhaupt die Herstellung eines Zustandes folgen wird, wie er oben an den Spermatogonien geschildert (Fig. 8l) und als zur Herstellung der Faserspindel unmittelbar gehörig bezeichnet wurde.

Für die Zellen der dritten Generation hingegen treten nach meinen Befunden neue Thatsachen hinzu. Hier schiebt sich nämlich eine Reihe von Vorgängen ein, die auf die Bildung eines sogenannten
Viererstadiums hinausläuft, wie es auch bei Salam. mac. schon durch Flemming und neuerdings durch vom Rath (20b) und, wie ich aus letzterer Abhandlung entnehme, bei verschiedenen niederen Tieren durch Boveri, Hanking, Brauer gefunden und studiert worden ist. Dieses ist dadurch charakterisiert, daß in der erweiterten Kernhöhle sechszehn kleine rundleiche Karyosomen, angeordnet in vier Gruppen zu vier Einzelkörperchen, vorhanden sind. Ein solcher Zustand entsteht aber bei Paludina auf anderem Wege als nach Rath bei Salam. mac., nämlich in unserem Falle aus dem Schleifenstadium hervorgehend und vermittelt durch die erwähnte Zerteilung der vier Fäden in je vier Stücke. Neben den Zellen mit sechszehn gleichmäßig zerstreuten Kugelchen finden sich in der dritten Generation zunächst auch solche, in welchen jene Innenkörperchen zu acht Paaren angeordnet sind, die wiederum in ungefähr gleichen Abständen voneinander und näher der Grenzfläche der Hülle situiert sind. Und zwar liegen die beiden Körperchen jedes Paares dicht bei einander und sind etwas gegen einander abgeplattet (Fig. 11a). Sodann aber treten je zwei solcher Paare zu einer Gruppe von vier Körperchen zusammen und zugleich noch näher, schließlich ganz dicht an die Grenzfläche der Hülle hinan (Fig. 11b). In diesen Vierergruppen wird allmählich die gegenseitige Anschmiegung der Einzelkörperchen noch inniger als vorher. In manchen derselben erkennt man die Zusammensetzung aus vier Teilen noch ganz gut, in anderen unvollkommener, während wieder andere scheinbar zu einem einheitlichen Körperchen zusammengeschweißt sind. Ob hier eine vollständige Verschmelzung oder nur eine Art Verklebung stattfindet, läßt sich nicht entscheiden. Jedenfalls aber bleibt, wie die Erscheinungen des folgenden Stadiums lehren werden, eine erleichterte Teilbarkeit in vier Stücke zurück. Sehen wir von letzterer einstweilen ab, so ist schon jetzt erreicht, was in den früheren Zellgenerationen erst in einer folgenden Phase, nämlich während der Bildung der Faserspindel erzielt wurde, nämlich ein Gehalt an vier größeren kernförmigen Karyosomen, die wohl auf demselben Wege wie sonst in eine Faserspindel eingefügt zu werden bestimmt sind. Als Sinn und Zweck aber des beschriebenen, in Zerfalls- und Wiedervereinigung bestehenden Zickzackkurses wird sich auch aus dem weiteren Verlaufe der Dinge nichts anderes entnehmen lassen, als was ich schon betreffs des analogen Geschehens in den früheren Zellgenerationen oben auf S. 468 zur Erwägung gestellt habe. Es ist wiederum gestattet, zu vermuten,

1) Diese Tendenz kann bei den somatischen oder Gewebsszellen wohl nur da in vollem Maße vorausgesetzt werden, wo es sich bei der Zellteilung um einfaches Wachstum oder Ersatz einer gleichförmigen Zellenmasse, also um Erzeugung gleichwertiger Zellen handelt, während die namentlich in der embryonalen Entwicklung und ebenso bei der Regeneration komplizierter Organe so wichtigen Differenzierungen der Zellen an feinere Modifikationen der Mitosen geknüpft sein dürften, die zum Teil vielleicht auch der mikroskopischen Erforschung zugänglich sein können.

Zwischengänge, die ich nicht gefunden habe, die aber vermutlich wiederum durch einen der Fig. 8b entsprechenden und nur durch die geringere Zahl von vier rundlichen Körperchen in der Äquatorialzone unterschiedenen Zustand hindurchgehen, führen auch an der dritten Zellgeneration zu einer Faserspindel, deren Bild sich kaum von demjenigen der früheren unterscheidet. Wiederum liegen anfangs vier weizenkornförmige Karyosomen in der Äquatorebene der Spindel. Von deren Zusammensetzung aus je vier kleinen Körperchen ist jetzt meist nichts mehr zu bemerken, und nur hier und da zeigen sich Spuren davon als leichte seitliche oder terminale Einkerbungen. Gleichwohl tritt bei ihrer folgenden Selbstteilung eine Abweichung von dem gewöhnlichen Verhalten in der Art ein, daß außer Längsspaltung zugleich eine quere Zertrennung.

Leopold Auerbach,
einfache Längsspaltung werden diese wieder zu acht, deren je vier wieder an die beiden Pole der Spindel wandern, um hier zur Neubildung zweier junger bläschenförmiger Kerne das Ihrige beizutragen. Dies ist im Vergleich zu der Anzahl von Karyosomen, die in der vorigen Zellgeneration in die Bildung der neuen Kerne eintraten, eine Reduktion der Zahl auf die Hälfte. Hierin liegt nun zwar ein Punkt der Übereinstimmung mit dem, was seit Weismann's ersten Anregungen und Einblicken in einer Reihe anderer Fälle von Spermatogenese gefunden wurde; jedoch sind auch wesentliche Unterschiede hervorzuheben. Fürs erste ist die Reduktion hier nicht an Überspringen eines Ruhestadiums geknüpft, vielmehr gewissermaßen durch ein solches Ruhestadium vermittelt. Hauptsächlich bemerkenswert aber ist, daß es bei der Vierzahl bleibt, daß nur eine relative, die vorangegangene Verdoppe lung wieder aufnehmende und die typische Zahl definitiv wiederherstellende Reduktion statthat. Denn die besprochene Zweiteilung ist die letzte in der Reihe, und es ist keine Gelegenheit zu einer nochmaligen Reduktion gegeben. Die jetzt entstandenen Zellen, die dazu bestimmt sind, sich auf bald zu beschreibende Weise in Spermien umzuwandeln, haben also Kerne, die ebenso wie die Samenzellen zweiter Generation auf Grund von vier Karyosomen sich gebildet haben 1). Dies steht nicht in Übereinstimmung mit dem, was z. B. bei Salamandra und von O. Hertwig auch bei Ascaris meg. festgestellt worden ist; und es entspricht überhaupt nicht dem Begriffe der Reduktionsteilung, wie er von Weismann begründet worden ist, und ihrer angenommenen Bedeutung für die Fortpflanzung. Diesen Mangel an Analogie kann ich hier nur auf Grund meiner Wahrnehmungen konstatieren, ohne etwa daraus weitgreifende Schlüsse ziehen zu wollen, weil ja die Samenbildung bei Paludina überhaupt mit ganz ungewöhnlichen Abweichungen und Komplikationen verknüpft ist, wie auch meine weitere Darstellung zeigen wird.

Aber wenn auch bei Paludina keine absolute Reduktion der Zahl der Karyosomen erreicht wird, so ergibt sich dagegen eine um so größere Reduktion der Masse der kyanophilen Substanz, also nach der herrschenden Vorstellung der Masse der Vererbungssubstanz. Da, wie ich nachgewiesen habe, während der

1) Ob die Vierzahl auch für die Mitosen der sonstigen Körperzellen von Paludina typisch ist, hatte ich nicht Gelegenheit zu ermitteln.
Spermatogénese kein Wachstum der Zellen eingreift, vielmehr aus-
schließlich wiederholte Halbierung ihrer Substanz stattfindet und
dabei auch die Karyosomen sichtlich proportional kleiner und
kleiner werden, so ist schließlich in den Samenbildungszenlen das
Quantum der kyanophilen Substanz sogar auf ein Sechszehntel des-
jenigen der Spermatagonien reduziert. Ich möchte zur Erwägung
stellen, ob eine so resultierende Reduktion der Masse nicht eben-
falls von Bedeutung, ja sogar für gewisse Postulate Weismann's
verwertbar sein kann, und für diese sogar in höherem Maße als
die Reduktion der Zahl. Letztere hat ja, wo sie eintritt, sicher-
lisch die Wirkung, unter späterem Hinzutreten der Karyosomen
der andersgeschlechtlichen Keimzelle die für die Species typische
Zahl zu erhalten, und sie dient also diesem besonderen morpho-
logischen Charakter. Hingegen wird sie sonstigen physiologischen
Einfluß, namentlich betreffs Vererbung anderer Qualitäten nur dann
und nur insoweit ausüben können, als damit zugleich Reduktion
der Masse verbunden ist, z. B. dann nicht, wenn die Reduktion
der Zahl durch Verschmelzung je zweier Chromosomen zu einem
herbeigeführt wird. Ist doch überhaupt die Zahl der Karyosomen
nur für eine bestimmte Zeit des Teilungsvorgangs gütig, an eine
vorübergehende Anordnungsweise der Moleküle geknüpft, die im
Ruhestadium wieder aufgelöst wird 1), und steigert sich doch so-
gar während der Mitose die reguläre Zahl zu gewissen Zeitpunkten
auf das Doppelte und Vierfache. Ist aber das Quantum der spe-
zifischen Kernsubstanz das Maßgebende, so ist eigentlich jede Zell-
teilung eine Reduktionsteilung. Nur wird bei den somatischen
Zellen meistens die Reduktion durch nachträgliches Wachstum
wieder ausgeglichen, während bei den Fortpflanzungszellen keine
selbständige Substanzvermehrung nachfolgt, sondern nur diejenige,
die bei der Befruchtung von der andersgeschlechtlichen Keimzelle
geliefert wird. Im Hinblick auf letzteren Zuschuß würde Reduk-
tion auf die Hälfte genügen. Wenn nun bei Paludina durch vier-
malige Halbierung der Samenzellen sogar Verringerung auf ein
Sechszehntel erzielt wird, so lehrt dies zunächst, daß dieser Bruch-

1) Die von mehreren Seiten ausgesprochene Meinung, daß die
Selbständigkeit der Karyosomen sogar auch während des Ruhezustandes
erhalten bleibt, scheint mir für die meisten Fälle in den Thatsachen
keine genügende Begründung zu finden und auch dadurch nicht an-
nehmbarer zu werden, daß man den Begriff einer physiologischen
Individualität zu Hilfe nimmt, die doch kaum gesondert von morpho-
logischer Individualität zu denken ist.
teil für den Zweck der Befruchtung und zugleich der Vererbung der väterlichen Eigenschaften genügt. Nebenbei aber ist nicht zu übersehen, daß sowohl in unserem wie in vielen anderen Fällen die resultierende Kleinheit der einzelnen Samenelemente und deren vermehrte Anzahl besondere Vorteile für die Sicherung der Fortpflanzung mit sich bringen. Auch die Beziehungen dieser Verhältnisse zu allgemeineren Vererbungstheorien dürften Beachtung verdienen, z. B. betreffs der Idee Weismann's, daß es auf Vermeidung der Anhäufung allzu vieler verschiedenartiger Ahnenplasmen ankomme. Obzwar mit jener Art von Reduktion keine unmittelbare Vernichtung lästiger Teilchen verbunden ist, so hat sie doch deren Verteilung und wahrscheinlich auch ungleiche Verteilung auf eine größere Anzahl von Individuen zur Folge, indem ja die individuelle Verschiedenheit der Nachkommenschaft auch auf eine solche der Fortpflanzungszellen, im besonderen der Samenelemente hinweist. Und da die überwiegende Mehrzahl der letzteren zu Grunde geht, ohne zur Funktion zu gelangen, so werden auch dadurch sehr viele atavistische Besonderheiten sogar aus der Species eliminiert werden können. — Ich habe mir diese Hindeutungen gestattet, um die berührten Punkte zur Erwägung zu stellen, ohne hier einer weitläufigeren Diskussion derselben Raum gewähren zu können.

Die Zellen fünfter Generation, die dazu bestimmmt sind, durch Umgestaltung zu den haarförmigen Spermen zu werden, sollen eben deshalb im folgenden als Spermionblasten bezeichnet werden¹). Bevor ich aber zu dieser Metamorphose übergehe, muß ich erst noch einiger zuweilen vorher entretender Besonderheiten gedenken, welche die Samenzellen vierter und fünfter Generation, und zwar mehr das Äußerliche derselben betreffen, jedoch nicht übergangen werden können.

Zunächst habe ich zu erwähnen, daß die Zellen der beiden letzten Generationen zuweilen aus der rundlichen in Kegelform

übergehen, was mit ihren Aggregationen zusammenhängt. Die aus einer Gruppe gleichzeitig und dicht nebeneinander entstandener Spermatogonien durch wiederholte Zellteilungen hervorgegangene kleinellige Schar von Spermatocyten nimmt oftmals die Form eines runden, auf einer Seite der Schlauchwandung anliegenden, auf der anderen tief in die Hohlung des Schlauchs vorspringenden Haufens an. Zuweilen nun geschieht es, daß ein solcher Zellkomplex ganz von der Wandung des Schlauchs abgelöst wird, und dann werden die oberflächlich gelegenen Zellen des Haufens kegelförmig. In Dissociationspräparaten sieht man gelegentlich so beschaffene Aggregate kleiner Zellen, oder Fragmente solcher flotieren. Sie sind nicht von einer endothelialähnlichen Cysten- oder Follikelhaut umgeben. Da aber die oberflächliche Lage kegelförmiger Zellen nicht einer Hülle gleichwertig ist, geht daraus hervor, daß die kleinsten dieser Häufchen ganz und gar aus einer Schicht solcher Kegelzellen bestehen, die, radial gestellt, einen kleinen, centralen, von einer strukturlosen Substanz erfüllten Raum umschließen, welche letztere wohl durch Untergang einer oder einiger centraler Zellen entstanden sein mag (Fig. 7a). Wenn nun Komplexe dieser Art durch die Präparation zertrümmert waren, so stieß ich einige Male auf die That sache, daß je zwei der kleinen Kegelzellen, die durch ihren Kern von wenig über 2 μ Durchmesser als solche der fünften Generation gekennzeichnet waren, daß also je zwei solche Zellen mit ihren Spitzen verwachsen waren, d. h. in einen gemeinschaftlichen kurzen Stiel ausliefen, der entweder homogen erschien oder eine longitudinale Trennungslinie zeigte (Fig. 7b). Ich schließe daraus, daß bei dieser Art der Anordnung die Zweiteilung der kegelförmigen Zellen vierter Generation als Längsteilung auf Grund einer quergestellten Teilungsfigur erfolgen mag, und daß der gemeinschaftliche Stiel ein Rest des Zusammenhangs der beiden Zellenleiber ist. Jedoch ist dieser Modus nur eine ziemlich selten auftretende Variante; denn für gewöhnlich sehe ich auch in der vierten Generation die Teilung an runden Zellen sich vollziehen. Übrigens ist an den so entstandenen Spermioblasten die Kegelform wohl nur ein vorübergehender Zustand; sie dürften sich nach Lockerung des gegenseitigen Zusammenhangs wieder abrunden, bevor sie sich weiter ausbilden. Jedenfalls habe ich während des Bestehens der Kegelform an ihnen nur ein gleichförmiges Cytoplasma und einen blaschenförmigen Kern im Ruhezustande bemerkt, also jeden Anfang einer

IV. Erste Periode der Ausbildung der haarförmigen Spermien.

Ich bin nun an dem Punkte angelangt, wo es sich um die Ausgestaltung der Samenfäden selbst handelt.

Inzwischen hat sich auch der Kern durch folgende Vorgänge wesentlich verändert. Während die Nebenkernbildung im Gange ist, verschmelzen die zahlreichen sehr feinen (hellblauen) Körnchen im Kern zu einigen größeren, jetzt nach Tingierung dunkler blau erscheinenden Klumpchen von unbestimmter Zahl und ungleicher Größe; und diese Klumpchen legen sich bald an die innere Fläche der Kernmembran an, nur denjenigen kleinen Abschnitt derselben freilassend, der mit dem Nebenkern in Berührung und jetzt sogar anscheinend mit diesem verschmolzen ist, hingegen am übrigen größeren Teile der Kernwandung ziemlich gleichmäßig verteilt.
(Fig. 12 b). Anfangs etwa halbkugelig nach innen vorspringend, platten sie sich bald darauf ab, indem sie sich ausbreiten, bis sie alle miteinander zu einer kontinuierlichen Schicht zusammenfließen (Fig. 12 c). So ist eine aus kyanophiler Substanz bestehende, relativ dicke innere Belagsschicht der Kernmembran gebildet, die etwa drei Viertel der letzteren überzieht, nur an der Gegenpolseite des Kerns fehlt und an der Grenze dieses Segments mit einem zugeschärften Rande versehen ist. Die blau tingierte Kapsel hat also an der Gegenpolseite ein Loch, das durch den Nebenkern abgesperrt ist (Fig. 12 d). An ihrer Außenfläche ist aus optischen Ursachen die sehr feine eigentliche Kernmembran jetzt kaum mehr oder doch nur schwer zu erkennen. Hingegen ist in ihrer Höhlung jetzt eine überraschende Erscheinung aufgetreten, nämlich ein sehr kleines aber scharf begrenztes, brillant rot gefärbtes Kügelchen, von dem bis dahin nichts zu sehen gewesen war (Fig. 12 b, c, d). Daß es wirklich im Inneren des Kerns liegt, bleibt nicht im geringsten zweifelhaft. Dies hebe ich zur Verhütung eines Mißverständnisses deshalb hervor, weil etwas später ein anderes rot färbbares, freilich beträchtlich größeres Körperchen als außen dem Kerne anliegend zu beobachten ist, wovon noch besonders die Rede sein wird. Hinsichtlich der Herkunft jenes intranukleären Kügelchens aber kann ich nur vermuten, daß es einem Nucleolus entspricht, dessen kyanophile Rinde abgelöst und mit der übrigen gleichartigen Substanz nach der Kernwandung hingezogen wurde. Nach seiner Befreiung, resp. bei seinem ersten Hervortreten liegt es in der Mittelgegend oder sogar näher dem blinden Ende der blauen Kapsel, wandert jedoch allmählich nach der Gegenpolseite hin, bis es mit dem Nebenkern in Berührung tritt und dann in diesem sich verliert (Fig. 12 e). Und zwar scheint es mir, daß es mit diesem wirklich verschmilzt und in dessen Substanz aufgeht. Dies kann deshalb etwas unsicher erscheinen, weil bei meiner Tinktionsweise beide in Rede stehende Körper in gleicher Weise rot gefärbt werden; und es wäre ja denkbar, daß mittels anderer Behandlung selbständige Fortexistenz des Kügelchens auch nach seinem Austritt aus dem Kern sich erweisen ließe. Indessen kann ich dies aus dem Grunde nicht gerade für wahrscheinlich halten, weil auch in den folgenden morphologischen Veränderungen kein Kügelchen von dieser Kleinheit eine besondere Rolle spielt. Nach dem Austritt des (roten) Kügelchens aber enthält die (blaue) Kapsel in ihrem Innenraum keine sichtbaren Formbestandteile mehr, sondern nur eine farblose, homogene, wahrscheinlich flüssige
Substanz. In diesem Zustande verharrt sie längere Zeit, während außerhalb die beiden bald zu schildernden Ereignisse vor sich gehen; und sie behält dabei einstweilen auch ihre durch den Nebenkern gedeckte weite Öffnung, zuweilen mit der geringfügigen Veränderung ihrer Gestalt, daß sie sich gegen die Öffnung hin etwas streckt und verschmälert, so daß der optische Durchschnitt nicht mehr drei Vierteln eines Kreises, sondern mehr einer Hufeisenform entspricht.

Die Vorgänge aber, die sich weiter an dem protoplasmatischen Teil der Zelle abspielen, sind folgende. Zuerst trennt sich von dem Nebenkern etwa ein Viertel seiner Masse ab, und dieses Stückchen wandert längs des Kernumfanges, außerhalb desselben nach der entgegengesetzten Seite der Zelle, wo es sich am Kernpole in der Spalte zwischen Zellmembran und Kern festlegt (Fig. 12 f u. g), mit beiden in Berührung, als ein rundliches, nur durch die Einklemmung etwas abgeplattetes Körperchen. Man kann es auf der Wanderung an den verschiedensten Stellen zur Seite des Kerns ertappen; am öftesten sieht man es natürlich da, wo es zur Ruhe gekommen ist und liegen bleibt, also am vorderen Pole. Es hat etwa das vierfache Volumen des aus dem Kern ausge- tretenen roten Kugelchens, so daß keine Veranlassung vorliegt, es mit diesem zu identifizieren. Es ist M. E. einfach eine Portion des den Nebenkern ausmachenden verdichteten Cytoplasmas, mit der Bestimmung, später zu dem Spitzenstück zu werden, mit dem eine Zeit lang der Samenfaden bewaffnet ist. — Insoweit es sich um das Thatsächliche handelt, ist die eben besprochene Erscheinung auch schon von Platner (18 e) ganz ähnlich gesehen und ebenfalls zur Anlage des Spitzenstücks in Beziehung gesetzt worden: Platner glaubte jedoch das bewußte Körperchen als das Centrosoma der Zelle ansehen zu sollen und nahm somit an, daß das Centrosoma zum Spitzenstück werde, ohne indessen diese Meinung irgendwie zu begründen. Wahrscheinlichkeit kann ich derselben aber nicht zusprechen, zuerst schon deshalb nicht, weil mir jenes Körperchen so leicht sichtbar und auffällig gewesen ist, während ich sonst bei der gleichen Vorbehandlung selbst in denjenigen Stadien, wo Centrosomen am ehesten zu erwarten und am leich- testen zu finden gewesen wären, beim besten Willen nichts von solchen zu erkennen vermocht. Außerdem ist jenes Protoplasma- klümpchen im Verhältnis zum Durchmesser der Zelle doch wohl viel zu groß für ein Centrosoma. Ich kann es wohl für möglich halten, daß das Material des früheren Centrosoma mit darin steckt, aber
Leopold Auerbach,
nicht jener Identifizierung beipflichten, vielmehr nur feststellen, daß die Substanz des Spitzenstücks ein abgetrennter Teil des Nebenkerns ist.

Einige Zeit darauf zerfällt der größere Rest des Nebenkerns von neuem, und zwar diesmal durch zwei aufeinander senkrechte Meridianfurchen in vier gleiche Teile, die auf den Innenseiten aneinander haften bleiben, nach außen hingegen mit getrennten Wölbungen vorspringen. Man sieht deshalb bei der Aufsicht auf den Gegenpol eine sehr zierliche vierteilige Rosette (Fig. 12 q); und noch deutlicher ist das Bild, wenn solche Rosetten, durch den Schnitt von ihren Zellen quer abgetrennt, isoliert im Gesichtsfelde liegen und bei der Aufsicht ihren Querschnitt darbieten. In der Seitenansicht der Zelle wird der gefurchte Zustand des Nebenkerns fast nur dann deutlich, wenn eine der Trennungsfurchen in der oberen Mittellinie liegt; und dann hat es den Anschein, als sei der Nebenkern nur in zwei Stücke zerfällt (Fig. 12 g, h). Allein die ersterwähnten Bilder lassen über die Vierteilung nicht den geringsten Zweifel übrig. — Übrigens hat schon Brunn in diesem Stadium an der gleichen Stelle vier, gleichsam die Ecken eines Quadrats einnehmende Punktcchen bemerkt, die er jedoch glaubte für den optischen Ausdruck eines Ringes halten zu müssen, der flaschenhalsähnlich dem geöffneten Kern aufsitzt. Die vier Punktcchen waren jedenfalls die vier vorspringenden Ecken der Rosette. Thatsächlich aber deckt diese die überdies schon verengte und bald ganz verschwindende Öffnung der blauen Kapsel zu. Der Randteil der letzteren biegt sich nämlich um diese Zeit allmählich nach innen und wächst dann zusammen, so daß schließlich der rosettenförmig gewordene Nebenkern einer geschlossenen Hohlkugel anliegt.

Der Nebenkern ist also jetzt ein durchfurchter solider Körper.

Als solchen hat ihn auch schon Platner (18 e) ganz richtig erkannt und als vierteiligen Nebenkern gedeutet, auch eine Abbildung der Rosettenform, ähnlich der meintigen, geliefert, jedoch mit der Abweichung, daß von ihm im Centrum der Rosette ein besonderer kleiner Kreis gezeichnet ist, um den herum sich die vier anderen Stücke gruppieren. Das centrale Ringlein soll den optischen Querschnitt eines Fadens bedeuten, der nach Platner's Annahme, vom Kern ausgehend, die Mitte der Rosette durchsetzen, dann in den Schwanz über treten und hier dessen Achsenstrang darstellen soll, was mutatis mutandis auch mit Brunns Angaben übereinstimmen würde. Ich muß indes sagen, daß ich von einem solchen Faden weder im Querschnitt noch in der Längsansicht etwas habe sehen können. Gerade die erwähnten isolierten Rosetten meiner Präparate zeigen, daß die vier
Teile mit ihren inneren, etwas abgerundeten Kanten nahe zusammenstoßen, so wie ich es in Fig. 12a gezeichnet habe. Ein so dicker Centralfaden, wie ihn Plattner sowohl innerhalb der Rosette wie auch an Längsansichten der Zelle außerhalb jener dargestellt hat, existiert ganz gewiß nicht. Sollte aber ein viel feinerer, etwa demjenigen gleichend, den Plattner selbst in den viel größeren Spermiblasten der Pulmonaten abgebildet, wirklich existieren, so würde er dennoch in unserem Falle unsichtbar bleiben; denn innerhalb der Rosette würde er sich in dem Schatten der in der Achse zusammenstoßenden Teile verlieren, und außerhalb derselben würde er keinen Raum finden, sich zu zeigen, weil die Rosette vorn dem Kern und hinten der Zellmembran dicht anliegt. In letzterem Punkte kann ich auch die Plattner'schen Figuren 9 e u. f seiner Taf. IX, die hinter der Rosette noch ein reichliches Protoplasmafält enthalten und damit schon in diesem Stadium die Zelle birnförmig erscheinen lassen, nicht naturrechtvoll finden. Ich darf aber nicht unterlassen zu erwähnen, daß in solchen Präparaten, die aus Härting mit Flemming'scher Lösung hervorgegangen sind, in der Achse der Rosette oder nach deren Verlängerung in der Achse des entsprechenden Stäbchenbündels ein feiner schwarzer Strich sichtbar ist, den ich indessen glaube nur für einen Osmium-Niederschlag in dem kapillaren Raume zwischen den vier Kanten der Stäbchen halten zu müssen. Denn er reicht immer nur so weit wie der letztere; weder am Kern noch jenseits nach dem Schwanze zu ist eine Fortsetzung der Linie zu sehen, obwohl in den späteren Stadien nach der letztenen Richtung hin Raum vorhanden wäre. Übrigens werde ich bald zeigen, daß bei Paludina das Hauptmaterial für den Achsenstrang in dem rosettenförmigen Körper selbst gegeben ist.

Zuvor will ich nur noch bemerken, daß sich inzwischen die Gesamtgröße der ganzen noch runden Zelle vermindert hat, indem ihr Durchmesser von 5,5 μ auf 4,5 μ herabgegangen ist, hauptsächlich durch Abgabe von Zellsaft nach außen, d. h. durch Austritt derjenigen Flüssigkeit, die zwischen der Zellmembran und dem Kern-Nebenkern-Komplex angesammelt war, also unter Ver- schmälerung des betreffenden Spaltraums, zum geringeren Teile auch durch eine eben merkliche Zusammenziehung des Kernblaschens selbst. Indem dann beides weiter fortschreitet, geschieht die Kernverkleinerung in stärkerem Maße. Das Kernbläschen kons- trahiert sich bis zum Verlust seiner Höhle und wird dadurch zu einer soliden und kompakten, durch die Tinktion dunkelblauen Kugel von ca. 1,5 μ Durchmesser (Fig. 12i). Jedoch erfolgt diese Kontraktion nicht in einfacher Weise konzentrisch. Vielmehr ist sie mit besonderen Verschiebungen der kyanophilen Substanz verbunden, die ein ganz eigentümliches Zwischenstadium verursachen (Fig. 12h). Eine Zeit lang nämlich erscheint die blaue, jetzt ge-
Leopold Auerbach,

schlossene Kapsel im optischen Querschnitt nicht als einfacher Ring von rund herum gleichmäßiger Dicke, sondern in der durch die Figur wiedergegebenen Form. Die Kernsubstanz ist hauptsächlich in zwei quergestellten plankonvexen Menisci angesammelt, die einen Spalt zwischen sich lassen, der zuweilen von einigen sehr feinen Fäden überbrückt ist. Am Rande dieses Spalts wird vermutlich der Rest des Kernsafts ausgetrieben; denn der Spalt wird immer schmaler, bis schließlich die beiden blauen Schichten in Berührung kommen und zu einem soliden Körper vereinigt werden (Fig. 12 i).

Der Zwischenraum zwischen diesem jetzt kompakten Kern und der Zellmembran ist durch die Verdichtung des ersteren kaum breiter geworden, weil zugleich die Zelle im ganzen durch Abgabe von Flüssigkeit nach außen sich weiter zu verkleinern fortfährt und schließlich auf 3,5 μ im Durchmesser reduziert wird. Der Achsenteil dieses kleinen Bläschens ist jetzt durch eine Kette von drei soliden Körperchen eingenommen, deren mittelstes blau, die anderen rot tingiert sind, nämlich der Anlage des Spitzenstücks, der Kernkugel und dem viergeteilten Nebenkern. An den Polen berühren der erst- und der letztgenannte die Zellmembran; seitlich aber wird die Verbindung der letzteren mit den axialen Teilen nur durch einige wenige, überaus feine Fädchen vermittelt, die nicht immer gut erhalten sind.

Nun tritt die erste Spur des Schwanzes in die Erscheinung als ein äußerst feiner und kurzer fadenförmiger Auswuchs der Zellmembran an der Stelle, wo ihr innen der rosettenförmige Körper anliegt (Fig. 12 i). Von einem direkten Zusammenhang mit diesem oder von einem Durchtreten durch denselben, oder gar von einem Hineinragen des Fädhens in den Kern, der ja übrigens jetzt ein kompakter Körper ist, ist nichts zu sehen; und ich habe keinen Grund, etwas anderes anzunehmen, als daß das Fäden einfach aus der Zellmembran, dieser gesonderten peripherischen Schicht des Cytoplasma, hervorgesproßen ist. Nach seiner ersten Entstehung ist dieser Anhang so zart und, wie es scheint, auch so leicht einer Schädigung durch die angewandten Reagentien fähig, daß er nicht sehr oft in seiner natürlichen Form zu sehen ist. Dann an Länge und Stärke wachsend, wird er allmählich widerstandsfähiger und leichter erkennbar. Sein Wachstum erfolgt, wie ich vermute muß, nur auf Kosten der Zellmembran, die ja auch weiterhin bis fast zur Unkenntlichkeit dünn wird. Diesen Anhang können wir zutreffend als „primären Schwanzfaden“ benennen. Denn er repräsentiert nicht die Anlage
des ganzen künftigen Schwanzes, sondern nur die Anlage desselben hinteren, etwa 2/5 des ganzen Schwanzes ausmachenden Abschnitts, den schon BRUNN unterschieden hat, und den ich als Endstück aufgefaßt habe (1 h). Zu der Vervollständigung durch das Hauptstück ist aber schon das Material vorbereitet.

Die erste der weiteren Veränderungen betrifft den rosettenförmigen Körper mit seiner Umgebung. Er streckt sich in der Richtung seiner Achse mehr und mehr aus, indem er unter Ver längerung seines Querdurchmessers länger wird, und zwar mit seinem hinteren Ende kaudalwärts vordrangt und dabei den hinteren Pol der Zellmembran mit dem hier angefügten Schwanz faden vor sich her treibt. Dadurch wird auch die hintere Hälfte der Zellmembran in die Länge gezogen, und die ganze Zelle erhält damit Birnform (Fig. 12 h, i). Selbstverständlich beteiligen sich an der Längsstreckung des Nebenkerns alle vier Lappen der Rosette; und zwar werden diese hiermit in vier Stäbchen verwandelt, die, dicht aneinander gefügt, mit je einer Kante in der Achse zusammenstoßen. — Diese Beobachtung stimmt in der Hauptsache überein mit einer Wahrnehmung, die schon BÜTSCHLI (5 b) bei der Samenbildung von mehreren Insekten und LA VALETTE (15 d) bei Stenobothrus dorsalis gemacht haben, indem diese Forscher ebenfalls ein Paar in der Zelle aus dem Nebenkern gebildete längliche Körperchen mit dem Schwanz in Verbindung treten sahen. Wenn sie nun in den erwähnten Fällen nur zwei solche Stäbchen fanden, so ist demgegenüber bei Paludina an der Vierzahl nicht zu zweifeln. Übrigens ist diese Differenz nicht von großem Belange, um so weniger, als die Zusammensetzung aus vier parallelen Stäbchen nur ein vorübergehender Zustand ist.

Indem nämlich das Stäbchenbündel sich immer mehr in die Länge streckt, verliert sich mit der Zeit jede Spur der Längsfurchung. Die vier Stäbchen scheinen zu einem einheitlichen homogenen Cylinder zu verschmelzen. Mit der fortschreitenden Streckung ist natürlich auch Verschmälerung verbunden, jedoch soviel ich sehe, keine Substanzverminderung, die LA VALETTE in seinem Falle angenommen hat. — Es ist übrigens noch die sonder-
bare Thatsache zu erwägen, daß während der Längsstreckung der Stäbchen entstandenen Körpers dessen Wurzelteil anfangs stärker verschmäler wird als der distale Teil, ja anscheinend sogar Substanz aus dem ersteren nach dem letzteren hinströmt, so daß dieser Körper für eine Zeit lang die Form einer schlanken Keule annimmt (Fig. 12 k) und erst mit weiterer Streckung wieder cylindrisch wird. Das hat schon BRUNN ebenfalls bemerkt, abgesehen von seiner Deutung dieses Körpers als einer aus der Kernwandung herausgewachsenen Röhre, von der er sagt: „Die dickste Stelle befindet sich immer am entferntesten vom Kopfteil, und erst wenn die Verdickung bis zum Ende des definitiven Mittelstücks vorgeschritten ist, findet eine vollständige Ausgleichung der Stärke dieses Abschnitts statt“ (12, S. 463).

Dies ist außerdem auch insofern richtig, als der Stäbchenkörper in der That die Hauptmasse des vorderen Abschnitts des Schwanzes liefert. Und zwar geschieht dies nach meiner Beobachtung auf folgende Weise. Je mehr er sich in der Richtung nach hinten ausstreckt, desto mehr wird durch ihn auch die hintere Hälfte der Zellmembran in die Länge gezogen und zu einem ihm umgebenden Schlauche umgewandelt, bis sie sich schließlich dem axialen Cylinder dicht anschmiegt (Fig. 12 i, k, l). Damit ist derjenige vordere Abschnitt des Schwanzes angelegt, den BRUNN als sehr verlängertes Mittelstück angesehen hat, den ich jedoch in meiner früheren bezüglichen Abhandlung (1 h) aus dort entwickelten Gründen als vereinigtes Mittel- und Hauptstück, resp. als ungegliedertes Hauptstück angesehen habe, und dem sich hinten der inzwischen gewachsene Primärfaden als Endstück anschließt. Die Teile brauchen sich nur weiter in die Länge zu dehnen, um den beim reifen Spermium wahrzunehmenden Zustand zu erreichen (Fig. 12 z σ₁ σ²).

Indes ist bei letzterem an dem Schwanz weniger Detail der Struktur zu erkennen als in dem eben geschilderten Entwicklungsstadium. Denn der vom Nebenkern gelieferte Centralteil des Hauptstücks ist offenbar ein Achsenstrang. Nun ist in den ausgereiften haarförmigen Spermien von Paludina auch im vorderen Abschnitt kein Achsenfaden zu erkennen, woran vermutlich die außerordentliche Feinheit des ganzen Gebildes schuld hat. Durch die eben erläuterte Entwicklung wird es aber in noch höherem Grade als außerdem durch Gründe der Analogie wahrscheinlich, daß auch im reifen Zustande das Hauptstück des Schwanzes von einem Achsenfaden durchzogen sein dürfte, dessen Hülle eine Fort-
setzung der Zellmembran ist und hinten in einen soliden Ausläufer, das Endstück, übergeht. Der in der Entwicklungszzeit noch bestehende Unterschied in der Dicke der beiden Abschnitte wird mit der Zeit viel geringer, sowohl durch weitergehende Längsstreckung des vorderen als auch durch Dickenwachstum des hinteren, namentlich in seinem an den ersteren anstoßenden Teile. Schließlich ist der Übergang des einen in den anderen ein so glatter, oder doch in einzelnen Fällen die Absetzung an dieser Stelle eine so minimale, daß es nur durch aufmerksamste und feinste Beobachtung BRUNN hat gelingen können, die Gliederung des Schwanzes in zwei Abschnitte zu erkennen, was ich dann bestätigen konnte. Wegen des Näheren muß ich auf BRUNN's (4) und meine bezügliche Abhandlung (1 h) verweisen. Wenn aber meine durch die Entwicklungsgeschichte gestützte Auffassung richtig ist, daß der vordere Abschnitt derjenige Teil des Schwanzes ist, der unter Mitbeteiligung des Nebenkerns auf die beschriebene Weise entstand, daß also der durch den Nebenkern gelieferte Achsenfaden gerade so weit reicht wie der vordere Abschnitt, so liegt darin ein weiterer, zu den von mir früher beigeführten hinzutretender Grund dafür, den vorderen Abschnitt nicht mit BRUNN für ein ungewöhnlich langes Mittelstück zu betrachten, sondern das Hauptstück darin inbegriffen zu sehen; denn wo sonst ein Achsenfaden deutlich ist, beschränkt er sich ja nie auf das Mittelstück allein. Wenn andererseits mehrfach als etwas Typisches angenommen worden ist, daß am hinteren Ende aller Samenfäden der Achsenstrang nackt hervortrete, so muß ich es mir versagen, hier in eine umfassende Diskussion dieser Ansicht, die ich nicht teile, einzutreten, und will nur bemerken, daß die Entstehungsweise des Schwanzes bei Paludina nicht für jene Ansicht spricht. Es wäre ja allenfalls denkbar, wenn es auch nicht beobachtet ist, daß der Achsenstrang nachträglich auch in den Primärfäden, also in den hinteren Abschnitt hineinwachse; aber ein besonderer Umstand spricht selbst gegen eine solche Vermutung, nämlich die sehr geringe Färbbarkeit des Endstücks, durch die es besonders von dem vorderen Abschnitte absticht, da ja der Achsenstrang gewöhnlich der am stärksten färbbare Bestandteil des Schwanzes ist.

Nun muß ich aber wieder auf einen früheren Zeitpunkt zurückgreifen, um die während der Ausbildung des Schwanzes an den vorderen Teilen des Spermioblasten sich vollziehenden Umgestaltungen zu schildern, was mit wenigen Sätzen geschehen kann. Zu der Zeit, wo der rosettenförmige Nebenkern sich schon etwas ge-
Leopold Auerbach,
streckt hat und damit die ganze Zelle birnförmig geworden ist, also etwa zwischen den in den Figuren 12i und 12k veranschaulichten Zuständen, beginnt auch der in Gestalt einer soliden, blau tingierbaren Kugel vorhandene Kern sich in der Richtung der Achse auszustrecken und damit den vorn ihm anliegenden Protoplasmakörper und durch diesen auch den vorderen Pol der Zellmembran vor sich her zu schieben. Der Kern selbst wird dabei zuerst ellipsoidisch (Fig. 12k), dann zu einem Cylinder mit gewölbten Endflächen (Fig. 12l), der schließlich eine Länge von etwa 5 μ erreicht. Sodann aber wird er am vorderen Ende zugespitzt (Fig. 12m). Und damit ist eine erste Periode seiner Umgestaltung vollendet. — Die Zellmembran schließt sich natürlich dieser Längsdehnung und Formveränderung an, wodurch sie dem seitlichen Umfange des cylindrischen Kerns bis fast zur Berührung genähert wird. Doch bleibt diese schlauchförmige Hülle noch lange deutlich sichtbar, ja sogar längere Zeit noch durch einen feinen Spalt von dem Kern getrennt, während sie sich im Bereiche des Schwanzes schon dicht an den Achsencylinder angelegt hat und deshalb hier bei ihrer Zertheit und der übereinstimmenden Färbung nicht mehr zu unterscheiden ist. Hierdurch und durch den Unterschied in der Breite ist auch eine scharfe Absetzung des Schwanzes von dem vorderen Komplex bedingt. — Das vor dem Kern befindliche Cytoplasma-Körperchen bleibt während der Streckung des Kerns eine Zeit lang noch rundlich. Gegen das Ende jenes Vorgangs aber streckt es seinerseits eine Spitze nach vorn hinaus und wird so zu einem erst stumpfen, dann schlankerem Kegel, dem sich der vorderste Teil der Zellmembran in der nählichen Form anschließt. So dokumentiert jetzt dieser, nach dem vorderen Ende gewanderte und hier festgelagerte Teil des Nebenkerns auch durch die Form, die er annimmt, seine Bestimmung als Spitzenstück.

Mit den eben beschriebenen Veränderungen ist eine erste Periode der Ausbildung des haarförmigen Spermiums abgeschlossen und eine vorläufige Form desselben hergestellt, die einige Zeit hindurch ziemlich unverändert anzudauern scheint. In dieser Zeit aber und bei dieser Form bekommt das Spermium schon spontane Beweglichkeit und damit die Fähigkeit zur Ortsbewegung, wie gelegentlich in Zupfräparaten wahrzunehmen ist. Und diese ihre physiologische Eigenschaft ist, wie sich zeigen wird, von Wichtigkeit für die Einleitung der zweiten Periode ihrer Ausbildung.
Hier muß ich nun noch einige Worte den zugehörigen mehrkernigen Spermioblasten widmen, die ich oben auf S. 490 geschildert habe. Die Beobachtung lehrt, daß ein solcher Cytoplasamballen mit mehreren Kernen fünfter Generation, ohne einstweilen zerteilt zu werden, als gemeinschaftliche Entwicklungslage für mehrere Samenfäden fungiert, deren so viele aus ihm gebildet werden, als er Kerne enthält. Und zwar geschieht dies betreffs der axialen Teile jedes einzelnen Spermiorums ganz nach dem Modus, den ich für die einfachen Spermioblasten oben genau beschrieben habe, nur daß eine Zeit lang eine gemeinschaftliche Zellmembran die mehrfachen Anlagen umschließt. Zuerst bildet sich durch Verdichtung aus dem Cytoplasma für jeden Kern ein Nebenkern, an ersteren sich dicht anlegend, und dann treten beide in die früher geschilderten Veränderungen ein. Auffallend ist dabei, daß die mit diesem Vorgange verbundene Rarefizierung des peripherischen Cytoplasma nicht so weitgehend ist, wie in den einfachen Spermioblasten und in den früheren Samenzellen. Die weitere Umbildung habe ich in solchen Komplexen so weit verfolgen können, bis nach Abgabe des Anlagematerials des Spitzenstücks der Rest des Nebenkerns eingekerbt, also rosettenförmig geworden war. Vielleicht geht es auch innerhalb der gemeinschaftlichen Zellmembran noch etwas weiter. Jedenfalls muß aber kurz vor oder während der Längsstreckung dieser Anlagen auch Ein- und Durchschnürung der Zellmembran, also Sonderung in zwei oder mehrere Individuen erfolgen. Denn Zusammenhang weiter ausgebilder, d. h. bis zu der Form der Fig. 12h, i etc. gelegter Samenkörper war nie wahrzunehmen, würde mir aber bei seiner Auffälligkeit wohl nicht entgangen sein. — Bemerkmenswert ist aber noch die folgende Thatssache. Die gegenseitige Stellung der Achsen der innerhalb einer gemeinschaftlichen Hülle sich entwickelnden Individuen ist keine bestimmte, sondern von Fall zu Fall wechselnd. Bei den Doppel-Spermioblasten sind bald die beiden Kerne parallel und gleich gerichtet, so daß die beiden Nebenkerne nahe bei einander liegen, bald divergieren die beiden Achsen mehr oder weniger, selbst bis zu 180°, d. h. bis zur Oppositionsstellung (Fig. 12t, u, v). Bei mehr als zwei Kernen

1) Ähnliche Doppelspermioblasten scheint auch La Valette bei Blatta germ. beobachtet zu haben (15d, S. 4).
sind die Streckungssachsen meist untereinander divergierend, und zwar in unregelmäßiger Weise. Vierkernige Komplexe zeigen in dessen zuweilen eine so regelmäßige Anordnung, wie sie in Fig. 12 wiedergegeben ist. Diese Verschiedenheiten scheinen also die Entwicklung nicht merklich zu beeinflussen, nur daß später die zur Sonderung der Individuen führenden Einschnürungen der Zellmembran sich jenen Stellungen werden anpassen müssen. — Es drängt sich da eine Frage hervor, die auch am einfachen Spermiblasten aufgeworfen werden könnte. Was ist eigentlich die Ursache, daß die Achse in diese oder jene Richtung zu liegen kommt? Ist das Bestimmende diejenige Stelle des Kerns, an die gerade der Nebenkern angelegt hat, und ist die Öffnung der Kernkapsel nach dieser Seite hin eine Folgeerscheinung? Oder ist schon vorher im Kern eine polare Differenzierung gegeben und zugleich dafür gesorgt, daß der Nebenkern sich gerade an einen Pol, und zwar an einen bestimmten Pol anfügt? Es läßt sich ja einstweilen diese Alternative nicht entscheiden; aber das erstere dürfte doch wohl wahrscheinlicher sein.

Die oben als Endergebnis der ersten Periode der Ausbildung geschilderte Form des eigentlichen Paludina-Spermiums wird später einer Weiterentwicklung zugeführt, zu der ich jedoch nicht un-
mittelbar übergehen kann. Wir müssen die noch unfertigen Ge-
bilde für eine Weile aus dem Auge lassen. Denn der Fortschritt
ihrer Umgestaltung ist an sehr merkwürdige Bedingungen ge-
kniipft, hängt von neu hinzutretenden äußeren Verhältnissen ab.
Nachdem nämlich jener Zustand erreicht ist, entwickeln sich diese
Gebilde nicht an dem Orte weiter, an dem sie sich bisher be-
funden haben, d. h. an der Wandung des Hodenschlauchs, und
auch nicht in fortbestehender Zusammenhäufung mit ihresgleichen,
sondern nach Zerstreuung der Gruppe in einer Art von
Symbiose mit den wurmförmigen Samenelementen.
Ich muß deshalb vorerst von letzteren sprechen, und zwar zunächst
von ihrer Entstehungsweise, hinsichtlich deren ich an den Angaben
früherer Beobachter einiges zu berichten und Wesentliches hin-
zuzufügen habe.

V. Entwicklung der wurmförmigen Spermien.

Diese im reifen Sperma von Paludina neben den haarförmigen
Elementen in so großer Menge vorhandenen sonderbaren Gebilde,
zu deren Charakteristik ich bei einer früheren Gelegenheit (1 h)
einen neuen wesentlichen Punkt, nämlich den gänzlichen Mangel
an kyanophiler Substanz hinzugefügt habe, entstehen, wie schon
LEYDIG und dann auch die anderen Untersucher fanden, gleich-
zeitig mit den haarförmigen und neben diesen in je einem und
demselben Hodenschlauche, und wie diese aus besonderen Häuf-
chen oder Gruppen von Zellen, die sich alle ganz oder doch bei-
nahe auf dem gleichen Punkte der Entwicklung befinden. Doch
kommen ausnahmsweise auch vereinzelte Elemente dieser Art vor.

Hinsichtlich ihrer Abstammung stimmen nun beide neueren
Beobachter, BRUNN betreffs Paludina und KOEHLER betreffs Murex
brandaris, darin überein, daß sie ihren ersten Ursprung gerade so
wie die Stammzellen der haarförmigen Elemente aus dem Keim-
lager, d. i. dem protoplasmatischen Belage der Wandung des
Hodenschlauchs herleiten, nämlich aus je einem hervorknospenden,
einen Kern einschließenden Auswuchs desselben. Ich habe alle
Ursache, mich dem anzuschließen, obwohl diese Annahme bei
Paludina gewissermaßen nur auf einem Rückschlusses beruhen, nicht
schon während dieser Entstehung selbst erkannt werden kann.
Denn man kann es bei unserer Species nicht so, wie dies nach
KOEHLER bei Murex der Fall sein soll, den einzelnen hervor-
knospenden oder eben abgelösten Samenzellen ansehen, welche der beiden Entwicklungsrichtungen sie einschlagen werden. Vielmehr sind sie anfangs, so tief die Beobachtung einzudringen vermag, alle ganz gleich beschaffen; ja sie machen sogar eine Zeit lang ähnliche Veränderungen durch; und erst in einem späteren Zeitpunkt wird eine Differenzierung der Entwicklungstendenz evident.

der beiden Fälle zu konstatieren. Außerdem mischen sich bei dem
letztgenannten Autor einige dem herrschenden Sprachgebrauch
entgegengesetzte Bezeichnungsweisen, resp. abweichende Anwen-
dungen bekannter Termini ein, die an der Übereinstimmung des
Sachlichen irre machen können, wenn man nicht die einzelnen
Angaben genau vergleicht. Er nennt die W-Zellen: „cellules
mères des spermatozoïdes vermiformes“, obgleich auch nach seiner
Darstellung keine Teilung derselben stattfindet, sondern jede der-
selben sich in toto zu einem wurmförmigen Samenkörper um-
bildet. Diese seine cellules mères sind also die Vergleichs-
objekte 1). Ferner nennt er „Spermatagonien“ nicht bloß gewisse
Zellen erster Generation, sondern auch deren durch mitotische
Teilung erzeugte Tochterzellen, obwohl letztere kleiner sind und
anders beschaffene, mehr denen der Spermatocyten ähnliche Kerne
haben 2). Sehen wir aber hiervon ab und halten wir uns an die
zugehörigen Zellen erster Generation, die eigentlichen Spermat-
agonien, so ist der Schluß, zu dem er gelangt, wohl begründet, und
dieser ist in der Hauptsache mit meinem Befunde in Überein-
stimmung. Jedoch sind folgende sächliche Ungleichheiten hervor-
zuheben. Bei Murex lassen sich nach KöHLER die W-Zellen schon
während ihrer Entstehung und namentlich unmittelbar nach ihrer
Ablösung als solche erkennen und von den eigentlichen Spermato-
gonien unterscheiden, denn sie sind von vornherein größer, be-
kommen eine viel schärfere Begrenzung, sogar eine Hüllmembran,
fallen dann in die Höhlung des Schlauchs hinein und wachsen hier
noch mächtig an, bevor sie in die ihnen zukommende Umbildung
eintreten, während die Spermatagonien kleiner, angeblich nackt
und zart begrenzt, überdies längere Zeit durch feine Fäden mit
der Schlauchwand und untereinander verbunden sind und nicht
an Volumen zunehmen. Bei Paludina nun sind ganz gewiß so

1) „Les cellules mères (d. i. die W-Zellen) se développent pa-
rallélement aux spermatoogonies; elles ont la même valeur morpho-
logique que ces dernières; mais il n'y a entre ces deux sortes d'élé-
ments aucune relation de filiation. C'est donc au stade de spermato-
gonie, que les éléments du testicule commencent à subir une évolution
différente (14, S. 121).

2) „Les cellules filles sont des spermatoogonies... On remarque,
que les spermatoogonies les plus âgées, un peu plus petites que les
plus jeunes, qui sont voisines de la paroi des ampoules testiculaires,
onn un noyau plus homogène , qui se rapproche du noyau des
spermatocytes“ (ibid. S. 122).

b. XXX. N. F. XXIII.
Leopold Auerbach,

des wurmförmigen Spermiums werde. KOEHLER konnte an den homologen Elementen von Murex, die auch im reifen Zustande keinen Kopf haben, feststellen, daß der vermeintliche Kern während seiner Wanderung nach vorn zur Herstellung des centralen Faserbündels verbraucht wird; und es wird sich zeigen, daß Ent sprechendes, wenn auch in etwas anderer Weise auch bei Paludina der Fall ist. Als übereinstimmend aber bei den früheren Autoren ist hervorzuheben, daß nach ihnen ein Fragment des ursprünglichen Zellkerns das Material für das Wimperbüschel und für den Centralfaden liefern soll, während sie sehr wohl erkannten, daß der größere Teil der früheren Kernsubstanz abhanden kommt. Welchen Sinn wohl die Beseitigung so vieler Kernsubstanz haben kann, wird von den Autoren nicht erörtert. (BRUNN, 4, S. 464 ff., KOEHLER, 14, S. 133 ff.)

1) Da die Zeitschrift, die KOEHLER's Abhandlung enthält, weniger verbreitet ist, so seien einige seiner betreffenden Sätze hier in ihrem Wortlaut wiedergegeben: „Les plus jeunes de ces cellules ne renferment jamais qu'un seul noyau, qui présente des grosses granulations de chromatine, disposées parfois sous forme de reticulum grossier. Les cellules plus âgées renferment plusieurs noyaux, trois ou quatre ordinairement, quelquefois plus; mais ces noyaux n'ont pas les mêmes caractères que dans les cellules jeunes.... Ces noyaux sont d'ailleurs destinés à disparaître, ou se fragmentant en un certain nombre de morceaux, qui se dissolvent dans le protoplasmè cellulaire. Je n'ai jamais rencontré dans les cellules d'une certaine taille des figures caryocinétiques.... Cette multiplication des noyaux n'est pas, à proprement parler, une division au sens restreint.... L'accroissement du nombre des noyaux est sans doute en relation avec l'augmentation de taille, qui doit être assez rapide, de ces cellules. La cellule devenant plus grosse, le noyau s'agrandit aussi et à un certain moment, il se fragmente, passivement en quelque sorte; car il a déjà probablement perdu beaucoup de son activité.... Le premier acte de transformation de ces cellules, ainsi modifiées en spermatozoïdes vermiformes consiste dans la formation d'un faisceau de filaments, qui font saillie à la surface de la cellule. J'ai souvent vu le faisceau s'implanter par sa base sur un des noyaux de la cellule, et je crois comme BRUNN, que ces filaments sont formés par la substance de ce noyau.... Un seul de ces noyaux est employé à la formation du filament central. On observe les autres longtemps pendant le développement des spermatozoïdes, mais ils doivent disparaître avant que celui-ci ne soit définitivement constitué. — La multiplication de ces noyaux chez Murex est un phénomène différent de la fragmentation décrite chez la Paludine. ... Chez le Murex le noyau produit d'autres noyaux aussi gros que lui, formant des masses à contours.

Alle Zellen der ersten Generation, auf die es ja hier vorzugsweise ankommt, entstehen auf dem nämlichen, oben bei den Spermatogonien geschilderten Wege, und alle durchlaufen, nachdem sie individualisiert sind, in ganz übereinstimmender Weise eine lange Reihe derjenigen Veränderungen, die bei den Spermatogonien zur Teilung führen, nämlich die Nebenkernbildung und die Mitose bis zum Dyaster. Erst von dieser Phase ab schlägt ein großer Teil der Zellen eine andere Entwicklungsrichtung ein, die ohne Zellteilung nur in einer Umbildung zum wurmformigen Spermium besteht. Diese letzteren Zellen sind die W-Zellen. Ob die Disposition zu dieser besonderen Entwicklung schon von vorn herein in ihnen gesteckt hat, oder erst mit der Zeit unter unbekannten Einflüssen erzeugt wurde, läßt sich ja einstweilen nicht arrondis, dont la taille permet de dire, que les cellules sont multi-nucleées. L’un de ces noyaux fournit le filament central, tandis que les autres continueront à exister pendant longtemps encore et ne disparaîtront que dans la dernière période du développement des spermatozoïdes. Chez la Paludine au contraire la cellule reste toujours uninucleée; ce noyau se fragmente en morceaux, qui disparaîtront successivement dans le protoplasma, et il ne restera plus, qu’un fragment unique, qui formera le bouquet des cils. — Die sogenannten Kernfragmente scheinen sich demnach bei Murex relativ länger zu erhalten als bei Paludina. Sonst aber dürfte die von KOEHLER betonte Verschiedenheit kaum den Wert haben, den er ihr zuschreibt und kaum die Übereinstimmung mit den Vorgängen bei Paludina beeinträchtigen, um so weniger, als ja die Art der Kernvermehrung auch bei Murex als Fragmentation anerkannt wird. Und auch gewisse während dieses Vorgangs von KOEHLER wahrgenommene, hier nicht von mir reproduzierte feinere Details können an der Haupt-sache nichts ändern.
Spermatogenese von Paludina vivipara. — Abschn. V. 509

dessen. Jedenfalls aber können wir diejenigen Zellen, denen das besagte Schicksal bevorsteht, schon von ihrer Entstehung an als W-Zellen auffassen, und für diese ergibt sich nun aus obigem:

Auch die W-Zellen, die anfangs ganz den Spermatogonien gleichen, machen genau wie diese die Nebenkernbildung und die Reihe der mitotischen Vorgänge bis zum Dyaster durch. Dann aber tritt folgende Abweichung des Verlaufs ein. Die vier Karyosomen jeder der beiden polaren Gruppen, anstatt wie sonst zusammenzuhalten und in eine rückläufige Metamorphose und neue Kernbildung einzugehen, weichen im Gegenteil seitlich auseinander und runden sich zur Form kleiner Kugeln ab, teilen sich auch sehr bald, gleichzeitig oder successive, ein jedes in zwei Hälfte, so daß nahe bei den Polen der Zelle je eine lockere Gruppe von 4—8, eventuell ungleich großen, durch Zwischenräume getrennten, (blau tingierten) Körperchen zur Erscheinung kommt (Fig. 13b). Dieser Anfang der Zerstreuung und Zerteilung der Karyosomen tritt ein, während unter gleichzeitiger Wiederabundung der Zelle zu annähernder Kugelform die Fasersubstanz der Spindel, d. h. jetzt das Bündel der Verbindungfasern darin begriffen ist sich zu deformieren, seitlich auszubreiten und in diffuses, die ganze Zelle erfüllendes Cytoplasma umzuwandeln. Beides geschieht gleichzeitig. Daher sieht man auch an den meisten dieser Zellen mit zwei polar situierten Gruppen kleiner, mehr oder weniger voneinander abgerückter kyanophiler Körperchen die frühere, während der Mitose be-standene Zellhöhle verschwunden, d. h. ganz von lockerem Cytoplasma ausgefüllt, das auch zwischen die einzelnen blau tingierbaren Körperchen eingedrungen ist, übrigens durchweg gleichartig erscheint. Zuweilen aber, nämlich wenn man einzelne dieser W-Zellen auf einem etwas früheren Zeitpunkte ihrer Veränderung ertappt, kann man sehr wohl noch einen unzweideutigen Rest der Verbindungfasern erkennen, nämlich im axialen Teile der Zelle eine sehr merkliche Längsstreifung des Cytoplasma, in der Richtung von der einen Karyosomengruppe zur anderen (Fig. 13a). Auf letztere Erscheinung zu stoßen und sie mehrmals wiederzufinden war mir sehr willkommen. Man kann es ja bis dahin den Zellen gar nicht ansehen, ob sie zu den W-Zellen gehören werden. Nun hatte ich zwar aus den sehr häufig sich darbietenden Zuständen
Leopold Auerbach,

der Fig. 13 b schon deren Vorgeschichte so erschlossen, wie ich sie hier aufgestellt habe, und zweifelte auch gar nicht an der Richtigkeit meiner Vermutung; aber es fehlte doch ein Mittelglied. Als solches war mir nun die zuweilen noch vorfindliche Spur der Verbindungsfasern sehr erfreulich, die den Zusammenhang mit einem vorangegangenen Dyaster-Stadium positiv begründet und nachweist. — Wie aber dieser Anfangszustand der divergenten Entwicklung als erster Schritt auf dem Wege zur Bildung eines wurmformigen Spermiums sich erweist, wird bald ersichtlich werden.

Die jetzt unmittelbar in das Cytoplasma eingebetteten kleinen Karyosomen fahren immer weiter auseinander, eine Zeit lang noch die Äquatorialgegend frei lassend (Fig. 13 c), später aber von beiden Polseiten her auch in den Mittelraum eindringend, so daß sie dann unregelmäßig im ganzen Zellraume verteilt sind (Fig. 13 d). Dann ist nicht mehr zu erkennen, welcher der beiden Gruppen jedes einzelne der kyanophilen Kugelchen angehört; und es sind dann überhaupt zwei Pole der Zelle einstweilen nicht mehr zu unterscheiden. Der Durchmesser der Zelle bleibt dabei unverändert; er beträgt nach wie vor 13—14 μ. — Der letztbeschriebene Zustand hat offenbar auch BRUNN vorgelegen. Er gibt die Zahl der dunklen Innenkörper nicht bestimmt an, sagt nur, sie sei eine beträchtliche, mehr oder minder große. Wenn ich aber seine hierauf vorzugsweise bezügliche Abbildung, seine Fig. 8, näher ansehe, so finde ich in den meisten Zellen des dargestellten Häufchens acht solche Innenkörper, in anderen noch einige mehr. Und das stimmt ja im ganzen mit meinem Befunde überein, nur daß nach meiner Wahrnehmung diese Körperchen auf ganz andere Art entstanden sind, als BRUNN annahm. Bei Murex dürften vermutlich, trotz der anders lautenden Angaben KOEHLER's, ihre Herkunft und Entstehungsweise die nämliche sein wie bei Paludina, vielleicht aber andere anfängliche Zahlenverhältnisse obwaltten. KOEHLER selbst ist nicht auf ein genaueres Studium der Mitosen eingegangen.

Der weitere Verlauf schließt nun zwei Reihen gleichzeitig vor sich gehender Veränderungen in sich. Die kyanophilen Körperchen zerfallen weiterhin successive in immer kleinere Körnchen, die vermöge ihrer blauen Tingierung eine Zeit lang noch gut erkennbar sind. Währenddessen spielen sich aber auch in der übrigen Zellsubstanz Veränderungen ab. In dem rosa gefärbten Cytoplasma zeigen sich eine Anzahl verdichteter Stellen von
intensiv roter Färbung, die sich dann zu schärfer begrenzten, brillant roten Körperrn abrunden (Fig 13 d). Fast immer sind diese roten Kugeln unmittelbar in das restierende, fein netzförmige Cytoplasma eingebettet; und ich halte dies für den natürlichen Zustand. In einer meiner Serien fand ich indes die Sache durchweg so, daß jede dieser hochroten Kugeln in einer Vakuole lag, die ich geneigt bin, für ein Kunstprodukt, jedenfalls aber für etwas Abnormes zu halten, von dem wir absehen können. Nach einiger Zeit treten die 4—6, oder mehr im Zellraum zerstreuten, rot tingierten Körper, denen sich zuweilen noch einige inzwischen gebildete kleine Kügelchen von ähnlicher Beschaffenheit anschließen, zu einer einzigen größeren Masse von gegen 4 µ im Durchmesser zusammen, die später eine wichtige Rolle zu spielen hat (Fig. 13 f). Es ist aber einleuchtend, daß dieser aus verdichteter Zellsubstanz bestehende Körper seiner Entwicklung wie seinem Aussehen nach analog ist dem Nebenkerne in den anderen Samenzellen, wie er sich in diesen vor jeder Teilung und, was hier besonders in Betracht kommt, auch in den Spermioblasten vor ihrer Umbildung in die haarförmigen Samenfäden einfindet. Und wenn in dem jetzigen Falle bei der Einleitung des Vorgangs nicht wie dort die Phase zweier Sicheln zur Erscheinung kommt, so liegt das einfach daran, daß die W-Zellen jetzt kernlos sind, daß also der sich bildende Nebenkerne der Anlehnung an einen anderen bläschenförmigen Körper entbehrt. Da nun unter diesen Umständen die Bezeichnung „Nebenkerne“, sofern ein eigentlicher oder Hauptkern fehlt, noch mehr als sonst etwas Schiefes an sich haben würde, so werde ich ihn im Folgenden unter dem Namen „Cytoplasmakern“ wieder erwähnen.

Inzwischen sind die zerstreuten kyanophilen Körnchen in immer kleinere Stäubchen zerfallen, die bald auch nicht mehr zu unterscheiden sind und doch in anderer Weise ihre Existenz verraten. Indem nämlich ihre feinsten Partikelchen gleichmäßig verteilt werden, verleihen sie der den Cytoplasmakern umgebenden, bis dahin rosa gefärbten Zellsubstanz einen Anhauch von violett, oder vielleicht richtiger gesagt, einen eigentümlichen Stich ins Graurote (Fig. 13 g—m). Schon meinen Vorgängern ist es bei ihren einfachen Tinktionen aufgefallen, daß um diese Zeit die Zellsubstanz eine dunklere Färbung annimmt als sonst; diese beruht eben auf der Imprägnierung mit den aus dem Zerfall der Karyosomen herrührenden, stark chromatophilen Molekülen. Der Cytoplasmakern aber behält seine hochrote Farbe; in ihn dringt also
Leopold Auerbach,

nichts von der Kernsubstanz ein. Die dunklere Nuance der tingernten Zellsubstanz erhält sich bis in die spätere Zeit hinein, wo die Umformung der ganzen Zelle in eine Spindelgestalt beginnt, um noch später wieder einer rein roten Färbung Platz zu machen, worauf ich noch zurückkommen werde.

Nebenher ist aber noch folgendes beachtenswert. Sobald der Cytoplasmakern gebildet ist, zeigt die übrige Zellsubstan bei starken Vergrößerungen ein außerordentlich lockeres, schwammiges Gefüge. Man sieht helle, schmale Interstitien zwischen gefärbten, gerüstartig verbundenen Bälkchen; und fast regelmäßig, obwohl nicht ausnahmslos, ist auch eine große runde Vakuole oder einige kleinere solche bemerkbar (Fig. 13e, f etc.). Hierzu sei noch folgendes bemerkt: Die Vakuolen können sich schon zu der Zeit bilden, wo noch distinkte blaue Körihen im Cytoplasma wahrnehmbar sind. Dann kommt es, obwohl selten, vor, daß sich eine Anzahl der blauen Körihen gerade der Peripherie einer Vakuole anlagern, und das kann bei schwacher Vergrößerung oder flüchtigem Ansehen die Täuschung hervorrufen, als sei das ein richtiger kleiner Zellkern mit wandständigen „Chromatin kernöln“ (Fig. 13f); genauere Untersuchung aber, die Berücksichtigung anderer, weiter abliegender blauer Kugelchen und die Vergleichung mit der großen Mehrzahl der gleichartigen Zellen belehren über die wahre Natur der Erscheinung. Es ist also jetzt verhältnismäßig viel Flüssigkeit in diesem Teile der Zellsubstanz angehäuft. Das ist ja auch ganz natürlich, weil oben ein großer Teil der festeren Substanz dieses Bereichs in den Cytoplasmakern übergegangen ist. Noch auffälliger ist diese Rarefaktion der Zellsubstanz später während der Spindelform des Gebildes, vielleicht weil der Cytoplasmakern allmählich noch weiter auf Kosten der übrigen Zellsubstanz wächst. Diese Beschaffenheit des Zellenleibes ist nicht ohne Belang für einige später zu besprechende Punkte.

Der Cytoplasmakern spielt nun des weiteren die Rolle, daß er das Material für den Achsenstrang oder Centrafaden sowie für das dem wurmförmigen Spermium eigene hintere Wimperbüschel liefert. Hierin liegt, sofern die Herkunft und der chemische Charakter des Substrates in Betracht kommen, eine wesentliche Abweichung von den Ergebnissen Brunn’s und Koehler’s, welche die nämliche Rolle einem Fragment des früheren Zellkerns zugeschrieben haben. Es ist ja nach obigem der in Betracht kommende Innenkörper nicht ein eigentlicher Zellkern, auch nicht ein
Fragment des früheren Zellkerns, und er enthält auch nichts von der spezifischen kyanophilen Kernsubstanz; vielmehr ist er ein reines Verdichtungsprodukt des Cytoplasma und hat ebenso nach seiner Entstehung wie nach seiner Qualität den Wert eines Nebenkerns. Demnach sind Achsenstrang und Wimperbüschel rein cytoplasmatische Gebilde. Hinsichtlich des Formalen der gesamten Umbildung aber stimmen meine Befunde mit denjenigen der genannten Autoren im großen und ganzen wohl überein, namentlich betreffs des Ganges der Umgestaltung der Gesamtform, während ich über die inneren Vorgänge doch auch Modifizierendes und Ergänzendes zu berichten habe. Zunächst finde ich nicht, daß der Cytoplasmakern vor Beginn seiner formativen Leistungen immer dicht an die Peripherie der Zelle hinkrücke. Er liegt um diese Zeit nur mehr oder weniger excentrisch, zuweilen fast im Centrum der Zelle, nur ausnahmsweise dicht an der Peripherie. Wo er aber auch liege, macht er, bevor es zur Bildung des Wimperbüschels kommt, eine Reihe sehr eigentümlicher Veränderungen durch, die den früheren Beobachtern gänzlich und auch mir längere Zeit hindurch entgangen sind, weil sie in Sublimatpräparaten nicht immer gut fixiert und nur hier und da erkennbar sind, während sie in solchen Objekten besonders gut hervortreten, die mit Flemming'scher Lösung gehärtet waren. Zuerst wird der Cytoplasmakern hohl durch Differenzierung in eine dunkle Rinde und einen blassen Centralraum, welcher letztere schließlich so hell und scharf begrenzt erscheint, daß er wie eine große centrale Vakuole aussieht (Fig. 13h). Weiterhin aber wird die Vakuole excentrisch, dadurch, daß die Rindensubstanz sich mehr nach einer Seite der Hohlkugel hinüberzieht, infolge dessen diese jetzt bei günstiger Lage im optischen Querschnitt als ein Ring erscheint, dessen eine Hälfte sichelförmig, dessen andere Hälfte eine schmale Linie ist. Unter Steigerung dieser Substanzverschiebung kommt darauf die dünne Hälfte der Wandung ein Loch, das allmählich größer wird, bis die Rindensubstanz die Form eines die Vakuole nur zur Hälfte umschließend Schälchens hat (Fig. 13i). Dieses biegt sich dann zu der flacheren Form eines konkav-convexen Meniscus aus, dessen hohler Seite die Vakuole noch eine kurze Zeit hindurch anliegt (Fig. 13k). Der ganze Vorgang erfüllt offenbar den Zweck einer noch weiter gesteigerten Konzentration der festen Substanz des Cytoplasmakerns durch Ausscheidung von Flüssigkeit in Form der Vakuole. Letztere zergeht meistens bald darauf unter langsamem Eindringen lockerer Zellsubstanz von der
Umgebung her, so daß in der Nachbarschaft des verdichteten Teils eine Zeitlang noch ein größerer, unregelmäßig begrenzter, verwaschener Flecken hellerer Substanz bemerklich bleibt. In seltenen Fällen scheint die Vakuole nach seitlichem Abrücken in das lockere Cytoplasma hinein noch etwas längere Zeit Bestand zu haben neben der von früherher schon vorhandenen. Der verdichtete Cytoplasmakern selbst aber geht inzwischen in die Form eines anfangs gekrümmten (Fig. 131), sodann geraden Stäbchens über, welches sich so einstellt, daß es, von geringen Abweichungen abgesehen, in einem Durchmesser der Zellkugel liegt, und das eine etwas zugespitzte Ende nach dem nächstliegenden Punkte der Zellperipherie hinsieht (Fig. 13 m). Dieser Durchmesser wird zur Längsachse des sich formierenden Gebildes; und damit hat nun die Zelle wieder zwei Pole. Darauf streckt sich das Stäbchen immer mehr in die Länge, und zwar gleichzeitig nach beiden Richtungen hin, vielleicht jedoch etwas schneller nach dem ihm näher liegenden Pole zu, jedenfalls diesen früher erreichend. Ist dies geschehen, so wächst es an dieser Stelle noch eine Strecke weit über die Zellgrenze hinaus ins Freie, in Form eines am freien Ende zugespitzten Schweppahananges der Zelle, zu einer Zeit, wo diese entweder noch Kugelform besitzt, oder sich schon am vorderen Ende etwas zugespitzt hat, worauf dann bald der Uebergang der ganzen Zelle in eine Spindelgestalt beginnt, so daß mehrenteils ein der Fig. 13 n entsprechendes Formbild zur Anschauung kommt. Ob zu dieser Zeit eine Zellmembran, die beim Heraussprossen des Schwanzes entweder durchbrochen oder ausgestülpt werden müßte, überhaupt als gesonderte Schicht noch existiert, ist mir zweifelhaft. Sollte eine solche feine Hülle den Schwanz anfangs einscheiden, so müßte sie doch in kürzester Zeit mit der Substanz des herausgewachsenen Teils des Achsenstranges völlig in eins verschmelzen, wie die weitere Veränderung lehrt. Es zerfällt nämlich sehr bald der ganze Schwanzanhänge in eine größere Anzahl feiner, nach ihrem freien Ende hin schlank zugespitzter Cilien, die pinsel- oder quastenartig an der Ansatzstelle zusammengefaßt bleiben, hingegen unter bald sich kundgebender aktiver Bewegungsfähigkeit divergierend auseinander und auch jede für sich schlangelnde Bewegungen auszuführen vermögen. Damit ist das Wimperbüschel hergestellt (Fig. 13 o, p, q), das bei Paludina während der ganzen Lebensdauer des wurmförmigen Spermiums als Anhang seines hinteren

1) Auf Grund dieser genetischen Beobachtungen hat sich meine früher (1 h) ausgesprochene Auffassung über das Verhältnis des Achsenstranges zum Wimperbüschel erheblich modifiziert und der Vorstellungsweise der früheren Beobachter genähert.
wird und zweitens, weil dieser Rest nicht das ganze Köpfchen ausmacht, sondern nur dessen Inneres als vordersten Ende des Achsenstranges ausfüllt. — Die weitere Umbildung besteht nun in der allmählichen Umwandlung der Spindelgestalt der Zelle in die Form einer Schnur, die um ein Vielfaches länger ist als jene. Und zwar beginnt diese Umformung in der Vorderfront der Spindel. Infolge immer weitergehender Längsstreckung des Achsenstranges schiebt dessen vorderes Ende beim Vordringen seine cytoplasmatische Haube vor sich her und dehnt so den vorderen Teil der Spindelzelle zu einem langen, schmalen, bieg- samen Halse aus, unter Verschmälerung auch des Restes der Spindel, während deren hinteres Ende einstweilen nur eine schlankere Zuspitzung erhält, wodurch das Ganze in seinem Umrisse etwa der Form des Infusoriums Lacrimaria Olor ähnelt (Fig. 130), um so mehr, wenn schon jetzt, was aber selten der Fall ist, auch das Köpfchen sich zu markieren beginnt.

Alternative der Wirklichkeit entsprechen mag, kann ich nicht mit Sicherheit entscheiden. Ich muß jedoch sagen, daß ich mehr geneigt bin, die zweite Modalität als wahrscheinlichere anzusehen, und zwar aus folgendem Grunde. Ich habe unter den schon eiformig oder zu Spindeln gewordenen W-Zellen auch einzelne gefunden, die bei genauer Einstellung des Mikroskops auf die horizontale Mittelebene des Objekts in auffälliger Weise erkennen ließen, daß das Innere der Zelle, auch abgesehen vom Cytoplasmaparnern, rein rot war, und daß nur eine periphere Lage von größerer oder geringerer Breite den gemischten Farbenton an sich hatte, und zwar diesen besonders deutlich mit bläulichem Anhauche (Fig. 13 n). Nun wäre es ja denkbar, daß die chemische Veränderung im centralen Teile der Zelle beginne. Aber viel näher liegt doch die Deutung, daß die kyanophilen Moleküle von einem gewissen Zeitpunkte an nach der Oberfläche der Zelle hin geschoben werden, um durch diese hindurch successive ausgestoßen zu werden. Diese Vorstellung ist um so leichter annehmbar, als, wie wir noch sehen werden, gleichzeitig eine Ausscheidung von Wasser aus der Zelle ihren Anfang nimmt, die zur Hinausspülung jener nukleären Moleküle beitragen kann. Wie dem aber auch sei, so steht doch so viel fest, daß um die angegebene Zeit die W-Zelle aller ihrer kyanophilen Substanz ledig wird. Sie hat jetzt weder im morphologischen Sinne einen Zellkern, noch enthält sie etwas von der wichtigsten und am meisten eigenartigen Substanz der Zellkerne.

Die Umgestaltung der Gesamtform geht aber rastlos weiter. Zu der schwanenhalsähnlichen Verlängerung der Spindel am vorderen Teile gesellt sich bald eine ähnliche, nur kürzere am entgegengesetzten Ende, indem auch der hinterste, das Wimperbüschel tragende Teil sich zu einem ähnlichen, schnurförmigen Anhange ausstreckt, der eine Zeitlang noch durch eine spindelförmige Anscheinung in den vorderen schlank cylindrischen Teil übergeht und wie dieser auf deren Kosten sich auch weiter verlängert. Da dies an beiden in etwas wechselndem, namentlich individuell verschiedenem Verhältnis geschieht, so ist der relative Ort der zwischen ihnen liegenden Anscheinung, des Restes der Spindel, etwas unbestimmt. Am gewöhnlichsten hat dieser etwa an der Grenze des hintersten und vorletzten Viertels, selten weiter nach vorn, öfter noch weiter hinten seine Stelle (Fig. 13 p). Er wird entweder im ganzen
im\n
\nkürzer und schmaler, bis die Ausgleichung mit den cylin-

\ndrischen Stücken vollendet ist, oder er zerfällt auch in seltenen

Fällen während der Streckung in eine Kette von zwei bis drei

kleineren Spindeln mit cylin-\n
drischen Verbindungsstücken, deren

Ausgleichung nachträglich erfolgt. Im allgemeinen aber wird auf

die angegebene Art die Form der Spindel in die einer Schnur

verwandelt, und werden überhaupt Gestalt und Bau des wurm-
förmigen Spermiums im wesentlichen hergestellt, nur daß es einst-

weilen noch erheblich breiter ist als im reinen Zustande. — Be-
treffs des Verhaltens des Achsenstrangs in der eben besprochenen

Ausbildungsperiode habe ich aber noch einiger eigentümlicher That-
sachen zu gedenken. Die eine ist schon von KÖHLER bei Murex

beobachtet worden und, obwohl von BRUNN nicht erwähnt, auch

bei Paludina vorkommend. In der Zeit nämlich, wo das Gebilde

noch ganz oder teilweise Spindelform hat, liegt der Faserstrang

nicht immer in der Achse, sondern manchmal seitwärts derselben,
ganz nahe der Oberfläche in einer entsprechend gebogenen Meridian-
linie der Spindel, zuweilen sogar eine wulstige Hervorragung längs

dieser Linie verursachend. Erst ebenmäßig mit der Längsdehnung

und Einengung jeder Strecke kommt, sobald dieselbe cylin-\n
drisch geworden ist, der Strang in deren Achse und damit schließlich in

die Achse des ganzen schwurförmigen Gebildes zu liegen. — So-
dann aber ist es lehrreich, zu finden, daß zuweilen während der

Spindelform der Zelle der Achsenstrang nicht geradlinig oder ein-
fach nach der Krümmung des Meridians gebogen ist, sondern

stark geschlängelt verläuft, was schon DUVAL (6) bemerkt hat.\n
Diese Form kann nur dadurch bedingt sein, daß der Cytoplasma-
kern, resp. der Achsenstrang sich schneller in die Länge ausge-
streckt hat, als das ihn umgebende Cytoplasm. Die Umgestaltung

des axialen Teils ist demnach das Primäre, während die Form-
veränderung der übrigen Leibesmasse zwar auch als aktiv plastisch

charakterisiert ist, jedoch mehr in sekundärem Anschluß an das

Längenwachstum des Achsenstranges erfolgt.

Mit der Gesamtstreckung des ganzen Gebildes ist jedoch noch
etwas Anderes verbunden, nämlich ein erheblicher Substanzverlust.\n
Wenn das Spermium völlig cylindrisch geworden ist, merkt man

schon beim bloßen Ansehen einigermaßen, daß es einen kleineren

Raum ausfüllt als die Zelle, aus der es entstanden ist, und die

Messungen bestätigen diesen Eindruck. Es ist jetzt im möglichst

natürlichen Zustande — d. h. namentlich nach Vermeidung künst-
Spermatogenese von Paludina vivipara. — Abschn. V. 519

licher Dehnung 1) — einschließlich des Wimperbüschels 175—200 μ, im Mittel 190 μ lang bei einer Breite, die wenig um 2 μ herum schwankt, hat also, als Cylinder berechnet, ein Volumen von ungefähr 600 Kub.-μ, d. h. kaum halb soviel, als zuerst in der Form einer runden Zelle und noch zur Zeit der Spindelform, eine Differenz, gegen welche die möglichen Fehler in der Messung und der Bestimmung der Mittelwerte doch sehr geringfügig sind. Es hat also eine beträchtliche Verdichtung stattgefunden. Und zwar ist offenbar sehr viel Zellsaft abgegangen gekommen, namentlich jenes nach Herstellung des Cytoplasmae so reichlich sichtbare interstitielle oder interfilare, und außerdem in einer oder zwei runden Vakuolen angesammelte Fluidum des Zelleibes nach außen abgegeben worden. In der That ist schon während des Übergangs der Spindel- in die Schnurform keine Vakuole mehr zu sehen. Diese gehen ein. Und auch das sonstige schwammige Aussehen des Cytoplasmas hat sich nach und nach verloren; an seiner Stelle ist eine viel kompaktere Beschaffenheit des den Achsenstrang umhüllenden Protoplasmanmantels ersichtlich. Dieser Verdichtungsprozeß geht aber nach Gewinnung der Schnurform noch weiter und bewirkt eine fernere, allmähliche Ver- schmälerung, infolgedessen das ganz ausgereifte wurmförmi ge Spermium nur einen Querdurchmesser von ca. 1,7 μ, also ein Volumen von nur etwa 450 Kub.-μ hat, was freilich, weil namentlich der Querdurchmesser nicht genau genug ermittelt werden kann, nur als eine ungefähr zutreffende Bestimmung hingestellt werden soll. Noch auf eine andere Art aber gibt sich die nachträgliche Verdichtung kund. Die eben schnurförmig gewordenen

1) Namentlich dürfen zu diesen Messungen nicht Aufstrichpräparate gebraucht werden, die deshalb sehr zur Benutzung verlocken können, weil in ihnen diese Art Samenfäden meist geradlinig ausge streckt vorliegen, jedoch eben dadurch Irrungen herbeiführen, indem sich zeigt, daß bei jener Procedur die Samenfäden, zuerst an einem Punkte ankehlend, mehr oder weniger in die Länge gedehnt werden, so daß Maße herauskommen, die weit über die natürliche Maximal- länge hinausgehen. Es sind also zur Messung nur Präparate verwendbar, die mittels Zerzupfung in einem reichlichen Tropfen Flüssig- keit hergestellt sind. In solchen freilich zeigen die wurmförmigen Samenkörper meist so vielfache unregelmäßige Biegungen, daß immer nur wenige Exemplare zu finden sind, an denen sich eine sorgfältige Längenbestimmung ausführen läßt. Es war infolgedessen sehr mühsam, mich der Resultate zu versichern, die in den obigen und in den weiter unten noch anzuführenden Zahlen ausgedrückt sind.
Leopold Auerbach,

bunden ist, so wäre es ja denkbar, daß entweder unter dem Einflusse besonderer Verhältnisse der Ernährung und der äußeren Temperatur oder vielleicht auch aus inneren Ursachen zeitweilig die Zellproliferation derartig gesteigert wird, daß eine zweite Teilung der Samenzellen erfolgt, bevor die immanente Tendenz zur anderen Art der Weiterentwicklung zum Durchbruch gelangt. Welches aber auch die Ursachen sein mögen, die That sache, daß auch Zellen zweiter Generation zu W-Zellen werden können, war nicht abzuweisen. — Da nun nach meinen sonstigen Erfahrungen bei Paludina an ein nachträgliches Wachstum solcher Zellen nicht zu denken ist, so war eine notwendige Folgerung die, daß in dem reifen Samen neben größeren auch kleinere wurmförmige Spermien anzutreffen sein müßten. Und das hat sich auch bestätigt. Ich hatte früher auf die Größendifferenzen dieser Gebilde nicht genügend geachtet; und wenn ich in einer früheren Abhandlung (Ib) die Länge dieser Samenzäden einfach auf 190 μ bestimmt habe, so weiß ich jetzt, daß dies nur für die größere Sorte als Mittelzahl giltig ist. Bei ausgedehnter Vergleichung zeigte sich, daß die Länge, das Wimperbüschel mit eingerechnet, zwischen 140—200 μ schwankt, auch dann, wenn für Erhaltung der Formverhältnisse im möglichst natürlichen Zustande gesorgt war (vgl. die Anm. auf S. 519). Nun käme es noch darauf an, ob innerhalb des angegebenen Spielraums die Mittelstufen fehlen, so daß schon hinsichtlich der Länge zwei Größenordnungen unterschieden werden könnten. Das kann ich nun nicht behaupten. Es kommen, obwohl in geringer Anzahl, auch Exemplare von 160—180 μ Länge vor. Indessen ist das Längenmaß allein für die aufgeworfene Frage nicht entscheidend; denn für diese kommt es ja auf das Volumen, also im Einzelfalle außer der Länge auch auf die Breite an. Länge und Breite stehen aber, wie der Augenschein lehrt, nicht in einem bestimmten, immer gleichen Verhältnisse zu einander, was teils mit der während der Ausreifung nachweisbaren allmählichen Verschmälerung zusammenhängen, teils auch definitive individuelle Verschiedenheit der einzelnen Exemplare bedeuten mag, wie solche auch bei den Samenelementen anderer Tiere vorkommt, im besonderen nach KÖHLER bei Murex brand., und zwar hier ebenfalls an den Samenkörpern zweiter Art, denen im reifen Zustande teils schlankere, teils gedrungenere Spindelform eigen ist. Unter diesen Umständen ist eine ganz einwandsfreie Entscheidung im Sinne des obigen Postulats nicht möglich gewesen. Davon jedoch konnte ich mich überzeugen, daß unter den
kurzen Exemplaren auch solche vorkommen, die zu den dünnsten gehören, und daß andererseits unter den langen auch ziemlich viele vergleichsweise dicke sich finden; und im ganzen habe ich doch den Eindruck zweier Größenklassen erhalten. So liegt der Schluß nahe, daß die größeren aus Zellen erster, die kleineren aus Zellen zweiter Generation, nämlich den schon erwähnten kleineren W-Zellen ihren Ursprung genommen haben mögen.

Nach allem wären also die Bildungszellen der wurmförmigen Spermien teils Schwestern, teils Schwestertöchter der eigentlichen Spermatogonien. Die Art und Weise der Weiterbildung der kleineren ist im übrigen ganz übereinstimmend mit derjenigen der größeren. Auch bleibt eine Wendung zu dieser Bildungsrichtung nach allem, was ich gesehen habe, auf Mitglieder der beiden ersten Zellgenerationen beschränkt.

So viel über meine die Entwicklung der letzteren betreffenden Beobachtungen, denen ich jedoch noch einiges Historische und Kritische hinzufügen muß.

34
Die Frage aber, aus welchem Materiale der Achsenstrang gebildet werde, d. h. derjenige Bestandteil, den wir so nennen, den er jedoch für den ganzen künftigen Samenfaden hält (s. unten die Anmerkung), diese Frage hat er nicht beantwortet, kaum gestreift, am wenigsten dabei an ein einem Nebenkern verwandetes Gebilde gedacht, vielmehr nach einem solchen, seiner Theorie gemäß, als Material für die Herstellung des Kopfes gesucht, jedoch vergeblich 1).

"On voit ici le spermatoblaste piriforme avec une extrémité légèrement effilée; il contient son noyau; de plus, chose remarquable, il est déjà pourvu de cils vibratiles; il en diffère cependant en ce que ces cils n'éprouvent assez profondément dans le corps cellulaire et semblent s'implanter sur une petite masse, plus foncée que le protoplasma ambiante. Que représente cette petite masse, point de convergence des cils? C'est ce qu'il nous serait difficile de préciser... Ce que nous avons observé le plus souvent, comme était plus avancé d'évolution, c'est la forme, ou dans le spermatoblaste, conservant encore son noyau, est déjà apparu le corps cylindrique du future spermatozoïde" (d. i. in Wirklichkeit der Achsenstrang) „avec les cils adhérents à l'une de ses extrémités. La petite masse sombre, qui formait le point de convergence des cils, était elle donc le prémum rudiment du corps du spermatozoïde? Mais alors, ou est le globule cephalique, dont on constate si facilement la présence précédé dans les spermatoblastes de l'Holox? Ce sont là des questions, auxquelles nous ne saurions repondre.... Nous pouvons cependant remarquer que sur le sp. vermis. achevé la tête est relativement assez peu distincte, et que par suite il n'est pas étonnant, que le globule céphalique, première trace de son apparition, puisse démeurer complètement invisible.... Ici nous voyons le spermatozoïde bien distinct dans le spermatoblaste, et d'autant plus distinct, que par l'effet du réactif (?) "il s'est contourné en une serie d'ondulations irregulières" (Vgl. oben S. 518). "Le spermatoblaste, qui le contient, renferme encore une trace de noyau, lequel ne prend donc bien évidemment aucune part à la formation du spermato-zoïde."
Spermatogenese von Paludina vivipara. — Absehn. V. 525

diesem findet sich ein verhältnismäßig kleiner Kern, dessen Chromatin peripher gelegen ist, und zwar besonders an dem vorderen Ende sich weiterhin anhäuft, wobei sich der ganze Kern mehr und mehr in die Länge streckt, so daß er stäbchenförmig wird. Außerdem enthält die Zelle noch einen dunklen, rosettenförmig gestalteten Körper, den Nebenkern, sowie endlich das Centrosoma, das dem Kern dicht anliegt und bei seiner Streckung sich an die Spitze begibt, während am entgegengesetzten Pole des Kerns der Achsenfaden sich ansetzt. Meist gewahrt man im Protoplasma noch eine Anzahl unregelmäßiger Granulationen. Der stäbchenförmige Kern rückt nun mehr und mehr gegen die Spitze der Zelle, die er schließlich nach außen vorstülpt. Das Protoplasma zieht sich dabei an dem Achsenfaden immer weiter herunter, ihn so mit einer Hülle umkleidend. In diesem Protoplasma- rest gewahrt man noch lange den rosettenförmigen Nebenkern, bis er sich schließlich allmählich auflöst. BRUNN gibt hiervon ganz richtige Abbildungen; so ist namentlich in seiner Fig. 11 der rosettenförmige Nebenkern ganz charakteristisch wiedergegeben ... Das ausgebildete Spermatosoma zeigt nach Färbung mit Alaunkarmin und Bleu de Lyon folgende Abteilungen. Das vorderste Ende des Kopfes ist schwach blau gefärbt und setzt sich hierdurch gegen den daran sich ansetzen- den stäbchenförmigen, rot tingierten Teil ab. Es entspricht dem Centrosoma, der darauf folgende Teil des Kopfes hingegen dem Kern. Letzterer geht durch eine schmale blasse Übergangsstelle, die man als Hals bezeichnen könnte, über in den langen Schwanz, der in das bekannte Wimperbüschel ausläuft ... Die Abweichungen, welche die vorstehende Schilderung von der BRUNN's zeigt, sind, wie man sieht, nur geringe.4

Zunächst kann ich nun der letzteren Bemerkung nicht zustimmen; ich finde keine wesentliche Übereinstimmung zwischen den Ansichten der beiden Autoren; doch ist es nicht nötig, hierauf näher einzugehen. Völlig aber weichen die Angaben PLATNER's von meinen Ergebnissen ab. Denn er läßt den Kern der Zelle, wie bei anderen richtigen Samenfäden, stäbchenförmig und zum Kopfe des reifen Samenkörpers werden, während nach meinen oben dargelegten Befunden die eigent- liche Kern auf sehr eigen tümliche Weise frühzeitig gänzlich untergeht. Ein Berührungspunkt unserer Ansichten könnte darin zu liegen scheinen, daß auch PLATNER etwas einem Nebenkern Analoges vor- handen sein läßt; aber was er für einen solchen hält, ist keiner und ist nicht identisch mit meinem Cytoplasma kern. Denn jener angeb- liche Nebenkern PLATNER's soll seitlich in dem den Achsenstrang um- hüllenden Protoplasma liegen bleiben und sich später auflösen, ähnlich wie der vermeintliche Kern DUVAL's, während doch in Wirklichkeit der Cytoplasma kern gerade zur Bildung des Achsenstranges und des Köpfchens in früher angegebener Weise verbraucht wird. PLATNER beruft sich zwar auf vermeintlich entsprechende Abbildungen BRUNN's; aber das, was in den letzteren in der seitlichen Zellsubstanz der Spindel liegt, ist weder „rosettenförmig“, noch hat es das dunkle Aussehen eines Nebenkerns, noch hat BRUNN den Fehler begangen, es für einen solchen zu halten. Es ist das sowohl in natura, wie in

Nach Erledigung der Entstehungs- und Entwicklungs geschichte der wurmförmigen Samengebilde muß ich jetzt noch die Aufmerksamkeit für einige Bemerkungen über ihren reifen Zustand in Anspruch nehmen.

Hinsichtlich ihrer Lebenseigenschaften und der Vergleichbarkeit ihrer Abschnitte mit denjenigen anderer Samenfäden verweise ich auf die Darstellungen Siebold's (26), Leydig's (16), Brunn's (4) und auf meine eigenen, in meine erste betreffende Mitteilung (1h) eingefügten Bemerkungen. Anlangend aber ihren feineren Bau kann ich hier einige neue Beobachtungen von mir hinzufügen. Die erste ist folgende. Bekanntlich hat Ballowitz (2) an den Samenfäden verschiedener höherer Tiere eine spiralige Struktur der Außensubstanz am Mittelstück und am Hauptstück entdeckt. In schönster Weise zeigte sich nun Entsprechendes auch an den wurmförmigen Spermien von Paludina, und zwar in der ganzen Länge
ihres Körpers mit Ausschluß des Köpchens und natürlich des Wimperbüschsels. Die Erscheinung tritt nur hervor an nicht eingetrockneten Exemplaren nach Härtung derselben, sowohl in Dissociations- wie in Schnittpräparaten, außerdem auch nach halbstündigem Verweilen frischer Isolationspräparate in der feuchten Kammer, jedoch bei weitem nicht an jedem einzelnen Spermium, auch nicht in allen Präparaten, sondern nur hier und da, stellenweise an ganzen Gruppen, so daß unverkennbar äußere Nebenumstände der Vorbehandlung zu ihrer Verdeutlichung beitragen. Das schnurförmige Hauptstück sieht dann wie fein geringelt aus (Fig. 13r). Sollte dies der Ausdruck einer spiraligen Struktur sein, was wohl möglich ist, so würde doch die Spirale nur einen minimalen Steigungswinkel haben. In diesem Sinne war ich um so mehr geneigt, die Sache aufzufassen, als ja nach Ballowitz an den Samenfaden anderer Tiere der spiralige Verlauf deutlich ist. Indessen habe ich doch in unserem Falle nicht in positiver Weise darüber ins Reine kommen können, ob sehr flache Spiralwindungen oder geschlossene, aneinander gereihte Ringe vorliegen. Eines von beiden ist aber sicher der Fall. Ob nun freilich diese Struktur schon im lebendigen Zustande voll ausgebildet oder erst durch die Behandlung hervorgerufen sein mag, eventuell ob eine wirkliche Zusammensetzung aus Windungen oder nur ein spiralig herumlaufender Verdichtungsstreifen Ursache der Erscheinung ist, dürfte schwer zu entscheiden sein. Zum mindesten beweist aber diese, daß in dem Molekulargefüge der Hüllschicht, resp. in dem Grade ihrer Kohäsion Ungleichenheiten vorhanden sind, die unter Umständen sichtbar werden oder sogar den Zerfall der Schicht in ein spiralisches Band, eventuell in geschlossene Ringe begünstigen. Da die Entstehungsgeschichte der Hüllschicht auf eine derartige Zusammensetzung nicht hinweist, so scheint mir die Annahme berechtigt, daß diese Struktur oder Disposition erst eine Folge sein möchte der ununterbrochen schlängelnden Bewegungen des Spermiums, also auf dem Wege funktioneller Anpassung im Sinne von Roux (22a) erworben. In der That ist die Ringelung nur an reifen Exemplaren zu finden, die, wie wir noch sehen werden, schon im Hoden ihre Eigenbewegung in Aktion setzen. Einmal ausgebildet, können diese Ringe oder Windungen bei der schlängelnden Bewegung eine ähnliche Rolle spielen, wie diejenigen in der Haut eines Ringelwurms, indem sie auf der konkaven Seite jeder entstehenden Biegung konvergent,
auf der konvexen divergent werden. Bei dieser Annahme wäre nur das auffallend und einstweilen nicht recht einpassend, daß eine ähnliche Struktur auch an dem Mittelstücke vieler Samenfäden und an diesen besonders deutlich hervortritt, obwohl gerade die Mittelstücke anscheinend die schlängelnde Bewegung nicht mitmachen. Indessen würde dies für die einzelnen in Frage kommenden Fälle erst noch besonders zu untersuchen und klar zu stellen sein. In jedem Falle aber ist es bemerkenswert, daß die in Rede stehende Erscheinung an der Außenschicht sich nicht nur auf die funktionell gleichwertigen Samenfäden sehr verschiedener Gattungen, sondern auch auf die der gewöhnlichen Bestimmung entzogenen, jedoch in der schlangelnden Bewegung über-einstimmenden wurmförmigen Elemente von Paludina erstreckt.

Was den Achsenstrang anlangt, so sei hier noch folgendes bemerkt. Wo derselbe an beinahe oder ganz reifen Exemplaren unterscheidbar ist, da ist zwar sein Zusammenhang mit dem Wimperbüschel nicht gerade direkt klar zu sehen, weil an der Übergangsstelle die Umbiegung der umhüllenden Mantelschicht zur Endfläche eine gewisse Verdunkelung verursacht; jedoch ist jener Zusammenhang aus den besonderen obwaltenden Verhältnissen mit annähernder Sicherheit zu erschließen. Das hintere Ende des schlurförmigen Körpers ist bei den einzelnen Exemplaren etwas verschieden gestaltet, vielleicht nur infolge wechselnder Kontraktionszustände. Bald ist es etwas zugespitzt, bald abgerundet, bald auch fast quer abgestutzt. Im ersteren Falle wurzelt das Wimperbüschel an der Spitze, in den beiden letzteren an einem centralen Punkte, genauer gesagt an einem sehr kleinen centralen Felde jener Endfläche (Fig. 13 p, q), in welchem die Fußpunkte der Cilien dicht beisammen liegen. Und bis zu eben diesem Punkte reicht von innen her der Centraffaden. Man erhält so unabweisbar den Eindruck, daß das Wimperbüschel eine direkte Fortsetzung des Achsenstrangs, sein aufgefasertes Ende ist, was ja auch schon aus der oben gegebenen Entwicklungs geschichte hervorging. Ich will aber nicht unerwähnt lassen, daß ganz ausnahmsweise auch Exemplare sich finden, in denen der Achsenstrang nicht ganz bis zur Wurzel des Cilienbüschels heranreicht, ein wenig vor letzterer aufhörend und eine helle Lücke übrig lassend. Sowohl der letztere Umstand wie die Seltenheit des Vorkommnisses gestatten m. E. keinen Zweifel darüber, daß nur eine durch die Austrocknung oder das Erhär tungsmittel verschuldete Zerreißung die Ursache der abnormen Erscheinung ist. — Die Anzahl der Cilien ist ungefähr zwölf; vielleicht sind

aber durch lange Einwirkung des Alkohols eine Differenzierung zu bewirken, so gelang auch dies niemals. Wohl wird langsam, d. h. im Verlaufe von Tagen und Wochen die blaue Färbung merklich blasser und geht schließlich in ein mattes Grau über; aber dieses herrscht gleichmäßig über die ganze Länge des Spermiums einschließlich des Köpfcchens, auch des vordersten Endes des letzteren. Die rote Grundfärbung kommt nicht wieder zum Vorschein 1). Dabei ist es lehrreich, zum Vergleiche die nebenbei im Präparate vorhandenen, runden Samenzellen ins Auge zu fassen. An diesen zeigt nach der prolongierten Extraktion durch Alkohol der Zellenleib dieselbe mattgraue Färbung, wie die wurmförmigen Spermien; an den Kernen hingegen sind die Karyosomen schön karmoisinrot gefärbt, was nicht verwundern wird, da ja das Karmin eine sogenannte Kernfarbe ist. Die wurmförmigen Spermien bestehen aber, wie sich hier wieder zeigt, ganz und gar aus Cytoplasma, von dem der Achsenstrang auch seiner Entstehung nach nur eine verdichtete Partie ist.

Wenn also das sogenannte Köpfcchen der wurmförnigen Spermien, dieses kurze vorderste Stückchen derselben, das übrigens schmaler ist als der übrige schnurförmige Körper, in den es ohne Grenzfläche übergeht, überhaupt als etwas Besonderes betrachtet werden soll, dann würde es nur dem Mittelstücke anderer Samenfäd en vergleichbar sein. Die wurmförnigen Elemente des Sperma sind also Samenfäden ohne Kopf. Eines richtigen Kopfteils können sie aber auch entbehren, da sie keine befruchtende Wirkung auf ein Ei auszuüben haben. Wenn ich zur Erleichterung der Beschreibung das kleine keulenförmige Vorderende des wurmförnigen Spermiums oben einige Male als „Köpfcchen“ angeführt habe und dies auch im Folgenden thun werde, so weiß der Leser jetzt, daß diese Bezeichnung sich nur auf die Form, hingegen nicht auf eine Homologie beziehen soll.

VI. Syntaxis der zweierlei Spermien und weitere Ausbildung der haarförmigen.

(Fig. 14 a—d und Fig. 12 n—s).

Oben, S. 503, habe ich schon kund gethan, daß die haarförmigen Spermien über das in Fig. 12 n abgebildete Entwickelungs-

1) Wie sich bei diesem kombinierten Färungsverfahren die haarförmigen Spermien und die Samenfäden anderer Tiere verhalten, werde ich weiter unten mitteilen.
Leopold Auerbach,
relativen Kürze nur einen Bruchteil der Länge des Bündels in Anspruch; und es würden selbst in einer und derselben Längenfuge mehrere jener kurzen Samenfäden hintereinander Platz finden. Sie sind deshalb auch thatsächlich anfangs und lange Zeit hindurch nicht in einem Querniveau nebeneinander gereiht, sondern über die ganze Länge und Breite des Bündels unregelmäßig zerstreut und nach allen Dimensionen durch Zwischenräume von einander getrennt, die von den Körpern der wurmförmigen Elemente ausgefüllt werden. Zuweilen zeigt sich wohl ein gewisser Grad von Regelmaßigkeit in der Verteilung; häufiger jedoch ist diese ungleich, und die haarförmigen Elemente können selbst in einem großen Teile des Bündels sparsam gesät, dafür in einem anderen Bezirke zusammengehäuft, nämlich einander sehr genähert sein. Niemals aber berühren sich bei dieser Anordnung zwei haarförmige Spermien gegenseitig, sind vielmehr immer nach allen Seiten hindurch mindestens ein wurmförmiges voneinander getrennt. Ja es scheint, daß fast immer zwei oder mehrere solche dazwischen liegen, so daß jedes haarförmige Individuum für sich von einer Anzahl wurmförmiger eingeschlossen ist. Natürlich ist unter diesen Umständen in jeder Querzone des Gemengebündels die Zahl der haarförmigen Elemente viel geringer als die der wurmförmigen; doch wird dies großenteils dadurch wieder ausgeglichen, daß eine Menge anderer Individuen der ersteren Form auf zahlreiche andere Querniveaus des Bündels verteilt sind (Fig. 14). Im ganzen mögen aber vielleicht die haarförmigen in der Minderzahl sein, ein Verhältnis, das sich übrigens bei verschiedenen Bündeln auch wieder dem Grade nach ungleich gestaltet. — Hinsichtlich der Stellung aber, welche jedes einzelne der haarförmigen Elemente im Bündel einnimmt, ist noch als bemerkenswert folgendes hervorzuheben. Im großen und ganzen sind sie den wurmförmigen gleich gerichtet, d. h. ihr Kopfende sieht ebenfalls nach dem Vorderende des Bündels und nach der Schlauchwandung, ein Verhalten, das ihre Normalstellung genannt sein mag. In manchen Bündeln ist nur diese zu finden. Jedoch kommt es auch nicht ganz selten vor, daß in einem dieser Bündel einige wenige der kleinen Elemente die umgekehrte Stellung eingenommen haben, nämlich mit der Spitze ihres Kopfes dem hinteren Ende des Bündels zugekehrt sind, und ausnahmsweise sogar, daß ein etwas größerer Bruchteil der Gesamtzahl, jedoch, so viel ich gesehen habe, immer weniger als ein Zehntel derselben durch die antinormale Stellung sich auszeichnen.
Man kann alle diese Verhältnisse sehr leicht und bestimmt erkennen, obwohl bei der dichten Fügung der Fäden die feinen Schwänze der haarförmigen Gebilde, weil zwischen den Körpern der wurmförmigen verborgen, nicht zu unterscheiden sind, sondern nur die zugespitzten und infolge der Doppelfärbung sehr scharf hervortretenden Köpfe derselben, welche intensiv blau aus der rottingierten Masse der wurmförmigen hervorspringen (Fig. 14a—d). Wenn jedoch der Akt des Schneidens einmal das Gefüge eines Bündels gelockert und auseinander gezerrt hat, so kann man darin gelegentlich auch ein ganzes haarfähiges Element zu Gesicht bekommen. Aber auch dann fand ich dieses niemals isoliert, sondern immer mit seinem Kopfe mindestens an einem der wurmförmigen Elemente anhaftend.

Mit dieser Vermengung und Zusammenschließung der zweierlei Spermen ist nun aber der Beginn der zweiten Periode der Ausbildung der haarförmigen verknüpft, und zwar regelmäßig verknüpft; ja sie ist obligatorisch an jene Gemeinschaft gebunden, also durch letztere bedingt. Außerdem aber erweist sie sich als eine besondere Periode auch dadurch, daß mit ihrem Beginne die Umgestaltung nicht etwa einfach an das schon Erreichte anknüpfend und dieses benutzend in der bisherigen Rich
tung weitergeht, vielmehr zuerst in gewissem Grade rückgängig wird, um einen neuen Weg zur Gewinnung der definitiven Form einzuschlagen.

Und zwar scheint sie unter den neuen Verhältnissen mit raschestem Anlauf in Gang zu kommen. Immer findet sich nämlich jetzt eine gegen früher (Fig. 12m) veränderte Form des Kopfes, mindestens die bald als erste der zweiten Periode zu be
schreibende, oder noch weiter vorgeschrittene. Ferner ist es eine auffallende und wichtige Thatsache, daß meistens die vielen, in einem und demselben Gemengebündel verstreuten haarförmigen Elemente sich sämtlich genau auf der gleichen Stufe der fortschreitenden Ausbil
dung befinden, während in anderen Bündeln wieder andere, und so bei Vergleichung vieler Bündel sämtliche Stufen der Umgestaltung bis beinahe zur definitiven Form vertreten sind. Wenn ich eben die Thatsache des gleichmäßigen Entwickelungsfortschrittes in je einem Bündel durch das Wörtchen „meistens“ etwas eingeschränkt habe,
Spermatogenese von Paludina vivipara. — Abschn. VI.

so bezieht sich dies auf gewisse seltene Ausnahmefälle von bestimmtem Charakter, von denen ich später noch sprechen werde. Im allgemeinen aber ist die Übereinstimmung der Formen in je einem Bündel ebenso frappant, wie andererseits die Verschiedenheit, welche in diesem Punkte selbst zwischen mehreren in denselben Hodenschlauche nahe nebeneinander befindlichen Bündeln obwaltet kann.

Bevor ich nun zur Beschreibung des Umwandlungsvorganges selbst übergehe, muß ich vorher noch einige Worte der Frage widmen, auf welche Weise wohl die beschriebenen Gemengebündel zustande kommen mögen. Hierfür sehe ich nun keine andere Möglichkeit ab, als daß die spontane Beweglichkeit der beiderlei Spermien, ihre Fähigkeit zu aktiver Lokomotion das Resultat herbeiführt. Die Beobachtung frischer Zupfpräparate zeigt gelegentlich, daß schon die auf der Stufe der Fig. 12 m befindlichen Individuen sich bewegen. Diese dürften also, während die wurmförmigen Elemente sich parallel aneinander legen, zwischen diese hineinschlüpfen und so in den Fugen des Bündels sich einbetten. Ein solches Benehmen fällt in das Gebiet des Cytotropismus, um diesen neuerdings von Roux (22 b u. c) aufgestellten und durch neue Beobachtungen begründeten Begriff in Anwendung zu bringen. Freilich sollte man sich vergegenwärtigen, daß alle sogenannten „Tropismen“ nur im allgemeinen die Tendenz zu einem bestimmten Resultate bezeichnen, ohne über die wirkenden Ursachen, über die Hilfsmittel und die Vorgänge, welche zum Ziele führen, etwas auszusagen. Ich bin aber, wie ich nicht verhehlen will, schon lange der Ansicht, daß bei so manchen „Tropismen“ oder durch ein mit „Taxis“ endigendes Wort benannten Vorgängen etwas Psychisches im Spiele ist, daß die betreffenden Wesen, seien es nun einzellige oder vielzellige Geschöpfe oder zellige Elemente eines höheren Organismus, Empfindung besitzen, auf variierende Empfindungen durch wechselnde Bewegungen reagieren, resp. ihre Bewegungen nach jenen einrichten und kraft eines ererbten Triebes die ihrer Empfindung oder ihrer Funktion günstigen Orte aufsuchen. Besonders dürfte für die mit aktiver Lokomotion begabten Samenfäden, also auch für die uns jetzt beschäftigenden keine andere Vorstellung näher liegen. Jedenfalls kann die hier beschriebene Aggregation nur durch eine „Selbstordnung“ erzielt werden. Und diese schafft erst die notwendigen Bedingungen für die Weiterentwicklung der haarförmigen Elemente.
Letztere besteht nun vorzugsweise in einer Reihe von Umgestaltungen des Kopfs. Eine gewisse gleichzeitig weitergehende Streckung des Schwanzes entzieht sich in dieser Periode der Beobachtung und giebt sich erst später kund. Selbstverständlich ist der jetzt zu beschreibende Entwicklungsgang aus Kombination der Formen erschlossen worden, die sich bei Vergleichung zahlreicher Gemengebündel darbieten. In den Abbildungen, Fig. 12 u. 14, habe ich bei weitem nicht alle von mir beobachteten Abstufungen wiedergegeben, sondern nur einige, die indes genügen dürften.

Zuerst ereignet sich nun unter den neuen Verhältnissen etwas ganz Unerwartetes. Der früher schon einmal gestreckte und zylindrisch gewordene Kopf des haarförmigen Spermiums zieht sich wieder zu einer Kugel zusammen. Trotz dieser wieder kugligen Gestalt des Kerns bietet aber das Ganze, falls der Zufall bei der Präparation es aus seiner Lage heraus genügend isoliert hat, einen völlig anderen Anblick dar als der frühere, ebenfalls durch kugeligen Kern charakterisierte Zustand von Fig. 12 i. Denn die Zellmembran liegt jetzt dem Kerne dicht an, vorin in ein kleines, spitziges, auch rot tingiertes Stiften, das Spitzenstück übergehend; und der früher in der Zellhöhle gelegene, vierteilige Nebenkern ist ja zum Achsenfaden des vorderen Abschnitts des Schwanzes geworden.

Darauf aber (Fig. 14 a und 12 n) streckt der kugelige Kern selbst vorn ein Spitzchen vor, welches das rote Ansatzstück vor sich her schiebt. Weiterhin wächst jene Kernspitze auf Kosten der Kugel immer mehr in die Länge, an der Basis breiter werdend (Fig. 14 b und 12 o). So ähnelt das Ganze zuerst etwa einem Polsternagel, dann einer Stecknadel mit um so kleinerem Nadelkopfe, je länger der spitzige Teil ausgezogen ist. Schließlich wird auch der Rest der Kugel verbraucht. Danach würde jetzt der Kopf des Spermiums die Gestalt eines Pfriemens haben, wenn er inzwischen gerade gestreckt geblieben wäre. Dem ist jedoch nicht so. Schon während der schlanke Abschnitt hinter ihm noch in eine kugelige Anschwellung übergeht, finden sich an seinem vordersten Teile flache wellige Biegungen ein, erst eine nächst der Spitze, dann dahinter eine zweite, dritte u. s. w. Die jedesmal hinterste Biegung ist aber immer längere Zeit hindurch no durch ein gerades Stück mit der an den Schwanz grenzenden kugeligen Anschwellung verbunden (Fig. 14 c und 12 p, q, r). Erst in dem Maße, als das gerade Stück sich nach hinten ver-
Spermatogenese von Paludina vivipara. — Abschn. VI. 537

längert, wird es vorn in die wellige Gestaltung einbezogen, indem diese ebenmäßig rückwärts sich ausdehnt. Die einmal entstandenen, ursprünglich ganz seichten Einbiegungen werden aber allmählich merklich tiefer, und zugleich wird es immer deutlicher, daß sie nicht in einer Ebene verlaufen, sondern sich korkzieherartig um eine ideale Achse herumwinden. Die spiralige Umgestaltung beginnt also an der Spitze des Kopfes und schreitet von hier aus nach hinten fort. Wenn zuletzt auch der hinterste, dickste Teil des Pfiemens die spiralige Umbildung durchgemacht hat, so sind damit reichlich sieben Windungen hergestellt (Fig. 14 d und 12 s). Und damit ist im wesentlichen die charakteristische Form des Kopfes unserer Spermien erreicht, abgesehen von der Anzahl der Spiralwindungen, die später in noch anzugebender Weise auf sechs reduziert wird.

In dieser Gestalt geben nach einiger Zeit auf bald zu schildernde Art die haarförmigen Spermien ihre Association mit den wurmförmigen auf und sind dann natürlich frei, resp. unter anderen Verhältnissen im Hodenschlauch anzutreffen. Hingegen habe ich niemals eine der der Serie n—s der Fig. 12 angehörigen Vorstufen außerhalb der Gemengebündel gesehen. Sie kommen nur in diesen vor. Ihre Entstehung hängt also offenbar von der Aggregation mit den wurmförmigen Elementen ab. Daraus folgt aber, daß die letzteren in ihrem Kontakte mit den ersteren auf diese einen Einfluß ausüben, welcher deren Weiterbildung fördert. Welcher Art diese Einwirkung sein, worin sie bestehen möge, ist ja gänzlich rätselhaft. Ebenso kann ich auch nicht die Frage beantworten, ob zugleich umgekehrt die wurmförmigen Elemente eine Beeinflussung seitens der haarförmigen erfahren mögen, was etwa nach dem Prinzip der Gegenseitigkeit zu vermuten wäre. Es liegt da ein schwieriges, aber ansprechendes Problem vor. In jedem Falle aber waltet in den Gemengebündeln ein physiologisches Verhältnis zwischen den beiden Arten der Spermien ob. Vielleicht könnte man dasselbe eine „Symbiose“ nennen; ich will es jedoch wegen möglicher Einwendungen gegen Anwendung des letzteren Terminus einfach als „Syntaxis“ (Zusammenordnung) bezeichnen.

Auf Grund der eben geschilderten und erwogenen Thatsachen ist aber zugleich die frühere Annahme einer gänzlichen Funktionslosigkeit der wurmförmigen Elemente widerlegt. Wenn sie nach der Begattung im weiblichen Körper keine Thätigkeit weiter auszuüben
haben sollten, so spielen sie doch schon im Hoden eine gewisse Rolle, deren Bedeutung durch die Folgeerscheinungen sprechend illustriert wird.

Nun habe ich aber noch über den weiteren Verlauf der Jugendgeschichte der haarförmigen Spermien zu berichten.

Während der beschriebenen Umbildung war jedes dieser Elemente unverrückt auf seinem einmal eingenommenen Platz geblieben. Bald darauf aber zeigt sich ein neues Phänomen. Um die Zeit, wo die Korkzieherform des Kopfes der haarförmigen ganz hergestellt ist, oder wenig später lockert sich das Bündel der wurmförmigen Elemente, indem diese seitlich etwas auseinanderweichen, entweder in ihrer ganzen Länge, also einander parallel bleibend (Fig. 2 B) oder bei teilweisem Raummangel wenigstens nach vorn hin divergierend (Fig. 2 A). Darauf begeben sich die mit ihrem Spiralkopf ausgestatteten kleinen Samenfäden auf eine Wanderung längs der Fugen zwischen den wurmförmigen Gebilden, und zwar in der Richtung nach dem Vorderende des Bündels, um auf diese Art schließlich vorn aus dem Bündel hinauszuschlüpfen. Der Weg, den zu diesem Zwecke die einzelnen zurückzulegen haben, ist ja sehr ungleich lang, beträgt für die hinten situierten ein Mehrfaches von dem der vorn eingelagerten. Sie müßten demnach ceteris paribus zu sehr verschiedenen Zeitpunkten ins Freie gelangen. Allein es geschieht anders. Jene Differenzen werden merkwürdigerweise durch andere Umstände ausgeglichen, entweder für die ganze Schar oder doch für große Abteilungen derselben.

Sei es nun, daß die weiter hinten gelegenen Individuen etwas früher mit ihrer Ausbildung fertig werden, also die Reise früher antreten können, sei es daß sie auf dieser schneller vorwärtskommen, genug, sie holen ihre Genossen auf der Wanderung ein. Die nächste Folge davon ist Anhäufung aller oder doch sehr vieler haarförmiger Elemente im vordersten Teile des Bündels und bald darauf eine mehr regelmäßige Zusammenordnung der Quere nach. Entweder bildet sich, über die ganze Breite des Bündels ausgehend, eine von den haarförmigen Elementen reichlich besetzte Querschicht, dies jedoch seltener, oder es formieren sich in ähnlicher Weise mehrere getrennte Rotten, die auch staffelförmig etwas gegeneinander verschoben sein können (Fig. 14 d). Der ganze dahinter gelegene, viel größere Abschnitt des Bündels ist jetzt entweder ganz frei von haarförmigen Elementen oder nur noch von einigen wenigen Nachzüglern besetzt, die den Anschluß versäumt haben.

Zu erklären, durch welche Kräfte die Vorwärtsbewegung im Bündel bewirkt werde, hat einige Schwierigkeit. Das Nächstliegende ist ja, die eigene aktive Bewegungsfähigkeit der haarförmigen Elemente heranzuziehen. Allein im freien Zustande wird die Lokomotion derselben durch schlagende Bewegungen des Schwanzes vermittelt, zu denen im Gefüge des Bündels, auch nach dessen Lockerung, nur wenig und ungenügender Spielraum vorhanden ist. Es muß also eine modifizierte Art ihrer spontanen Lokomotion vorausgesetzt werden, oder es könnte auch mithelfen, daß sie durch Bewegungen der sie umgebenden wurmförmigen Elemente vorwärtsgeschoben werden.

Hier ist nun der Ort, um auf den Ausnahmefall zurückzukommen, daß in einem Bündel mehr als eine Ausbildungsstufe der haarförmigen Elemente vertreten ist. Damit hat es folgende Bewandtnis. In einem meiner Präparate ist ein Gemengebündel zu finden, in welchem die spiralköpfig gewordenen Elemente bereits vorn versammelt und gruppenweise nebeneinander gereiht sind, während, von dieser Partie getrennt durch eine von solchen Formen entleerte Mittelzone, hinten eine Gegend des Bündels folgt, in der zerstreut Köpfe von einer viel früheren Form sichtbar sind, der Fig. 12 nahe stehend. Es liegen nun zur Erklärung dieses ungewöhnlichen Vorkommens zwei Möglichkeiten vor. Die eine ist, daß diese Individuen durch irgend eine Ursache in ihrer Weiterentwicklung gehemmt worden sind; jedoch ist dies bei der normalen Ausbildung so vieler anderer Genossen sowohl an sich, wie auch wegen der Gleichmäßigkeit des Zurückbleibens wenig wahrscheinlich. Die andere Eventualität aber, die mir plausibler erscheint, ist ein neuer Nachschub kürzlich aus der ersten Ausbildungsperiode hervorgegangener Individuen. Danach würden in einzelnen Fällen, während die beinahe reifen nach vorn rücken,
neue, soeben mit der ersten Periode ihrer Ausbildung fertige in
die Fugen des hinteren Teils des Bündels hineinschlüpfen. Doch
kann dies nach dem Gesagten nur ein seltenes Ereignis sein.

Nach dieser Einschaltung sind jetzt die in normaler Richtung
auswandernden Elemente wieder ins Auge zu fassen. Wir haben
dieselben verlassen, als sie in dichten Querreihen geordnet waren.
Jetzt rücken nun diese Kompagnien, eine jede im Gleichschritt,
weiter vor, bis die vorderen Spitzen der spiraligen Köpfe zwischen
den Köpfchen der wurmförmigen Elemente angelangt, also auch
der Schlauchwandung ganz nahe gekommen sind. Zuweilen sieht
man die ganze, flache oder stärker gewölbte vordere Endfläche
des Bündels von den blauen Spiralköpfen besetzt, andere Male nur
 einen Teil dieser Endfläche, während eine oder mehrere andere
Gruppen der wandernden Spermien auch schon nahe am Ziele sind.
An diesem angelangt sich vollends aus der Einklemmung auf die
bisherige Weise herauszuarbeiten, würde ihnen wegen Mangels an
Raum zu weiterem Vorrücken nicht gelingen. Dennoch werden sie
ganz befreit, und zwar wohl dadurch, daß um diese Zeit die wurm-
förmigen Elemente beginnen sich nach rückwärts zurückzuziehen und
so die zwischen ihnen befindlichen kleinen Samenfäden von ent-
weichen zu lassen (Fig. 2 A u. B). Thatsächlich ragt ein immer
längeres Stück der blauen Spiralen hervor, dann diese ganz, und
schließlich sind diese Individuen völlig herausgelöst, während die
Schar der wurmförmigen noch einige Zeit in loser Zusammen-
lagerung etwas tiefer im Inneren des Schlauchs zu finden ist.

Die gleichzeitig frei gewordenen haarförmigen Spermien ver-
einigen sich aber sofort wieder unter sich zu neuen Bündeln von
je 10—30 gleich gerichteten Individuen, indem die Köpfe sich seit-
lich genau aneinander legen und namentlich mit ihren an den
Schwanz anstoßenden dickeren Ende fest aneinander haften, wäh-
rend die spitzigen Vorderenden in einem geringen Abstande von-
einander bleiben, immerhin so, daß die Köpfe im ganzen gegen-
einander konvergieren (Fig. 1 Ch). Der Zusammenhalt ist so
innig, daß auch in Dissociationspräparaten solche ganze Bündel
vielfach sich vorfinden. Diese Art der Aggregation entspricht nun
ganz den auch bei so vielen anderen Tieren im Hoden vorfind-
lchen Spermien-Bündeln, über deren wahrscheinliche physiologische
Bedeutung ich mich in meiner Abhandlung über Dytiscus (1 f)
ausgesprochen habe. In unserem jetzigen Falle wird es aber völlig
klar, was sich sonst nicht oft nachweisen läßt, daß diese Bündel
Spermatogenese von Paludina vivipara. — Abschn. VI. 541
durch nachträgliche Zusammenordnung von Individuen entstehen,
die vorher ziemlich weit voneinander entfernt gewesen waren und
sehr leicht aus verschiedenen Spermioblastenhäuschen herstammen
können.

In ihrer natürlichen Lage, wie sie in Schnittpräparaten sich
darstellt, sind auch diese Bündel immer ziemlich senkrecht gegen
die Schlauchwandung gestellt und mit dieser in inniger Berührung.
Außerdem findet man aber auch hier und da an einer Wandstelle
in ähnlicher Position ein vereinzeltes Spermium der gleichen Form
oder einige solche lose nebeneinander (Fig. 2). Vielleicht sind das
Individuen, die vorher verkehrt im Gemengebündel gesteckt
(S. 533 u. 539), dann aus dessen hinterem Ende herausgeschlüpft
waren und wegen ihrer geringen Anzahl und räumlichen Zerstreuung
nicht so leicht Zusammenschluß mit anderen finden konnten. Diese
vereinzelten Exemplare lassen gewisse Feinheiten der Struktur
noch leichter erkennen, als die in einem Bündel dicht zusammen-
gehauften. In beiden Fällen zeigt sich bei stärkster Vergrößerung
und guter Konservierung des Wandungsprotoplasma, daß die
Spitzen der Spermienköpfe in dieses Protoplasma eingesenkt sind,
albeit damit die Befriedigung irgend eines stofflichen Bedürfnisses
bezweckt. Dieses räumliche Verhältnis waltet sogar dann ob, wenn
die Protoplasmalage an ihrer inneren Fläche von Samezzellen be-
legt ist. Der Kopf des Spermiums steckt dann teilweise zwischen
diesen Zellen, nichtsdestoweniger mit seiner Spitze bis nahe an
die Basalmembran der Schlauchwand reichend. Er muß sich also
zwischen die Zellen hineingebohrt haben, um an und in die äußere
Schicht zu gelangen. Auch ein Bündel sieht man nicht selten seit-
lich von Rundzellen umlagert, so daß der Eindruck entsteht, es
habe sich auch unter Verdrängung der Zellen seinen Weg zum
Wandungsprotoplasma gesucht. Ferner aber zeigt sich an den
Spermen dieser Phase auch jetzt noch der gewundene blaue Kopf
oftmals von einer roten Linie umsäumt; d. h. die ihn umhüllende
Zellmembran ist noch erkennbar. Das Gleiche gilt von dem Spitzen-
stück, das selbst, wenn es schon in der Protoplasmaschicht steckt,
von dieser durch seine intensiver rote Farbe abgesticht.

In solcher Stellung und Gruppierung nun verweilen diese bei-
nahe reifen Samenfäden wahrscheinlich recht lange Zeit, nach der
Häufigkeit des Vorkommens dieser Situation zu schließen. End-
llich ziehen sie sich aber doch von der Wandung los, geraten mehr
in das Innere der Schlauchhöhle hinein. Die Bündel fahren hier
auseinander. Infolgedessen sind dann stellenweise im Hoden zahl-
reiche isolierte Exemplare dieser Art in ungeordneter Lage und in wirrem Durcheinander mit wurmförmigen zu finden. Und in dieser Vermengung gelangen sie auch in den Ausführungsgang und zur Ejakulation.

Wenn man nun die haarförmigen Spermien aus den letztewähnten Bündeln unter sich und mit den später wieder isolierten und ganz reifen genauer vergleicht, so ergibt sich, daß in der Zwischenzeit noch merkliche Veränderungen an ihnen vorgehen. Die Kopfspirale wird unter Minderung ihres Steigungswinkels kürzer und breiter; zugleich aber wird die Anzahl ihrer Windungen von $7^{1/2}$ auf 6 reduziert. Also werden nicht nur die Windungen einander genähert, sondern auch die ganze Spirale etwas aufgedrillt. Außerdem aber wird die sie bekleidende, rot tingierbare Membran dünner, schließlich so sehr, daß sie in ihrer dichten Anlagerung an die blauen Kernsubstanz nicht mehr zu unterscheiden ist. Und auch das Spitzenstück schwindet allmählich dahin. An beinahe reifen Exemplaren kann man es öfters noch in verkleinertem Zustande, als ein kurzes rotes Spitzchen sehen. An ganz reifen aber ist bei Paludina jede sichtbare Spur jenes Aufsatzes abhanden gekommen, sehr im Gegensatze zu dem an anderen Gastropoden zu Beobachtenden, z. B. an den reifen Samenfädern von Helix pom., deren blau tingiertem, pflaumenförmigem Kopf vorn ein rotes Stiftchen als Spitzenstück ansitzt. An dieses Schwinden der eben genannten Bestandteile knüpft sich die Frage, was aus ihrer Substanz werden möge. Darüber kann ich nur eine Vermutung äußern. Um die gleiche Zeit verlängert sich der Schwanz bedeutend, ohne dabei im ganzen dünner zu werden. Das ihn zuwachsende Material kann nun sehr wohl von der protoplasmatischen Kopfscheide und dem mit dieser zusammenhängenden Spitzenstück geliefert werden. Deren Substanz dürfte unter molekulären Verschiebungen großenteils in den Schwanz hineinwandern, um hier namentlich dem Wachstum des zweiten, hinteren Schwanzabschnitts zu gute zu kommen, der ja anscheinend von vorn herein (vgl. oben S. 496) aus der protoplasmatischen Grenzmembran herausgewachsen ist und aus dieser schon früher das Material zu seiner Vergrößerung bezogen hat. Die Annahme aber, daß die protoplasmatische Hüllmembran des Kopfs nur äußerst verdünnt, jedoch nicht gänzlich beseitigt wird, stützt sich auf die vorauszusetzende Analogie mit den Samenkörpern höherer Tiere, an denen in neuerer Zeit nach den Ergebnissen einiger vortrefflichen Beobachter und auch nach meinen eigenen,
früher mitgeteilten Befunden (1 e u. 1 f) eine derartige Einschichtung des Kopfs unzweideutig konstatiert werden kann.

Ich bin also nach allen meinen Beobachtungen ganz derjenigen Ansicht, welche zuerst La Valette ausgesprochen hat, daß nämlich überall das reife Spermium nicht nur den Wert einer ganzen Zelle hat, sondern auch an seinem Kopfteile noch von einer peripherischen Schicht der Zellsubstanz eingefaßt ist.

Hiermit wäre das, was ich über das Genetische der haarförmigen Spermen zu sagen hätte, erledigt, wenn ich mich nicht noch mit einer das Spitzstück betreffenden, sehr eigentümlichen Ansicht Platner's auseinandersetzen hätte. Dieser Beobachter hat der vordersten Windung des Spiralkopfes den Wert eines Spitzstückes zugeschrieben und auf diese Auffassung um so mehr Wert gelegt, als er annahm, daß dieses vermeintliche Spitzstück aus der Substanz des Centrosoma gebildet werde, was er durch eine besondere tinktionelle Differenzierung stützen zu können glaubte. Es sei bemerkt, daß Platner angiebt, die Kopfspirale habe wenig mehr als fünf Windungen, wonach also die bei Zahlung von hinten her fünfte Windung diejenige wäre, die hier in Betracht käme. Jene Zahlenangabe ist aber nicht zutreffend; vielmehr sind — abgesehen von dem Plus von 1 1/2 Windungen am unfertigen Gebilde — auch im reifen Zustande, wie schon Brunn richtig angegeben hat, beinahe sechs Windungen vorhanden, von denen allerdings die erste an den Schwanz stoßende steiler und weniger ausladend ist als die übrigen, außerdem auch nach dem Schwanz zu in ein geradliniges Stückchen ausläuft (Fig. 12 z), während andererseits die vorderste aus einem sehr feinen Stück des Fadens besteht, das bei seiner Zartheit und schwachen Färbung leicht übersehen werden kann. Namentlich das allerletzte Ende dieser vordersten Windung bereitet durch seine Feinheit der Wahrnehmung Schwierigkeit. Ich will aber zugeben, daß ihr vielleicht ein Viertel zu einem vollen Umgange fehlt (Fig. 12 z). Natürlich kann nur diese letztere als vorderste Windung diejenige sein, auf welche sich die jetzige Diskussion zu beziehen hat, wie auch nur diese sich wirklich tinktionell einigermaßen von den übrigen unterscheidet. Sie erscheint nämlich am ganz reifen Spermium nach jeder Art von Tinktion viel schwächer gefärbt, als alle hinteren Windungen und nach Anwendung von Methylgrün sogar fast farblos, jedoch auch im letzteren Falle ohne scharfe Abgrenzung gegen den gefärbten Teil. Nach Benutzung von Viktoriablau ist der Abfall der Färbung geringer; sie zeigt sich dann in einem zwar blassen, aber deutlichen Blau. Und ähnlich verhält es sich mit allen den Rotfärbungen, denen überhaupt die wesentliche Substanz des Kopfes zugänglich ist, wie denen durch Karmiu, Eosin, Safranin. Bekanntlich zeigt sich Entsprechendes auch an den Samenfäden anderer Tiere, nämlich — ganz abgesehen von einem etwa besonders vorhandenen Aufsatz, Spitzstücke oder Kopfkappe — an dem eigentlich nukleären Teile des Kopfes nach der Tinktion ein auffallend blasser Farbenton des vordersten Teils. Dieser ist nun in erster Linie und hauptsächlich der Zuschärfung des Kopfes nach
vorn hin zuzuschreiben, also dem Umstande, daß man durch eine sehr dünne gefärbte Schicht hindurchsieht 1). Bei Paludina ist dies auch in hohem Maße der Fall. Gleichwohl scheint außerdem an dieser Stelle noch eine besondere Beschaffenheit der Substanz im Spiele zu sein, infolge einer Veränderung, die während der letzten Ausreifung eintritt. Es sind nämlich zu der Zeit, wo die spiraligen Köpfe aus den Gemengebindeln austreten, und auch noch eine Weile später die vordersten Windungen merklich besser färbbar als am ganz reifen Spermium. Ich denke mir, daß an diesen wie an anderen Samensäden während der Reifung der Endteil der nukleären Kopfmasse eine besonders weitgehende Verdichtung erfährt, gleichsam für leichter Eindringen in ein Ei gestaltet und gerade dadurch in seiner Tingierbarkeit beeinträchtigt werden mag. Es ist klar, daß hochgradige Dichtigkeit, wenn sie eine gewisse Grenze überschreitet, der Durchfärbung hinderlich sein muß durch Verengerung derjenigen Interstitien, in welche sonst die Farbstoffteile eindringen. — Nun beeinflußt sich aber Platten auf ein anderes, von ihm erlangtes tinctionales Ergebnis. Er fand nach der schon oben erwähnten kombinierten Tinktion mit Vorfärbung in Alaukarmin und Nachfärbung in Bleu de Lyon den größten Teil der Spirale rot, hingegen ihre vorderste Windung „schwach blau“ gefärbt. Den letzten Teil dieser Behauptung kann ich nun zwar nicht geradezu bestätigen, indem ich bei wiederholter methodischer 2) Nachprüfung an der letzten Windung keine bestimmmbare Färbung zu erkennen vermochte, will aber zugeben,

2) Bei der zu diesem Verfahren gehörenden Nachfärbung beginnt die blafe Imprägnierung der Spermmkörpfe an deren vorderem Ende und schreitet von hier nach hinten fort, während die Entfärbung in Alkohol den umgekehrten Weg verfolgt. Man kann deshalb bei ungenügendem Zeitaufwande für beide Prozeduren außer der vordersten Windung auch noch die nächste und eventuell die zweitnächste blau, alle hinteren hingegen rot finden. Und Entsprechendes gilt auch mutatis mutandis für die noch leichter zu beobachtenden großen Köpfe der Tritonspermien.
Spermatogenese von Paludina vivipara. — Abschn. VI. 545
däß diese für ein anderes Auge eventuell einen Stich ins Bläuliche zu haben scheinen könnte 1). Wäre dem aber auch so, so würde damit doch ihre Substanz keineswegs als die eines Centrosoma nachgewiesen sein, da sonst nicht das Geringste darüber bekannt ist, daß Bleu de Lyon gerade auf Centrosomen spezifisch tingierend wirke. Überdies zeigt sich, daß bei dem Platten'schen Verfahren auch der Schwanz des Spermiums blau gefärbt wird, und zwar sicherer und intensiver als die vorderste Spiralwindung; man müßte also konsequentenweise schließen, daß auch der ganze Schwanz vom Centrosoma abstamme. Daß eine solche Abstammung nicht einmal für das wirkliche Spitzenstück nachweisbar ist, habe ich oben, S. 493, dargethan. Und daß die vorderste Spiralwindung überhaupt nicht ein umgewandeltes Spitzenstück sein kann, geht, auch wenn man von dem Mangel der Abgrenzung und von der gebogenen Form absieht will, aus der ganzen von mir dargelegten Entwicklung genügend hervor.

Über die Bewegungsart der haarförmigen Spermien sowohl, als der wurmförmigen, sowie auch über einige andere Punkte habe ich mich ausführlicher in meiner ersten bezüglichen Mitteilung (1 h) ausgesprochen, auf welche, als das hier Gebotene ergänzend, hingewiesen sei.

VII. Rückblick.

Betreffs der Entstehung der haarförmigen Spermien hat sich herausgestellt, daß infolge viermal wiederholter mitotischer Teilung der Spermatogenien und ihrer Abkömmlingszellen im ganzen fünf Generationen von Samenzellen auftreten, deren letzte durch die zu den haarförmigen Spermien sich umbildenden Zellen, d. h. nach meiner Benennungsweise durch die

Leopold Auerbach,

Der Nebenkern entsteht nachweislich allmählich durch Verdichtung des Cytoplasma. Er erfährt in der Zeit zwischen dem Schleifen- und dem Spindelstadium eine Teilung in zwei gleiche Portionen, die sich nach zwei gegenüberliegenden Polen der Zelle hinbegeben, von wo aus sie durch Ausstrahlungen ihrer Substanz gemeinsam die Faserspindel formieren. Die Faserspindel besteht also hauptsächlich aus modifizierter Zellsubstanz, wie sie sich ja auch nach Erfüllung ihrer Aufgabe wieder in diffuses, den ganzen Zellraum einnehmendes lockeres Cytoplasma ausbreitet.

Bei der Umbildung des Spermioblasten zu dem haarförmigen Spermium wird zuerst, ganz wie früher, ein Nebenkern gebildet. Dieser liefert nach Verschmelzung mit dem aus dem Kerne ausgetretenen Nucleolus das Material sowohl zum Spitzenstück, als auch zu einem wesentlichen Bestandteile des Schwanzes, nämlich dem in der Entwicklungszeit noch kenntlichen Achsenstrang. Letzteres geschieht so, daß der betreffende abgetrennte Teil des Nebenkerns sich nach vierfacher Einkerbung zu einem Bündel von vier Stäbchen ausstreckt, das,
Leopold Auerbach,

als Cytoplasma kern bezeichnet. Wenn nun die schon früher (1 h) von mir ermittelte und kundgegebene Thatscache, daß die wurmförmigen Spermien gänzlich eines Gehaltes an kyanophiler Substanz entbehren, bisher in genetischem Betracht noch rätselhaft war, um so mehr als nach den früheren Autoren ein Fragment des Kerns bestehen bleiben sollte, so ist diese Sache jetzt völlig aufgeklärt, bis auf den einen Punkt, ob es ein chemischer oder ein mechanischer Vorgang sein mag, durch den jene Substanz nach ihrem molekularen Zerfall schließlich ganz beseitigt wird.

Meine früher ausgesprochene Vermutung aber, daß die wurmförmigen Spermien doch wohl nicht so gänzlich funktionslos sein dürften, ist jetzt bestätigt. Die oben geschilderte Syntaxis der zweierlei Samenelemente ist mit Erscheinungen verkniipft, die den sicheren Schluß begründen, daß die haarförmigen Spermien zu ihrer letzten Ausbildung eines allseitigen und anhaltenden Kontakts mit den wurmförmigen bedürfen, daß letztere in dieser Richtung einen seiner Wirksamkeit nach bestimmten, seinem sonstigen Wesen nach freilich noch rätselhaften Einfluß ausüben. Und das ist wohl keine unwichtige Funktion. Ob aber damit die Leistungsfähigkeit der wurmförmigen Samenelemente erschöpft und ihre Rolle ausgespielt ist, werden erst zukünftige Forschungen zu lehren haben.
VIII. Litteratur.

1) Auerbach, a) Organologische Studien, Heft I u. II, Breslau 1874.
c) Zelle und Zellkern. Beitr. zur Biologie der Pflanzen, herausg. v. F. Cohn, II, 1876, S. 1—21.
e) Über einen sexuellen Gegensatz in der Chromatophilie der Keimsubstanz, ebenda 1891, S. 713—750.
f) Über merkwürdige Vorgänge am Sperma von Dytiscus marg., ebenda 1893, S. 185—203.

8) Flemming, a) Zellsubstanz, Kern- und Zellteilung, Leipzig 1882.
Spermatogenese von Paludina vivipara. — Abschn. VIII. 551

c) Entwicklung der Samenfäden bei Salamandra, ebenda, XVIII, S. 233—250, 1880.
d) Neue Beitr. zur Kenntnis der Zelle, ebenda, XXIX, 1887.

11) F. HERMANN, Beiträge zur Histologie des Hodens. Arch. f. mikr. Anat., Bd. XXXIV.

12) O. HEERTWIG, Die Zelle und die Gewebe. Jena 1893

 b) Desgl., ebenda, X, 1871.
 c) „ , XV, 1878.
 d) Spermatologische Beiträge, ebenda, XXVII, 1886.

 c) Zur Bildung der Geschlechtsprodukte bei den Pulmonaten, ebenda, XXVI, S. 599—621.

19) RABE, Über Zellteilung. Morphologisches Jahrbuch, X.

 c) Über den Teilungsvorgang etc., Arch. f. mikr. Anat., XXI, 1882.
31) Weismann, a) Über die Zahl der Richtungskörper und ihre Bedeutung für die Vererbung. Jena 1887.
 b) Amphimixis. Jena 1891.

IX. Erklärung der Abbildungen.

Tafel XXI.

Fig. 3. Samenmutterkerne in Flächenansicht. a und b: aus Dissociationspräparaten. c und d: aus Schnitten. c: Abschnürung eines Tochterkerns. d: Durch mehrfache Zerschnürung entstandene Kette von Tochterzellen. Vergr. 1000.

Fig. 4. Eine Reihe nebeneinander hervorgesproßter, noch kegelförmiger Spermatogonien. Bei a ein solches zwischen seinen Nachbarn eingeklebt und mit seinem breiten Teile auf der Schlauchwandung fußend. Vergr. ca. 320.

Fig. 7. a: Aggregierte Samenzellen vierter Generation. b: Eine solche während der Aggregation durch Längsteilung in zwei, noch teilweise zusammenhängende Spermioblasten zerfallen. Vergr. ca. 2200.

Fig. 10. Spermatogonien im Stadium der Faserspindel, mit Sublimat fixiert und mit Eisen-Hämatoxylinlack nach M. HEIDENHAIN gefärbt. An den Spitzen der Spindel die Centrosomen sichtbar, bei a einfach, bei b durch Teilung verdoppelt. Vergr. 800.

Fig. 11. Samenzeilen dritter Generation. Bei a acht Paare kleiner Karyosomen. b: Viererstadium (vgl. S. 482). Vergr. 1400.

Tafel XXII.

Fig. 14. Syntaxis der zweiterlei Spermien, während deren die zweite Periode der Ausbildung der haarförmigen abläuft, entsprechend Fig. 12 n—a. In a—c sind einige der Zwischenformen angedeutet. Wegen der dichten Füllung erkennt man nur die durch ihre blaue Färbung abstehenden Köpfe. In d ist das Gefüge gelockert und sind die beinahe reifen haarförmigen Spermien auf der Wanderung nach dem vorderen Ende des Gemengegebündels. Vergr. ca. 500. Ergänzend hierzu ist Fig. 2.

Berichtigungen.

Auf S. 515, Zeile 5 des Textes von unten ist das Wort „ist“ zu streichen.

Auf S. 521, Z. 4 von oben statt „zweite Teilung“ zu setzen: „Zweiteilung“.
Über
 einige Eigenschaften der Röntgen'schen
 X-Strahlen

 (Vorläufige Mittheilung.)

 Von
 Dr. A. Winkelmann und Dr. R. Straubel,
 Professor Privatdocent
 an der Universität Jena.

 Hierzu Tafel XXIII u. XXIV.

 Die im Folgenden beschriebenen Untersuchungen beziehen sich auf verschiedene Eigenschaften der RÖNTGEN'schen Strahlen und behandeln:

 I. Die Brechbarkeit durch Metallprismen von Eisen, Kupfer, Zink, Silber und Blei;
 II. die Reflexion;
 III. die Durchlässigkeit verschiedener Gläser und deren Bestandtheile für die Strahlen;
 IV. die Wirkung der Strahlen auf die empfindliche photographische Schicht der Trockenplatten;
 V. die diffuse Ausbreitung der Strahlen durch verschiedene Medien;
 VI. die Umwandlung der RÖNTGEN'schen Strahlen vermittelt Flusspath; die Ermittelung der Wellenlänge der vom Flusspath ausgesandten Strahlen; die Anwendung des Flusspaths, um die Empfindlichkeit photographischer Platten für RÖNTGEN'sche Strahlen auf mehr als das Hundertfache zu steigern.

I.

1) RÖNTGEN hat bereits die Brechbarkeit der X-Strahlen für eine Reihe von Substanzen untersucht. Versuche mit Wasser und Schwefelkohlenstoff ergaben gar keine Ablenkung; mit einem Hartgummi- und Aluminiumprisma wurden Bilder erhalten, an denen man vielleicht eine Ablenkung erkennen konnte. Doch war die Sache sehr unsicher und der Brechungsexponent der X-Strahlen in den zuletzt genannten Substanzen würde höchstens 1,05 sein. Versuche mit Prismen von dichteren Metallen lieferten RÖNTGEN wegen der geringen Durchlässigkeit und der in Folge dessen geringen Intensität der durchgelassenen Strahlen kein sicheres Resultat.

2) Hier haben wir zunächst angeknüpft. Es wurden 5 Metalle untersucht und zwar in folgender Anordnung. Nahe an einer horizontal gehaltenen HITTORF'schen Röhre 1) wurde eine quadratische Bleiplatte von 20 cm Seite und 1,3 mm Dicke mit einem vertikalen Spalt, der 11 mm hoch und 1,7 mm breit war, vertikal aufgestellt. In einem Abstand von 45 mm stand eine zweite Bleiplatte gleicher Dicke und gleicher Größe wie die erste. Dieselbe hatte einen 26 mm hohen und mehrere mm breiten Spalt, der aber durch zwei Bleistreifen, die genau abgeglichene, ebene Begrenzungsflächen hatten, bis auf eine Breite von 0,26 mm wieder verschlossen wurde. Ferner war der Spalt, dessen Längsrichtung vertikal war, durch zwei horizontale Bleistreifen von 4,5 mm Breite, in drei über einander liegende, genau gleich breite und annähernd gleich hohe Abtheilungen getheilt; diese Bleistreifen waren auf der Seite befestigt, welche der HITTORF'schen Röhre zugekehrt war. Auf der anderen Seite der Platte und zwar auf den vertikalen Bleistreifen wurden drei Metallprismen mit Wachs derart befestigt, daß die Ablenkung durch das obere und untere derjenigen durch das mittlere Prisma entgegen- gesetzt wurde. Die Prismen hatten einen brechenden Winkel von nahezu 30° und wurden so auf dem Spalt befestigt, daß die

1) Die von uns benutzten geraden HITTORF'schen Röhren waren von Herrn Dr. H. Geissler Nachf. Franz Müller in Bonn geliefert. Der Induktionsapparat hatte im Maxim. 50 cm Schlagweite; er wurde bei unseren Versuchen mit 12 Akkumulatoren getrieben; der primäre Strom hatte eine mittlere Stromstärke von 1,5 Amp. — Die Röhren waren so wirksam, daß man einen Platincyanurschirm in dem ganzen Untersuchungsraum, selbst wenn der Schirm 11 m von der Röhre entfernt war, noch aufleuchten sah.
Ueber einige Eigenschaften der Röntgen'schen X-Strahlen.

X-Strahlen möglichst geringe Dicken der Prismen zu durchlaufen hatten. — In einem Abstande von 45 mm von den Prismen wurde eine kleine Cassette mit einer empfindlichen Platte verschlossen aufgestellt.

Die Expositionszeit betrug beim Blei 40 Min., bei den übrigen Metallen 20 Min.

3) Die drei Spaltbilder in jeder Aufnahme sind durch Zwischenräume, welche von den quer gelegten Bleistücken herrühren, von einander getrennt (vgl. Tafel I, wo die Bilder in natürlicher Größe wiedergegeben sind; die Reproduktion ist nur mangelhaft gelungen). Sie zeigen sämtlich das gleiche Verhalten: die drei Bilder liegen nicht genau in einer Linie, sondern das mittlere Bild ist gegenüber der Verbindungslinie des oberen und unteren Bildes seitlich verschoben. Diese Verschiebung beträgt etwa 0,2 mm; ein Unterschied für die verschiedenen Metalle läßt sich nicht mit Sicherheit erkennen. Nimmt man an, daß die genannte Verschiebung durch Brechung herbeigeführt ist, so ergibt sich, daß der Brechungsexponent der Metalle für die X-Strahlen kleiner als 1 ist. Durch eine einfache Rechnung findet man aus den angegebenen Zahlen den Brechungsexponenten

\[n = 1 - 0,0038. \]

4) Um zu untersuchen, ob etwa die Spalttheile selbst nicht genau in einer Linie lagen, wurde eine photographische Aufnahme der Spaltbilder ohne Prismen ausgeführt; diese Aufnahme ließ nicht die geringste Verschiebung des mittleren Bildes gegenüber den beiden anderen erkennen.

5) Berücksichtigt man, daß die Intensität der durchgelassenen Strahlen mit wachsender Dicke der Metallprismen abnimmt, so könnte man versuchen, die geringe Verschiebung der Bilder gegen einander hieraus zu erklären. Es ist indessen unwahrscheinlich, daß diese Erklärung zulässig ist, wenigstens findet sich in dem Aussehen der Spaltbilder keine Unterstützung für diese Ansicht, da eine unsymmetrische Intensitätsverteilung auf den Bildern nicht wahrzunehmen ist.

6) Der angegebene Werth \(n = 1 - 0,0038 \) bezieht sich auf den Brechungsexponenten von Metall gegen Luft. Da über den Brechungsexponenten der Luft gegen den leeren Raum für die RÖNTGEN'schen Strahlen nichts bekannt ist, läßt sich eine Reduktion des angegebenen Werthes auf den leeren Raum nicht vornehmen. Immerhin machen die vorliegenden Versuche, in Verbindung mit den bereits von RÖNTGEN angestellten es wahrscheinlich, daß alle
Körper ohne Ausnahme für die RÖNTGEN'schen Strahlen einen Brechungsexponenten haben, der nur sehr wenig von 1 verschieden ist. Dies deutet darauf hin, daß die RÖNTGEN'schen Strahlen weit im Ultraviolett zu suchen sind, also eine sehr kleine Wellenlänge besitzen. Denn nach der Theorie von HELMHOLTZ 1) convergirt der Brechungsexponent für unendliche kleine Wellenlängen gegen 1.

II.

8) Am stärksten wurde die Reflexion beim Stanniol gefunden; die Dicke der Schicht zeigte sich von Einfluß, denn legt man ein Blatt (0,011 mm dick) und dann 6 aufeinander geschichtete Stanniolblätter neben einander, so sieht man deutlich, daß die 6 Blätter stärker reflektiren, als das einzelne Blatt; eine Vermehrung der 6 Blätter auf 12 oder mehr hatte keinen Einfluß mehr.

Von Interesse ist die Frage, ob die Aufeinanderschichtung der Blätter eine andere Wirkung ergibt, als eine entsprechende Vermehrung der Dicke der reflektirenden Substanz, ob also der Sitz der Reflexion hauptsächlich an den Grenzflächen oder im Innern der Substanzen zu suchen ist. Versuche dieser Art sollen später mitgetheilt werden.

9) Ein Versuch, um bei einer hoch polirten Stahlplatte regelmäßige Reflexion nachzuweisen, hatte keinen Erfolg.

III.

10) Daß verschiedene Gläser sich beim Durchgange der X-Strahlen verschieden verhalten, ist bereits durch RÖNTGEN nachgewiesen; besonders konstatierte er, daß Bleigläser sehr viel weniger durchlassen, als bleifreie Gläser. Um für eine größere Anzahl

Ueber einige Eigenschaften der Röntgen'schen X-Strahlen. 559

Gläser die Durchlässigkeit zu prüfen, wurden 23 Glassorten der Untersuchung unterworfen. Die Glasstückchen hatten sämtlich die gleiche Dicke von 2,9 mm und waren 2 qcm groß. Die photographische Aufnahme (Tafel II) zeigt die große Verschiedenheit der Durchlässigkeit; die Reproduktion gibt nur für die erste Reihe die Unterschiede wieder. Außer dem Bleigehalt ist besonders die Phosphorsäure und der Baryt der Durchlässigkeit schädlich.

11) Um den Einfluß der einzelnen Bestandtheile näher zu prüfen, wurden dieselben für sich untersucht. Es ergab sich, daß am besten durchlässig war:
A. Borsäure, Natriumsalpeter, 97% Soda, Thonerde (Aluminiumoxyd);
weniger durchlässig waren:
B. Kaliumsalpeter, Zinkoxyd, Sand, Pottasche;
am wenigsten durchlässig erwiesen sich:
Der Unterschied der Gruppen A und B ist kleiner, als jener der Gruppen B und C.

IV.

12) Lässt man die Röntgen'schen Strahlen zwei photographische Trockenplatten, die beide so gestellt sind, daß die empfindlichen Schichten den Strahlen zugekehrt sind, nach einander durchsetzen, so zeigt auch die an zweiter Stelle getroffene Platte eine deutliche Wirkung; dieselbe ist allerdings geringer als auf der ersten Platte. Folgender Versuch beweist aber, daß die Abschwächung, welche die zweite Platte erkennen läßt, fast allein durch die Glasmasse der ersten Platte, nicht aber durch die empfindliche Gelatinehaut veranlaßt ist. Es wurde eine photographische Platte in zwei Theile zerschnitten und die eine Hälfte von der empfindlichen Schicht befreit. Die beiden Hälften wurden auf einer zweiten Platte nebeneinander gelegt und die Kombination der Wirkung der Strahlen so ausgesetzt, daß zuerst die beiden Hälften und dann die zweite empfindliche Platte von den Strahlen getroffen wurde. Die letztere ließ nach der Entwicklung keinen Unterschied erkennen. Hieraus geht hervor, daß die empfindliche Schicht einer Trockenplatte nur einen sehr geringen Bruchtheil der Röntgen'schen Strahlen absorbiert, den weitaus größten Theil also durchgehen läßt.

13) Röntgen hat die Frage offen gelassen, ob die chemische Wirkung auf die Silbersalze der photographischen Platte direkt
von den X-Strahlen ausgeübt wird, oder ob eine Fluoreszenzwirkung, sei es der empfindlichen Schicht, sei es des Glases, die Wirkung bedingt. Wir glauben durch folgende Versuche entschieden zu haben, daß die Fluoreszenz keine oder nur eine sehr geringe Rolle bei dem Vorgange spielt. Läßt man die X-Strahlen auf eine photographische Platte wirken, deren empfindliche Schicht von den Strahlen abgewandt ist und die zum Theil von einer Glasplatte berührt wird, so zeigt sich keine Wirkung der berührenden Gläser. Hätte diese Platte fluorescirend auf die empfindliche Schicht eingewirkt, so hätte sie sich abbilden müssen. Der zweite Versuch wurde in gleicher Weise ausgeführt, nur wurde jetzt die empfindliche Schicht der ersten Platte zum Theil von einer empfindlichen Schicht einer zweiten Platte berührt. Auch diese Anordnung zeigte eine ganz gleichmäßige Wirkung der X-Strahlen, woraus folgt, daß auch die zweite empfindliche Gelatineschicht keinen erkennbaren Betrag durch Fluoreszenzwirkung zu der auf der ersten Schicht beobachteten Wirkung beiträgt.

Will man also Fluoreszenz und eine indirekte photochemische Wirkung annehmen, so bleibt jedenfalls nur die Möglichkeit eines Fluoreszenzlichtes, das bereits in einer gegen die Gelatineschicht sehr geringen Schichtdicke von der Gelatine stark absorbirt wird.

V.

14) Bei den Versuchen, welche zur Bestimmung an Brechungsexponenten der X-Strahlen mittels Metallprismen ausgeführt wurden, bildete sich auf der photographischen Platte die Metallklemme ab, mit der die Cassette gehalten wurde. Da die ganze Cassette, die 15 cm hoch und 11 cm breit war, in dem geometrischen Schatten der Bleiplatten lag, war eine direkte Wirkung der X-Strahlen ausgeschlossen. Mehrfache Abänderung der Versuche ergab, daß das Holz des Experiments, auf dem der Apparat aufgebaut war, die Ursache der erwähnten Abbildung war; denn als die Apparate auf einer großen Eisenplatte montirt waren, blieb die Wirkung aus. Auch subjektiv, nämlich vermittels des fluorescirenden Schirmes, war die Wirkung deutlich zu sehen. Aus der That sache, daß eine Verstärkung des Bleischirmes nichts an der Erscheinung änderte, war zu erkennen, daß diese jedenfalls nicht von den durchgelassenen Strahlen herrühren konnte. Diese Beobachtungen waren die Veranlassung zu einer weiteren Untersuchung, welche folgendermaßen ausgeführt wurde.

15) Sammtliche Apparate standen auf einem Eisenplanum von
Ueber einige Eigenschaften der Röntgen'schen X-Strahlen.

40 cm Breite und 60 cm Länge. Die Hittorff'sche Röhre wurde in horizontaler Richtung in einer Entfernung von 11 cm von dem genannten Planum gehalten. Vor der Röhre in der Richtung der Strahlen in einem Abstand von 8 cm stand eine Eisenplatte von 22,5 cm Höhe, 34 cm Breite und 5 cm Dicke. Der Röhre gegenüber auf der anderen Seite der Eisenplatte in einer Entfernung von 7,5 cm wurde ein schwarzer Schirm mit Bariumplatincyanür bestrichen aufgestellt. Dieser Schirm befand sich in einem Kästchen, dessen Seitenwände mit Bleiplatten von 1,3 mm Dicke bedeckt waren; das Kästchen lag vollkommen in dem geometrischen Schatten der Eisenplatte. Stellt man dann eine Holzplatte (54 cm hoch, 70 cm breit, 4,5 cm dick) zwischen den Schirm und die Eisenplatte, so leuchtet der Schirm auf; dasselbe geschieht in noch stärkerem Maße, wenn die Holzplatte zwischen dem Rohre und der Eisenplatte aufgestellt wird. Wird endlich die Holzplatte oberhalb der Eisenplatte vertikal, parallel dieser Platte, gehalten, ohne letztere zu berühren, so leuchtet der Schirm noch heller als in den beiden genannten Versuchen.

16) In ähnlicher Weise wie Holz verhielten sich: Paraffin und Kohle (aus einem Element entnommen), Schellack, Papier (ein Buch), Hartkautschuk, Glas, Stanniol (2 Blätter), Aluminium, verzinktes Eisenblech.

Die Körper sind der Stärke ihrer Wirkung nach geordnet, sodaß Paraffin und Kohle die beste Wirkung besitzen.

17) Die Versuche wurden vielfach abgeändert, immer ergab sich das gleiche Resultat, daß die Wirkung nicht durch eine diffuse Reflexion der von den X-Strahlen getroffenen Theile bedingt wird (denn bei der unter 15 beschriebenen Anordnung können die reflektirten Strahlen den Bariumplatincyanür-Schirm gar nicht treffen), sondern daß die von den Strahlen getroffenen Körper nach allen Seiten (nicht bloß nach außen, sondern auch nach innen) die Strahlen aussenden, also diffus ausbreiten. In VI ist ein Versuch beschrieben, welcher die photographische Wirkung der diffusen Ausbreitung zeigt.

18) Außer den genannten Körpern wurden viele Flüssigkeiten
A. Winkelmann und R. Straubel,

untersucht. Auch hier zeigten sich deutliche Wirkungen, bei denen aber die Möglichkeit einer diffusen Reflexion nicht ausgeschlossen war.

VI.

19) Bei den unter II beschriebenen Reflexionsversuchen wurde auch eine größere Anzahl von Krystallen untersucht. Hierbei zeigte sich, daß der Flußspath eine enorme Wirkung hervorrief; die Stellen der photographischen Schicht, an welchen der Flußspath gelegen hatte, wurden bei der Entwicklung so schwarz, als ob sie direct vom Tageslicht getroff en wären. Um zu erfahren, ob hier ein Zufall vorliege, wurden gleichzeitig mehrere Flußspatkristalle mit der empfindlichen Schicht in Berührung gebracht; aber alle zeigten das gleiche Resultat.

20) Daß diese starke Wirkung des Flußspaths nicht durch Reflexion veranlaßt ist, ergiebt sich unmittelbar daraus, daß durch eine einmalige Reflexion höchstens die doppelte Intensität gegenüber jener ohne Reflexion erreicht wird. In dem vorliegenden Falle war aber die Intensität an den vom Flußspath bedeckten Stellen mindestens 100 Mal so groß, als anderswo.

21) Es muß daher durch den Flußspath eine Umwandlung der Röntgen'schen Strahlen in solche anderer Wellenlänge eintreten, die im Folgenden der Kürze halber als Flußspathstrahlen bezeichnet werden mögen.

23) Wir haben den Brechungsexponenten der Flußspathstrahlen zu bestimmen gesucht. Hierzu wurde ein Flußspatprisma benutzt, nachdem konstatiert war, daß die Strahlen von den Gläsern stärker, als vom Flußspath selbst, absorbiert werden.

Die Anordnung der Versuche war folgende: Die Hittorf'sche
Röhre war horizontal aufgestellt und sandte die RÖNTGEN'schen X-Strahlen auf die Objektivöffnung einer photographischen Camera, deren Objektiv entfernt war. An Stelle des Objektivs wurde (vom Rohr aus gesehen) zuerst ein Blatt schwarzen Cartonpapiers und dann ein Bleispalt eingesetzt. Hinter diesem befand sich eine Flußspathplatte (die auf einer Seite rauh gemacht war, und deren rauhe Seite der HITTOEFF'schen Röhre zugekehrt wurde), welche den Zweck hatte, die den Bleispalt tretenden RÖNTGEN'schen Strahlen in Flußpathstrahlen zu verwandeln. Dann folgte eine große Bleiplatte mit einem zweiten Spalt von 18 mm Höhe und 1,4 mm Breite. Auf der Bleiplatte war ein Flußspaltholzprisma von 19° 48' brechendem Winkel so gesetzt, daß die obere Hälfte des Spaltes frei blieb. Auf der photographischen Platte, die 76,35 mm vom Spalt entfernt stand, erhielt man dann das abgelenkte und das unabgelenkte Spaltbild 1' ; der Abstand dieser Bilder war 13,7 mm. Aus diesen Daten ergibt sich der Brechungsexponent für die Flußpathstrahlen, die durch Umwandlung der RÖNTGEN'schen Strahlen entstehen, wenn man sich mit zwei Decimalen begnügt

\[n = 1,48. \]

Nach der Beobachtung von SARASIN 2) entspricht diesem Brechungsexponenten sehr nahe die Linie Cd 2,5 des Cadmiumspektrums mit der Wellenlänge 219,10. Nimmt man an, was wahrscheinlich ist, daß die von uns untersuchten Flußpathstrahlen Transversalwellen darstellen, so würde ihnen die angegebene Wellenlänge als mittlerer Werth angehören, die Strahlen also weit im Ultravioletten liegen.

1) Bei der Fortführung der Versuche ist zur Erlangung genauerer Resultate beabsichtigt, a) mit drei Flußspaltholzprismen in gleicher Anordnung, wie unter I bei Verwendung der Metallprismen, zu arbeiten, b) einen Spektrographen mit Flußpathlinsen zu verwenden.

2) SARASIN. Vgl. LANDOLT-BÖRNSTEIN, Tabellen, II. Aufl., pg. 386.
25) Legt man auf die empfindliche Schicht einer photographischen Platte ein Flußspathamstück, welches auf der einen Seite polirt, auf der andern raub ist, und läßt die Röntgen’schen Strahlen zuerst durch den Flußpath gehen und erst dann auf die empfindliche Schicht wirken, so ist die Wirkung des Flußpaths dieselbe wie bei der früheren Anordnung unter 22. Es war dies Resultat, nachdem erkannt war, daß die Wirkung nicht durch Reflexion veranlaßt wird, zu erwarten.

26) Durch die Anwendung des Flußpaths läßt sich die Empfindlichkeit der photographischen Platten für die Röntgen’schen Strahlen ganz außerordentlich steigern. Schon in weniger als einer Sekunde erhält man deutliche Wirkungen; es wurden Knochenaufnahmen in wenigen Sekunden ausgeführt.

27) Wie sehr die Empfindlichkeit durch die Anwendung des Flußpaths gesteigert wird, geht aus folgendem Versuch hervor, welcher zugleich die in 17 beschriebene diffuse Ausbreitung der Röntgen’schen Strahlen in festen Körpern beweist. In einem Pappkästchen, das zur Verpackung photographischer Platten gedient hatte, wurde der Boden mit einer Bleiplatte von 1,3 mm Dicke bedeckt; auf der Bleiplatte lag eine photographische Platte mit der Schicht nach oben und auf dieser eine kleinere quadratische Flußpathplatte. Nachdem das Pappkästchen verschlossen war, wurde es den X-Strahlen, welche von unten nach oben wirkten, während 40 Sekunden ausgesetzt. Beim Entwickeln zeigte sich eine deutliche Abbildung der Flußpathplatte in der äußeren Begrenzung, d. h. die Ränder des Bildes waren dunkel, während die Mitte hell blieb. Hieraus geht hervor, daß die Wirkung nicht durch die Strahlen hervorgerufen war, welche senkrecht die untere horizontale Wand des Kästchens getroffen und etwa das Blei durchgesetzt hatten, sondern daß die Schwärzung der Ränder durch Strahlen bedingt war, die die Seitenwände des Pappkästchens erreicht und sich von da diffus nach allen Seiten bis zum Flußpath ausbreiteten; hier wurden sie umgewandelt und wirkten dann auf die den Rändern nächst gelegenen Theile der empfindlichen Schicht. Daß diese Erklärung die richtige ist, ergiebt sich aus dem weiteren Versuche, der zeigte, daß die erwähnte Abbildung ausblieb, wenn nicht bloß die untere Wand des Kästchens, sondern auch die übrigen Wände mit Blei ausgelegt waren.

28) Wenn die angegebene Methode nur auf Flußpath-Platten angewiesen wäre, würde ihrer praktischen Verwendung manche
Ueber einige Eigenschaften der Röntgen'schen X-Strahlen. 565

Schwierigkeit entgegenstehen, besonders wenn es sich um größere abzubildende Gegenstände handelt. Denn große tadellose Flußspathplatten sind kaum zu haben, mangelhafte Platten mit Sprüngen lassen sich aber deshalb nicht gut verwerthen, weil alle Unvollkommenheiten der Platte ebenfalls mit abgebildet werden.

Wir haben deshalb versucht, ob nicht ebensogute Wirkungen, wie mit wasserhellen, klaren, auf der einen Seite rauh gemachten Platten, sich mit Flußspath-Pulvern erreichen lassen. Verreibt man kleine Flußspathstückchen zu möglichst feinem Staub, so ist die Wirkung bedeutend abgeschwächt; wählt man größere Stückchen, so bilden sich die einzelnen Stückchen mehr oder weniger gut ab, sodaß eine so behandelte photographische Platte den Eindruck macht, als ob sie marmorirt wäre. Dagegen haben sich Stückchen etwa von der Größe von 0,3 mm gut bewahrt; wir haben dieselben erhalten, indem wir grobere Flußspathstücke durch eine Mühle gehen ließen und durch Sieben den feineren Staub entfernten. Legt man von diesen kleinen Flußspathkrystallen eine genügende Menge in eine Cassette, darauf eine photographische Platte, sodaß die empfindliche Schicht an dem Flußspath anliegt, so erhält man bei Anwendung der Röntgen'schen Strahlen in wenigen Sekunden die gewünschte Abbildung der Gegenstände, welche auf der Glasplatte, getrennt durch das Cassettenholz oder Papier, liegen. Die dunklen Theile der Platte zeigen zwar auch hier noch eine feinere Marmorirung, die bei Flußspathplatten fehlt, aber für die meisten Zwecke ganz belanglos ist. Wir haben die Absicht, den Versuch zu machen, die kleinen Flußspathkrystalle der photographischen Schicht direkt einzuverleiben.

Jena, Physikalisches Institut, 27. März 1896.
Nachtrag.

Im folgenden erlauben wir uns noch einige weitere Beobachtungen hinzuzufügen:

30) Hierdurch war nahegelegt, auch verschiedene Flußspath-krystalle zu untersuchen. Es wurden uns solche aus 15 verschiedenen Fundorten durch Herrn Prof. Dr. Linck aus dem hiesigen mineralogischen Institut in freundlichster Weise zur Verfügung gestellt. Die Wirkung dieser Flußspathe war eine sehr verschiedene; bei einigen konnte man überhaupt keine Wirkung bei kurzer Expositionsduer wahrnehmen; bei anderen waren schwache Wirkungen zu konstatiren; am stärksten war die Wirkung der Krystalle, welche wir früher zu unseren Versuchen benutzt hatten, und welche aus der Schweiz von der Oltschenalp bei Brienz stammten. Diesen kamen die Flußspathe aus dem Breisgau sehr nahe. Im Folgenden haben wir die Krystalle nach ihrer Wirksamkeit gegenüber den RÖNTGEN’schen X-Strahlen geordnet; gleichzeitig ist die Farbe des Krystalles angegeben. Die Zusammenfassung der Fundorte durch eine Klammer bedeutet, daß die Wirkung der betreffenden Krystalle sich als nahezu gleich erwies.

\[
\begin{array}{ll}
1) & \text{Oltschenalp bei Brienz (farblos, durchsichtig)}, \\
2) & \text{Breisgau}^1) (farblos, durchsichtig), \\
3) & \text{Gotthardt (pfirsichroth),} \\
4) & \text{" (grün)}, \\
\end{array}
\]

1) Eine genauere Ortsangabe war nicht zu ermitteln.
Die Ursache dieser starken Verschiedenheit läßt sich noch nicht angeben. Eine chemische Untersuchung des Krystalls No. 1, welcher, wie erwähnt, eine sehr starke Wirkung gab, wurde auf Veranlassung des Herrn Prof. Dr. Knorr im hiesigen chemischen Laboratorium durch Herrn Dr. Schmidt ausgeführt: es fand sich eine Spur von Eisen und eine bestimmbare Menge von Magnesium.

31) Die Wirkung des Flußspaths hängt indeß nicht allein von dem Krystall selbst resp. seinem Fundort ab, sondern auch von äußeren Umständen. Zunächst ist die Röhre, welche die X-Strahlen liefert, von Bedeutung. Setzt man nämlich Krystalle, welche verschieden wirksam sind, gleichzeitig den X-Strahlen aus, so zeigt sich auf der photographischen Platte, daß das Intensitätsverhältnis für die beiden Krystalle durchaus nicht konstant ist, sondern vielfach durch die Röhre bedingt wird, welche zur Anwendung kam. Hieraus geht hervor, daß verschiedene Röhren auch verschiedene Strahlen aussenden können. Das Intensitätsverhältnis für die verschiedenen Krystalle, welches den Angaben unter 30) zu Grunde gelegt ist, ist deshalb streng genommen nur für die Röhre giltig, welche bei der Beobachtung benutzt wurde. Da ferner die Röhren selbst wiederum keine konstanten Resultate liefern — die Wirkung kann mit wachsender Zeit zu- und abnehmen — so ist die genaue Bestimmung eines Intensitätsverhältnisses, welchem verschiedene Expositionszeiten zu Grunde liegen, außerordentlich erschwert. Dazu kommt noch, daß die photographischen Platten — auch wenn sie gleicher Herkunft sind — gegenüber der Flußspathwirkung ebenfalls große Unterschiede zeigen können; denn wir haben Platten

1) Eine genauere Ortsangabe war nicht zu ermitteln.
gefunden, bei denen die genannte Wirkung auf weniger als $\frac{1}{10}$ der früher ermittelten abgeschwächt war.

Alle diese Erfahrungen ließen die früher unter 20 mitgeteilte Angabe, daß der Flußspatpath die Wirkung der X-Strahlen auf die photographische Schicht auf den 100fachen Betrag zu steigern vermöge, einer Revision bedürftig erscheinen. Hierbei stellte sich heraus, daß die Zahl 100 nicht erreicht wird, sondern durch 30 bis 35 zu ersetzen ist. Dabei bleibt aber, wie wohl kaum besonders hervorzuheben nötig ist, bestehen, daß man mit Hilfe des Flußspaths auch mit relativ schwachen Röhren innerhalb weniger Sekunden Aufnahmen machen kann. Dieselben zeigen aber nicht so scharfe Begrenzungen, wie die Photographien ohne Flußspat und zwar deshalb, weil die von den Strahlen getroffenen Flußspattheilchen nicht bloß nach einer Richtung Strahlen aussenden, sondern nach allen Richtungen.

Der am Schluß unter 28) in Aussicht genommene Versuch, die kleinen Flußspatkrystalle der photographischen Schicht direkt einzuvieben, wurde von Herrn Schüttauf in dankenswerter Weise ausgeführt. Indessen ist bisher noch kein Erfolg erzielt.

Unter 23) ist die Fortführung der Versuche, welche über die Brechbarkeit der von Flußspat ausgesandten Strahlen Aufschluß geben sollen, in Aussicht gestellt. Diese Versuche haben zu folgendem Ergebnis geführt.

a) Es wurden Versuche mit 3 Flußspatprismen von 35° brechendem Winkel ausgeführt und die Anordnung ebenso getroffen, wie unter I bei den Metallprismen angegeben ist. Um uns aber unabhängig von den Abständen zu machen, welche nur schwer mit Genauigkeit zu messen sind, wurden bei ganz unveränderter Aufstellung zwei verschiedene Aufnahmen gemacht: einmal für die Strahlen, welche vom Flußspat ausgesandt werden (vgl. 23), dann für die Strahlen, welche von einer Wasserstoffröhre ausgesandt wurden, von denen die Wellenlängen von H_γ an in Betracht kommen. Für die Flußspatstrahlen fand sich der Abstand der Spaltbilder auf der photographischen Platte gleich 42,0 mm, für die Wasserstoffstrahlen gleich 40,2 mm. Hieraus berechnet sich der mittlere Brechungsexponent der Flußspatstrahlen zu 1,46, während früher nach einem weniger genauen Verfahren 1,48 gefunden wurde. Dem Brechungsexponenten 1,46 entspricht nach den Beobachtungen von Sarasins 1) die Wellenlänge $274 \cdot 10^{-6}$ mm.

1) Landolt-Börnstein, Tabellen, II. Aufl., S. 386.
b) Einen genaueren Aufschluß über die Flußpathstrahlen erhält man durch die Ermittelung des Spektrums. An der Spaltöffnung von 0,35 mm eines Kollimators wurde eine Flußpathplatte befestigt, welche die von der Röntgen'schen Röhre ausgehenden X-Strahlen in Flußpathstrahlen verwandelte. Der Kollimator enthielt eine Quarzlinse von 25 cm Brennweite und 32 mm Öffnung. Die aus dem Kollimator austretenden Strahlen fielen auf ein 60° Cornu'sches Doppelprisma von 35 mm Höhe und 40 mm Seite. Dieses ist aus einem rechts- und einem linksdrehenden 30° Quarzprisma so zusammengesetzt, daß die optischen Achsen auf der Berührungsfläche senkrecht stehen. Die Prisem waren mit Glycerin, das sich durch große Ultraviolettempfindlichkeit auszeichnet, verkittet. Zur Projektion des Spektrums wurde eine Quarzlinse von 30 cm Brennweite und 32 mm Öffnung benutzt. 1) Infolge der bedeutenden Fokusdifferenzen für die verschiedenen Teile des Spektrums darf die photographische Platte nicht senkrecht zu den bildentwerfenden Strahlen stehen, sondern muß gegen diese stark geneigt sein. Die richtige Entfernung und Neigung wurde durch Probieren gefunden.

Direkt unter das Fluoreszenzspektrum des Flußpaths wurden die Spektren von Thallium, Zink und Aluminium photographiert und zu diesem Zwecke über den vertikalen Spalt des Kollimators ein ungefähr 2 mm breiter horizontaler Spalt verschoben; der 10 mm hohe Vertikalspalt erlaubte so 5 Aufnahmen auf einer Platte zu machen. Das Thalliumspektrum wurde durch Verdampfen von Thalliumchlorid im Bunse-Brenner, das Zink- und Aluminiumspektrum durch Überspringen des Induktionsfunks zwischen Elektroden der beiden Stoffe unter Einschaltung einer großen Leydener Flasche erhalten. Die Aufnahme des Flußpathspektrums beanspruchte ungefähr 30, die der Vergleichsspektren 1 bis 2 Minuten. Die photographische Wirkung der Flußpathstrahlen beginnt auf unseren Platten bei $\lambda = 396 \cdot 10^{-6}$ mm, erreicht ein Maximum ungefähr bei $280 \cdot 10^{-6}$ und hört bei $233 \cdot 10^{-6}$ auf; weitere Intensitätsmaxima scheinen nicht vorhanden zu sein, doch ist zu beachten, daß die gewählte Spaltbreite feinere Abstufungen leicht verdecken konnte. Das obige Resultat ist in genügender Übereinstimmung mit dem unter a) gefundenen, wo als mittlere Wellenlänge $274 \cdot 10^{-6}$ mm angegeben ist.

1) Die Quarzlinsen und Quarzprismen wurden uns von Herrn Dr. V. Schumann, dem wir auch an dieser Stelle unseren verbindlichen Dank aussprechen, übereignet.

Ed. XXX. S. F. XXIII.
Um den Einfluß der seltenen Erden auf die X-Strahlen kennen zu lernen, wurden von Herrn Dr. Schott in der hiesigen Glasfabrik eine Reihe neuer Gläser hergestellt; dieselben hatten eine möglichst gleichmäßige Zusammensetzung bis auf die charakteristischen Erden, deren Gehalt zwischen 10 und 5 Proz. lag. Als Beispiel möge die Zusammensetzung des Zirkonglases mitgeteilt werden; es enthielt:

\[14,5 \text{ K}_2\text{O}; 5,3 \text{ Na}_2\text{O}; 2,0 \text{ CaO}; 0,2 \text{ As}_2\text{O}_5; 8,0 \text{ B}_2\text{O}_3; 60,0 \text{ SiO}_2; 10,0 \text{ ZrO}_2.\]

Die Gläser wurden zunächst auf die Frage hin untersucht, ob sie wie der Flußspath die X-Strahlen umzuwandeln imstande sind. Die Strahlen trafen daher zunächst das Glas der photographischen Platte, dann die empfindliche Schicht und zuletzt das zu untersuchende Glas.

Das Glas mit Zirkon zeigte eine deutliche Wirkung, die aber ganz bedeutend schwächer war, als die des Flußspaths; eine geringere Wirkung als das Zirkonglas zeigte ein Glas mit Didym und ein solches mit Erbium; die Gläser mit Beryll, Uran, Cerium, Thorium zeigten gar keine Wirkung.

Ferner wurde die Durchlässigkeit der Gläser geprüft. Es sind hierbei nur jene Gläser vollkommen vergleichbar, deren Zusammensetzung bis auf die seltenen Erden übereinstimmt. Die Gläser sind in der folgenden Tabelle nach der Güte ihrer Durchlässigkeit geordnet; gleichzeitig ist das Atomgewicht der Erden und das spezifische Gewicht der entsprechenden Oxyde angegeben.

<table>
<thead>
<tr>
<th>Atomgewicht der Erden</th>
<th>Spezifisches Gewicht der Oxyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zirkonglas 1</td>
<td>90</td>
</tr>
<tr>
<td>Didymglas 2</td>
<td>142</td>
</tr>
<tr>
<td>Ceriumglas 3</td>
<td>140</td>
</tr>
<tr>
<td>Thoriumglas 4</td>
<td>231</td>
</tr>
</tbody>
</table>

Das Zirkonglas läßt am besten die X-Strahlen durch; das Thoriumglas läßt in der benutzten Dicke von 3,8 mm keine merkbare Menge mehr durch. Man bemerkt, daß die Atomgewichte und die spezifischen Gewichte der Oxyde mit wachsender Un- durchlässigkeit, abgesehen von einer kleinen Differenz, ebenfalls wachsen.

Ueber Taenia (Hymenolepis) nana v. Siebold und murina Duj.

Von

Dr. v. Linstow
in Göttingen.

Mit 8 Figuren im Text.

Bilharz und v. Siebold beschrieben 1852 eine sehr kleine Tanie, die sie in unzähligen Exemplaren im Darm eines Knaben in Ägypten gefunden hatten; diese Beobachtung blieb durch lange Jahre die einzige, bis der Parasit, Taenia nana, neuerdings in das Subgenus Hymenolepis gestellt, von Grassi in Sicilien wieder aufgefunden wurde, wo er seinen neueren Mitteilungen nach sehr häufig ist.

Grassi und Calandruccio erklärten nun Taenia nana des Menschen für identisch mit Taenia murina der Ratten, eine Behauptung, der besonders von Moniez widersprochen wurde; da aber Grassi und Rovelli in ihrem letzten größeren Werk über die Entwicklungsgeschichte der Tänien wiederum die Identität beider Formen behaupten, habe ich den Versuch gemacht, durch ein Studium der Anatomie beider Arten die Frage zu lösen.

Taenia nana.

Die äußere Form von Taenia nana ist von Leuckart 1) und Railliet 2) wiedergegeben; man sieht eine sehr kleine Tanie mit Gliedern, die stets breiter sind als lang, der sogenannte Halsteil

1) 2. Aufl. S. 832, Fig. 340.
2) S. 293, Fig. 190.

37*
ist schmaler als der Skolex, die letzten Glieder verschmälen sich wieder etwas, so daß das Hinterende abgerundet erscheint.

Die Länge wird angegeben von Bilharz und v. Siebold auf 13,5—22,6 mm, von Leuckart auf 15, Stein bestimmt 12—15, Grassi und Calandruccio 8—15, Sonsino 24—25, Blanchard 10—15, selten 20—25 mm als die Länge; meine Exemplare, welche ich der Güte des Herrn Dr. P. Sonsino in Pisa verdanke, waren bis 14 mm lang.

Bilharz und v. Siebold geben an, der Hals sei schmal und lang, hinten nehme der Körper an Breite zu und hier seien die Proglottiden 3—4 mal so breit wie der Skolex; Leuckart giebt die größte Breite auf 0,53 mm an, Stein bestimmt die Breite dicht hinter dem Skolex auf 0,1, hinten auf 0,7 mm; auch Sonsino nennt als größte Breite 0,7 mm; Railliet 0,5—0,7 mm; während ich dicht hinter dem Skolex 0,081 mm und hinten 0,48 mm maß; die Länge der letzten Proglottiden betrug bei meinen Exemplaren 0,088 mm.

Als Breite des Skolex nennen Leuckart 0,33 mm; Stein 0,45 mm; Blanchard 0,25—0,33, nach meinen Messungen beträgt sie 0,23—0,25 mm. Am Scheitel steht ein Rostellum mit einem einfachen Hakenkranz; als Zahl der Haken nennen Leuckart 22—24 oder 24—28, Grassi und Calandruccio 24—28, Moniez 24, Mertens 24—28, Sonsino 24, Blanchard 24—28—30, ich fand 24; ihre Länge bestimmen Moniez mit 0,015—0,018 mm, Mertens mit 0,015—0,016 mm, Leuckart mit 0,018 mm, Blanchard mit 0,015—0,018 mm, ich maß 0,0182 mm. Was ihre Form betrifft, so halte ich weder Leuckart's noch Railliet's Zeichnung für ganz zutreffend; von Leuckart's Abbildungen ist der Wurzelast der einen 1) zu kurz, der anderen 2) zu lang, während der Hebelast Railliet's 3) zu breit ist; meine Zeichnung hält zwischen diesen dreien die Mitte (Fig. III); die Haken sind schön gebogen, Hakenast oder Kralle und Hebelast sind fast gleich lang, der Wurzelast ist dünner als letzterer.

1) 2. Aufl., S. 833, Fig. 341 a.
2) ibid., S. 996, Fig. 409 B.
3) S. 294, Fig. 191.
Die Saugnapfe sind nach Leuckart 0,09—0,10 mm groß, nach Blanchard 0,09—0,105 mm, meinen Messungen nach 0,104 mm. Sehr merkwürdig ist ein Verhalten derselben, auf welches Blanchard und Grassi aufmerksam machen; die Saugnapfe können sich armartig verlängern, einer nach dem anderen, und zwar so, daß sie mit dem Skolex nur durch einen Stiel verbunden sind, letzterer aber kann abreifen und so können alle vier Saugnapfe verloren gehen; man findet dann am Skolex hinter dem das Rostellum enthaltenden Scheitelteil vier flache Gruben; in diesem Zustande hat Blanchard \(^1\) den Skolex abgebildet.

Die Rindenschicht (Fig. I a), welche aus Cuticula, Hautmuskeln und den sogenannten Subcuticularzellen besteht, ist mächtig entwickelt, sie macht \(\frac{1}{7}\) des ganzen Dickendurchmessers aus, ein Umstand, der bei der Vergleichung von Taenia nana und murina von Bedeutung ist.

Von dem hinter dem Rostellum liegenden Gehirnganglion zieht jederseits ein Längsnerv durch die Gliederkette, der wie gewöhnlich nach außen von den Gefäßen liegt (Fig. I n). Die Gefäße sind schon von Grassi gesehen, der angiebt, 2 dickere und 2 dünner beobachtet zu haben; dasselbe habe auch ich gefunden; die dickeren liegen an der Ventral-, die dünneren an der Dorsalseite (Fig. I g).

Den Bau der Geschlechtsorgane hat Leuckart \(^2\) beschrieben und in einem schematischen Frontalbilde einer Proglottide abgebildet; nach ihm tritt die Geschlechtsreife in einer aus 190—195 Gliedern bestehenden Kette in der 90.—106. Proglottide auf; dementsprechend fand ich an einem 14 mm langen Exemplar 7,8 mm vom Skolex entfernt die Geschlechtsreife eingetreten; die funktionierenden Geschlechtsorgane verschwinden aber sehr bald wieder, bald sind die Glieder nur noch von reifen Eiern und einigen später zu erwähnenden übrig gebliebenen Organen erfüllt, wodurch das Studium der Geschlechtsorgane sehr erschwert wird. Ich habe dieselben in Querschnitten geprüft und die zu einer Proglottide gehörenden Bilder in ein Bild vereinigt (Fig. I), um die Lage der Organe zu einander zu zeigen.

Durch Zschokke kennen wir die Anatomic von zwei Hymenolepis-Arten, diminuta und relicta, welche mit der unserer beiden Arten große Ähnlichkeit haben. Drei große Hoden liegen mehr

1) Les Téniadés du genre Hymenolepis, p. 10, Fig. 3.
2) 2. Aufl. S. 996, Fig. 408 A.
der Dorsalseite und dem Hinterende der Proglottide genähert; an der Ventralseite in der Mitte findet sich der Dotterstock, dorsal davon die Schalendrüse, seitlich links und rechts flügelförmig der Keimstock, dorsal seitlich der Cirrusbeutel, mehr nach innen und etwas mehr ventral das Receptaculum seminis, so findet man die Organe bei allen vier genannten Arten (Fig. I u. 1).

Die Geschlechtsöffnungen liegen alle einseitig links, etwas vor der Mitte des Seitenrandes.

Die drei Hoden sind etwa gleich groß, sie liegen eng nebeneinander (Fig. I h), zwei liegen dicht an der Rindenschicht an der Dorsalfläche, der zumeist rechts gelegene mehr nach der Mitte zu.

Der Cirrusbeutel (Fig. I e) ist kolbenförmig und nimmt etwa ein Drittel des Querdurchmessers ein.

Der Cirrus wird selten vorgestreckt gefunden; in diesem Falle ist er 0,026 mm lang und 0,0029 mm breit.

Dicht ventralwärts von ihm mündet die Vagina, welche nach der Mittellinie zu einem kolbenförmigen Receptaculum seminis anschwillt (Fig. I r), dessen Ende die Mittellinie berührt.

Der Keimstock ist gelappt und besteht aus zwei Flügeln, daher Grassi und Calandruccio zwei Keimstücke, einen linken und einen rechten annehmen (Fig. I k); die Zellen sind 0,0104 mm groß und achronatisch, die großen, schwach färbbaren Kerne messen 0,0065 mm, die stark färbbaren Kernkörperchen 0,0026 mm.

Der Dotterstock bildet ein rundliches, länglich-rundes Organ (Fig. I d); die 0,0023 mm großen Zellen färben sich schwach, die Kerne messen 0,0008 mm.

Die Schalendrüse (Fig. I s) besteht aus achronatischen Zellen, deren scharf markierte Kerne sich gut färben.

In den Gliedern, welche reife Eier enthalten, erkennt man noch den Cirrusbeutel (Fig. II c) und das Receptaculum (Fig. II r); letzteres liegt links von der Grenze zwischen erstem und zweitem Drittel des Querdurchmessers.

Die Eier verdienen mit besonderer Sorgfalt studiert zu werden, denn die Beschreibung der einzelnen Autoren differiert in verschiedenen Punkten, und gerade sie sind besonders wichtig zur Entscheidung der Frage, ob T. nana und murina identisch sind, wie auch durch ihr Auftreten in den Fäces schon mehrere Male die Anwesenheit von T. nana im lebenden Menschen konstatiert ist.

Bilharz und v. Siebold nennen die Eier kugelrund und

1) Zschokke, Tab. I—II, Fig. 21—30.
Taenia (Hymenolepis) nana v. Siebold und murina DuJ.

0,026 mm groß; Leuckart beschreibt sie ebenfalls kugelrund und 0,04—0,058 mm groß, die Oncosphäre von 2 dünnten Hüllen umgeben und 0,023—0,044 mm groß; Stein nennt Eier und Oncosphäre kugelförmig und die ersteren zweischalig; Grassi und CaLandruccio geben an, sie seien zweiseischalig und oval, 0,043—0,053 mm lang und 0,035—0,040 mm breit, und die innere Eischale sei mit zwei langen, gewundenen, an den Polen befestigten Fäden versehen; Moniez findet die Oncosphäre kugelig und 0,018 mm groß; nach Mertens sind die Eier oval und 0,047—0,048 mm lang und 0,038—0,039 mm breit; Blanchard findet 3 Eihüllen, die äußere ist 0,030—0,037 mm, ausnahmsweise 0,050—0,055 mm lang, die mittlere 0,024—0,027 und 0,020 mm, die innere 0,016—0,019 mm; an jedem Pol befindet sich an der inneren Hülle ein kaum bemerkbares kleines Knötchen.

Es ist nicht nötig, darauf aufmerksam zu machen, wie sehr diese Angaben verschieden sind.

Nach meinen Beobachtungen sind die Eier in der Regel kugelrund, seltener findet man auch ovale; die zeigen 2 Hüllen, von denen die äußere zart und etwas unregelmäßig begrenzt ist, die innere ist regelmäßig und scharf doppelt konturiert; sie zeigt an 2 einander gegenüberstehenden Punkten je eine wenig deutliche Anflagerung, von der ein fadenförmiger Anhang ausgeht, der 3—4 mal so lang wie das Ei ist; diese beiden Fäden liegen aufgerollt zwischen den beiden Eihüllen und können eine mittlere, dritte vortäuschen (Fig. IV); die äußere Hülle mißt 0,039, die innere 0,028 mm; die Haken der Oncosphäre messen 0,0092 mm, bei einem besonders langgestreckten Ei war die äußere Hülle 0,043 mm lang und 0,031 mm breit, die innere 0,029 und 0,024 mm.

Über die Entwicklung ist nichts bekannt; bei der großen Verwandtschaft mit T. murina muß man die Möglichkeit einer direkten Entwicklung denken; Grassi gab Eier enthaltende Proglottiden an einen Knaben und konstatierte nachher die Tänien im Darm, bemerkt aber dazu, daß das Experiment wenig beweisend sei, da die Tänien auf Sicilien sehr häufig sei. Taenia nana kommt besonders bei Kindern vor und mitunter in außerordentlicher Menge, Grassi schätzt in einem Falle die Anzahl auf 4000—5000. Dann treten mehr oder weniger schwere Störungen auf: heftige Leibscherzen, Durchfälle, Abmagerung, mitunter Fieber und Störungen des Nervensystems, Coma, Kopf-

1) 2. Aufl. S. 836, Fig. 343.

Das Vaterland von Taenia nana ist Italien, besonders Sicilien (Grassi, Calandruccio, Rovelli, Airoldi, Visconti, Segré, Perroncito, Senna, Sonsino, Orsi, Comini), Serbien (Blanchard), Rußland (Zograf), Deutschland - Köln (Mertens), England (Ransom), Egypten (Bilharz, Innes), Nordamerika (Spooner), Sowjetunion (Wernicke, Blanchard, Lutz), Asien-Siam (Rasch). Die Beobachtungen in Serbien, Rußland, Deutschland, England, Asien und Amerika sind ganz vereinzelt dastehende; vielleicht ist die Tanie wegen ihrer Kleinheit oft der Beobachtung entgangen.

Taenia murina.

Die Länge von Taenia murina giebt Dujardin auf 25 mm an, Stossich auf 45 mm, Grassi auf 33—35—40 mm, Blanchard auf 25—40 mm, meine Exemplare erreichten eine Länge von 23 mm, waren aber unvollständig.

Schon in der Größe liegt ein merklicher Unterschied zwischen T. nana und murina, und wenn Grassi meint, erstere sei eine kleinere Varietät der letzteren, so ist dagegen anzuführen, daß es wohl möglich wäre, daß eine Tanie, welche den kleinen Darm der Ratte bewohnt, in dem großen des Menschen sich zu einer größeren Form entwickeln könnte, nicht aber umgekehrt; Mégnin 1) sagt: „C'est une remarque, que nous avons souvent faite, que, quand on rencontre la même espèce d'helminthes chez des hôtes d'espèces différentes, mais toujours voisines, les helminthes sont plus grands chez les hôtes des espèces les plus grandes."

Die Proglottiden sind nach Dujardin vorn 0,15, weiter hinten 0,55, dann 0,9 mm breit; ich fand die Breite vorn dicht hinter dem Skolex 0,32 mm, die geschlechtsreifen Glieder sind 0,35 mm breit, 0,097 mm dick und 0,044 mm lang; die letzten Glieder sind 0,82 mm breit bei einer Länge von 0,13 mm. Den Skolex nennt Dujardin 0,32 mm breit, Stossich sagt, er sei nicht breiter als der folgende Körper; auch ich fand den Skolex 0,32 mm breit,

1) Bullet. soc. zoolog. France, T. XX, 1895, p. 175.
genau so breit wie den sogenannten Halsteil, während bei T. nana der Hals viel schmaler als der Skolex ist.

Dujardin 1) findet 20—24 Haken von 0,015—0,017 mm Länge, Krabbe 2) ebenfalls 20—24, die 0,010—0,013 mm lang sind, ich beobachtete 23—24 Haken von 0,0169 mm Länge; die Form ähnelt sehr derjenigen der Haken von T. nana; verhältnismäßig sind Haken- und Hebelast etwas kürzer (Fig. 3).

Die Saugnapfe nennt Dujardin 0,08 mm groß, ich fand sie 0,079 mm groß, so daß der Durchmesser der Saugnapfe sich zu dem des Skolex verhält wie 1 : 4, bei T. nana aber wie 1 : 2,3.

Auf Querschnitten erkennt man, daß die Dicke der geschlechtsreifen Glieder sich verhält zur Breite wie 5 : 18, bei T. nana, die verhältnismäßig viel dicker ist, wie 3 : 7; die Rindenschicht (Fig. 1 a) ist schmal; sie macht 1/30 des Dickendurchmessers aus, bei T. nana 1/7.

Die Nerven (Fig. 1 n) und die Gefäße (Fig. 1 g) bieten nichts Bemerkenswertes; auch hier verläuft, wie bei T. nana, das größere Gefäß an der Ventralseite.

Der Kontur der Proglottidenkette ist sägeformig, die Geschlechtsöffnungen liegen einseitig in der Mitte des Gliedrandes.

Man findet 3 sehr große Hoden (Fig. 1 h), der mittlere ist stets viel kleiner als die seitlichen, welche fast die ganze Dicke der Markschicht von der Rücken- nach der Bauchseite hin einnehmen; auf einem Querschnitt verhält sich der Gesamtorgan, welchen die Hoden einnehmen, zu dem der Proglottide wie 1 : 3, bei T. nana wie 1 : 8; bei T. murina ist ein Hode sehr viel größer, bei T. nana etwa eben so groß wie der Dotterstock.

Der Cirrusbeutel (Fig. 1 e) ist kolbenförmig, er nimmt 1/4 des Querdurchmessers ein; der mitunter frei heraustretende Cirrus ist sehr klein, 0,01 mm lang und 0,0028 mm breit.

Die Vagina liegt auch hier an der Ventralseite des Cirrusbeutels und schwillt nach innen zu einem birnförmigen Receptaculum seminis an (Fig. 1 r); es reicht auf Querschnitten bis zu 2/5 der Transversallinie, bei T. nana bis zur Hälfte.

Der Dotterstock liegt in der Mittellinie, der Ventralfäche genähert (Fig. 1 d); die schwach färbbaren Zellen sind 0,0039 mm, ihr Kern ist 0,0021 mm groß; an ihn legt sich rechts und links der zweiflügelige Keimstock (Fig. 1 k); seine achromatischen

1) Tab. XII, Fig. A 3.
2) Tab. III, Fig. 56—59.
Zellen messen 0,013 mm; der blasige, sich schwach färbende Kern mißt 0,0028 mm, dorsalwärts vom Dotterstock liegt die kleine Schalendrüse (Fig. 1 s) mit achromatischen Zellen, der kleine Kern aber färbt sich stark. In den Eier enthaltenden Gliedern bemerkt man noch den Cirrusbeutel (Fig. 2 c) und das Receptaculum seminis (Fig. 2 r); letzteres, das bei T. nana in den Eier enthaltenden Gliedern an der Grenze des linken Drittels der Querlinie liegt, findet sich bei T. murina etwa in deren Mitte.

Die Eier beschreibt Dujardin 1) als elliptisch, mit 3 Hüllen, die äußere ist 0,065 mm, die mittlere 0,05 mm lang; die innere aber ist citronenförmig, die Oncosphäre ist 0,029—0,030 mm groß, die Haken messen 0,015—0,016 mm. Krabbe 2) hat die Eier nicht beschrieben, aber abgebildet; man erkennt die ovale Form und 3 Hüllen; Stossich sagt, die Eier zeigten 3 Hüllen und die innerste sei an jedem Pol mit einem Knöpfchen versehen; ebenso lautet die Beschreibung Grassi's; Montiez nennt die Oncosphäre oval und 0,027 mm lang und 0,021 mm breit. Nach meinen Beobachtungen haben die ovalen Eier 3 Hüllen; die äußere ist 0,049—0,054 mm lang und 0,042—0,047 mm breit; die mittlere ist unregelmäßig faltig, die innere ist citronenförmig, an jedem Pol steht ein deutliches Knöpfchen (Fig. 4); die Länge beträgt 0,031, die Breite 0,023 mm. Vergleicht man mit diesen Eiern die von T. nana, welche meistens kugelrund und zweischalig sind, und deren innere Hülle 2 lange Fäden trägt, so sind die Unterschiede auffallend genug.

Die Entwicklung von Taenia murina hat Grassi in Verbindung mit Calandruccio und Rovelli gefunden; er verfütterte Eier enthaltende Proglottiden an Ratten und fand, daß in deren Darmzotten sich aus der Oncosphäre ein Cysticercoid bildete, das genau dem Skolex der Tänie glich; das Experiment gelang meistens nur, wenn die Ratten mehr als einen und weniger als drei Monate alt waren; die Eischaile wird vom Magensaft gelöst, sonst müßte die Tänie sich im Darm bald ins Maßlose vermehren; 24—36—50 Stunden nach der Fütterung mit Proglottiden wurden die Cysticercoiden in den Zotten der Darmschleimhaut beobachtet, in 3—5—8 Tagen zeigten sich frei im Darm sehr zahlreiche kleine Tänien von 2—3—4 mm Länge. Was das Cysticercoid von allen anderen bekannten unterscheidet, ist der Mangel jeglicher Hülle,

1) Tab. XII, Fig. A6.
2) Tab. VII, Fig. 108.
Taenia (Hymenolepis) nana v. Siebold und murina Duj. 579
die bei anderen Formen mitunter eine stark entwickelte, dreifache ist; auch fehlt der sonst in der Regel beobachtete lange Schwanzanhang. Ein Zwischenwirt fehlt, und daher müssen wir die Entwicklung eine direkte nennen; Blanchard bestreitet dieses, indem er sagt: „En réalité, le développement n’est point direct: nous nous trouvons en présence d’un Cestode qui a pour hôte intermédiaire le Rat et pour hôte définitif également le Rat.“ Es müßte aber heißen le même Rat, denn die Tänien machen ihren ganzen Entwicklungsgang in demselben Tier durch. Derselbe ist höchst merkwürdig, weil bei Tänien bisher niemals etwas Ähnliches beobachtet ist, und weil eine Anzahl von sehr nahe verwandten, zu Hymenolepis gehörigen Tänien in Insekten und Myriapoden lebende Cysticercoiden haben, wie Stein, Villot, Grassi und ich gezeigt haben.

Die Wohntiere sind Mus decumanus, musculus und pumilus und Myoxus quercinus, das Vaterland aber ist Dänemark (Krabbe), Deutschland (Hameln, v. Linstow, Heidelberg, Grassi), Frankreich (Dujardin, Moniez, Favarcq, Blanchard) und Italien, besonders Sicilien (Grassi, Stossich).

Die Ansicht, daß Taenia nana und T. murina zwei verschiedene Arten sind, teilt Moniez, dessen vortreffliches Werk Traité de parasitologie mir erst während des Korrekturlesens zu Händen kam.

Erklärung der Abbildungen.

a Rindenschicht, g Gefäß, n Nerv, h Hoden, c Cirrusbeutel, k Keimstock, d Dotterstock, s Schalendrüse, r Receptaculum seminis.

I—IV Taenia nana. 1—4 Taenia murina.

I u. 1 Querschnitte; die zu einer Proglottide gehörenden Schnitte sind zu einem Bilde vereinigt.

II u. 2 Umrisse von mit Eiern erfüllten Gliedern.

III u. 3 Haken.

IV u. 4 Eier.
Litteratur.

Krabbe, Helmintholog. Untersögels., Kjøbenhavn 1840, p. 40, Tab. III, Fig. 56—59, Tab. VII, Fig. 108.

Dujardin, Histoire naturelle des Helminthes, Paris 1845, p. 563—565, Tab. XII, Fig. A 1—6.

Leuckart, Die menschlichen Parasiten, Bd. I, Leipzig u. Heidelberg 1863, S. 393—397, Fig. 112—115.

Stein, Entwickelungsgeschichte und Parasitismus der menschlichen Cestoden, Lahr 1882, S. 25—26, Fig. 54 a—i, Tab. XII, Fig. 9—12.

Bizzozero, Manuale di microscopia clinica. Manuel de microscopie clinique, Paris 1885, Tab. IV, Fig. g u. g'.

— Ulteriori particolari intorno alla Tenia nana, ibid. No. 78, p. 619.

— Come la Tenia nana arrivi nel nostro organismo. Catania 1887, 3 pg.

— Entwickelungscyklus der Taenia nana, ibid. No. 11, S. 305—312.

Blanchard, Hist. zool. et méd. des Téniaés du genre Hymenolepis. Weim., Paris 1891, p. 7—39, 51—52, 70—90, Fig. 17.

Favaro, Sur une variété de l'Hymenolepis murina (Téniaé) dans l'intestion d'un lérot. Loire médic., St. Etienne, 1894, p. 299—306, 1 Tab.

Stossich, Notizie elmiintologiche. Bollet. Adriat. sc. natur. Trieste, vol. XVI, 1895, p. 43, Tab. IV, Fig. 12—13.

Railliet, Traité de zoologie médicale et agric., 2. édit., Paris 1895, p. 291—293.

Montiez, Traité de parasitologie animale et végétale appliquée à la médecine, Paris 1896, p. 233—240.
Revision der Actinien,
welche von Herrn Prof. Studer auf der Reise der Korvette Gazelle um die Erde gesammelt wurden.

Von

Casimir R. Kwietniewski.

(Aus dem Zoologischen Institut der Universität München.)

Hierzu Tafel XXV u. XXVI.

¹) Monatsberichte der K. Akademie der Wissenschaften zu Berlin, 1878 (S. 524). Zweite Abteilung der Anthozoa polyactinia, welche während der Reise S. M. S. Korvette Gazelle um die Erde gesammelt wurden; bearbeitet von Professor Dr. Th. Studer in Bern.

Fam. Ilyanthidae.

1) OSCAR CARLGREN, Studien über nordische Actinien, 1893, S. 38.
diese Merkmale vermissen lassen, sich aber dadurch voneinander unterscheiden, daß die Halcampinen einen mesodermalen, und die Halcampomorphinen einen entodermalen Ringmuskel besitzen. Für die Halcampinen stellt CARLGREN die Gattung Halcampa als Typus auf. Er stellt sich dabei in Widerspruch mit R. HERTWIG, welcher umgekehrt die Anwesenheit eines entodermalen Ringmuskels als Merkmal der Gattung Halcampa aufführt. Es gilt hier zu entscheiden, wer bei der Aufstellung der Gattungsdiagnose Recht hat. Das kann nur geschehen, wenn man die Species Halcampa chrysanthellum, welche von GOSSE als Typus für die Gattung Halcampa aufgestellt wurde, auf die Beschaffenheit des Sphincters untersucht. Ich habe mich vergeblich bemüht, eigenes Untersuchungsmaterial zu erhalten; dagegen fand ich in der Litteratur zwei anatomische Beschreibungen der Halcampa chrysanthellum, die eine von HADDON 1), die andere von FAUROT 2).

Der englische Forscher, welcher mehrmals die Gelegenheit gehabt hat, Halcampa chrysanthellum zu untersuchen, giebt in der Diagnose des Genus Halcampa an: „no sharply defined circular muscle“; und FAUROT schreibt über H. chrysanthellum: „Quant au sphincter circulaire de l’extrémité supérieure de la colonne, qui, selon HERTWIG et HADDON, n’est pas très distinct, not sharply defined, je n’en ai trouvé trace“ (p. 132).

1) HADDON, A revision of the British Actiniae, 1889, p. 333.
Subfam. Halcampinae.
Teil der Subfam. Halcampinae der Autoren.

Halcampa purpurea Stud.

Studer giebt folgende Beschreibung von dieser Art: „Körper gestreckt, wurmförmig, sehr zart, so daß die 12 Septen durch die Körperwand durchscheinen, der Körper nach hinten zu verdünnt und läßt am Ende einen Porus erkennen. Die Tentakeln stehen um den Mund in einer Reihe in der Zahl von 12 und sind zylindrisch, lang, fadenförmig. Die Länge beträgt im Leben bei ausgestrecktem Körper bis 45 mm."

Nach meiner eigenen Untersuchung ist der Körper in drei Partien geteilt: Capitulum, Scapus und Physa, um hier die von Gosse für Edwardsien eingeführten Bezeichnungen zu gebrauchen. Der Scapus ist etwas länger als beide andere Körperpartien zusammengenommen. Das Capitulum ist sehr zart, dünn, und an Stellen, wo das Körperepithel abgestreift war, ganz durchsichtig, wodurch in dieser Körperpartie am deutlichsten die Septeninsertionen hervortreten. Vom Scapus hebt sich das Capitulum deutlich ab, deutlicher als die Physa, welche eine konische Form besitzt und sehr dickwandig, derb und muskulös ist. Am aboralen Ende ist eine ganz deutliche, ziemlich große Öffnung vorhanden. Dagegen konnte ich andere, seitliche Öffnungen, wie sie bei verschiedenen Halcampinen beschrieben worden sind (Hertwig, Carlsgren), auch auf Schnitten nicht nachweisen.

Am Rande der, etwas hervorgewölbten Mund scheibe stehen zwölf einfache zugespitzte Tentakel. Ihre Länge ist ungefähr gleich dem Durchmesser der Mund scheibe; alle Tentakeln sind von gleicher Länge und stehen in einem Kreise.

Die Mundöffnung scheint rund und von Lippenwülsten begrenzt zu sein, was aber wegen schlechter Erhaltung der be-
treffenden Teile, nicht mit Sicherheit ermittelt werden konnte. Das Schlundrohr ist kurz, eng, dünn, mit mehreren queren Falten versehen. Die Septeninsertionen rufen Längsfaltung hervor; eigentliche Schlundrinnen scheinen aber vollständig zu fehlen.

Am Schlundrohre inserieren sämtliche Septen, welche in Zwölfzahl vorhanden sind.

Die Septen sind paarig angeordnet; zwei Paar Richtungssepten tragen die abgewandten, die vier übrigen Septenpaare zuge wandte Längsmuskel. Alle 12 Septen sind gleich stark entwickelt; die acht Septen des Edwarclastadiums sind in dieser Beziehung von den anderen nicht zu unterscheiden.

Was die Beschaffenheit der Septen anbetrifft, so sind sie verhältnismäßig breit, sehr dünn und zart, jedoch mit starken Muskeln ausgestattet (Taf. XXV, Fig. 4). Die Geschlechtsorgane bilden einen breiten, quererfalteten Saum am freien Rande des Septums.

Der Querschnitt des Längsmuskels (die Fahne) (Taf. XXV, Fig. 1) ist nierenförmig, von beiden Seiten ziemlich tief von dem Septum abgeschnürt. Die Falten der Längsmuskelschicht sind lang, vielfach verästelt und zeigen eine zarte, dendritische Struktur. Der Längsmuskel verläuft in beinahe gleicher Entfernung von dem freien Rande des Septums and von dem Mauerblatte. Oben ist er am stärksten; gegen unten zu werden die Muskelfalten immer schwächer und einfacher.

Außer dem Längsmuskel findet sich am Septum ein starker Muskelstrang, welcher dicht an das Mauerblatt angrenzt. In der Physa nimmt er bedeutend an Stärke zu und läuft mit dem eigentlichen Längsmuskel zusammen (Taf. XXV, Fig. 3).

Die, bei dem untersuchten Exemplare sehr kleinen Geschlechtsfollikel entwickeln sich in einem breiten, sehr zarten Saum des Septums, welcher unmittelbar unterhalb des Schlundrohres beginnt und bis zur Grenze zwischen dem Scapus und der Physa reicht.

Am freien Rande der Septen befinden sich schwach entwickelte Mesenterialfilamente. Dieselben verlaufen wenig geknüauelt und reichen so weit wie die Geschlechtsorgane hinunter. Im oberen Verlauf sind die Filamente dreiteilig; an einer kurzen Strecke befinden sich nämlich außer dem Nesseldrüsenstreifen zwei
seitliche Flimmerstreifen. Schon in der oberen Partie des Scapus aber fehlen diese letzteren, und das Filament wird dann bloß vom Nesseldrüsenstreifen gebildet.

Die Muskulatur des Mauerblattes besteht aus einer entodermalen Muskelschicht, welche ganz besonders stark in der Physa ausgebildet ist (Taf. XXV, Fig. 2). Im Scapus und Capitulum sind die Muskelfalten schwach; von einem entodermalen Ringmuskel kann eigentlich nicht die Rede sein. Ebenso gut fehlt auch ein mesodermaler Sphincter.

Mit Halcampa clavus HERTW. hat die beschriebene Art viel Ähnlichkeit 1); HADDON hat sogar vermutet, daß sie mit derselben identisch ist. Er sagt: „It is difficult to understand why Dr. HERTWIG did not adopt H. purpurea STUD. as the name of this species“ (H. clavus) 2).

Diese Ansicht HADDON’s ist unhaltbar, da trotz der Ähnlichkeit wichtige Unterschiede vorhanden sind.

Um die Hauptunterschiede zwischen diesen zwei Arten hervorzuheben: Die Halcampa clavus besitzt keinen terminalen Porus, welcher für H. purpurea charakteristisch ist; dagegen seitliche Öffnungen in der Physa, welche der H. purpurea fehlen. Bei Halcampa clavus findet sich ein erheblicher Größenunterschied zwischen den 8 Septen des Edwardsiatypus und den übrigen 4 Septen, während bei Halcampa purpurea alle Septen untereinander gleich sind.

Subfam. Halianthinae.

Ilyanthiden mit 6 Paar vollständigen Septen. Der Körper geteilt in Capitulum, Scapus, Physa; Sphincter mesodermal.

Gen. Halianthella gen. nov.

Halianthinen mit mehr als 12, Tentakeln.

Halianthella kerguelensis.

STUDER hat irrtümlich diese Actinie als eine Edwardsia-Art (E. kerguelensis) auf folgende Weise beschrieben: „Cylindrisch,

1) R. HERTWIG, Actinien der Challengerexpedition, 1882, S. 82.
2) HADDON, A revision of the British Actiniae, I, 1889, p. 336.

Bei näherer Untersuchung hat es sich herausgestellt, daß es durchaus keine Edwardsia-Art ist. Der allgemeine Habitus, sowie das Vorhandensein von vierundzwanzig paarig angeordneten Septen, wovon sechs Paar erster (unter diesen zwei Paar Richtungssepten) und sechs Paar zweiter Ordnung sind, haben gezeigt, daß es sich hier um eine Ilyanthide handelt. — Die Actinie besitzt einen mesodermalen Ringmuskel (Taf. XXVI, Fig. 8), ist demnach, wie es schon oben ausseinandergesetzt wurde, zu der Unterfamilie der Halianthinen zu stellen. Durch den Besitz von mehr als 12 Tentakeln unterscheidet sich diese Form von Halianthus-Arten; ich habe also für dieselbe eine neue Gattung Halianthella aufgestellt.

Ich gehe über zu der Beschreibung der Organisation der Halianthella kerguelensis, welche ich auf einem von zwei zugeschickten Exemplaren studiert habe.

Die Mundscheibe trägt am Rande zwei alternierende Kreise von kurzen, dicken, zugespitzten Tentakeln. Studer's Angaben über die Tentakelzahl sind nicht genau. Von vornherein müßten sie schon Bedenken erwecken, da, obwohl im Text (S. 546) die Zahl der Tentakeln auf 20 bestimmt wird, auf der einen Zeichnung (a) (Fig. 21, Taf. V) 18, auf der anderen (b) — welche dasselbe Tier in anderer Lage darstellen soll — bloß 16 Tentakeln abgebildet sind!

An ihren Spitzen besitzen die Tentakeln terminale Öffnungen, welche ich auf Schnitten festgestellt habe. Die Muskulatur der Mundscheibe und der Tentakeln ist ziemlich schwach entwickelt; die ektodermale Muskelschicht bildet kleine, zusammengesetzte Falten.

Das Schlundrohr ist in kontrahiertem Zustande stark zusammengefaltet; dadurch erscheint es sehr kurz, etwas kürzer als das eingestülpte Capitulum. Besondere Schlundrinnen in dem Sinne wie bei den meisten Hexactinien, d. h. tiefe Längsfurchen an den Insertionsstellen der Richtungssepten, sind nicht vorhanden; das Schlundrohr ist aber versehen mit mehreren — bei dem untersuchten Exemplare mit neun — tiefen, rinnenartigen Furchen, welche von der Mundöffnung bis zum unteren Rand des Schlundrohes in ziemlich gleichen Abständen verlaufen, mit den Septeninsertionen nicht korrespondierend. Außer den Längsfurchen sind etwa fünf tiefe, quere, zu sich parallel verlaufende Falten vorhanden, wodurch die ganze Oberfläche des Schlundrohes in viereckige, polsterartige Felder zerteilt wird.

Von den 12 Septenpaaren erreichen das Schlundrohr 6 Paar Septen erster Ordnung und hängen mit demselben in ganzer Länge zusammen; 6 Paar Septen zweiter Ordnung dagegen sind unvollkommen und inserieren an der Mundscheibe.

Die Mesenterialfilamente sind in ihrem oberen Verlaufe dreiteilig. Zu dem breiten Nesselrüsenstreifen gesellen sich zwei seitliche Flimmerstreifen und bilden am freien Rande des Septums
einen anschnlichen Wulst, welcher sich so weit nach unten wie die Geschlechtsorgane erstreckt. Unterhalb dieser Stelle fehlen den Mesenterialfilamenten die Flimmerstreifen. Sie winden sich vielfach zusammen, bilden einen nicht besonders großen Knäuel und hören etwa oberhalb des unteren Drittels des Scapus auf.

Das oben Gesagte bezieht sich nur auf die Septen erster Ordnung. Die Septen zweiter Ordnung sind sehr schmal, verbreitern sich nur wenig in der oberen Partie des Körpers und inserieren an der Mundscheibe. Die Geschlechtsorgane und Mesenterialfilamente fehlen den Septen zweiter Ordnung vollständig.

In der Physa werden sämtliche Septen breiter und laufen in ihrer Mitte zusammen.

Was die Muskulatur der Septen erster Ordnung betrifft, so ist sie sehr stark ausgebildet. Die Längsmuskeln, unter schwach und von geringer Dicke, nehmen an Größe gegen oben bedeutend zu und bilden unterhalb der Mundscheibe dicke, abgerundete Polster, welche auf Querschnitten schön dendritisch verästelte, in die Falten der Muskelschicht hineindringende Ausläufer der Stützlamelle zeigen (Taf. XXV, Fig. 5). Der Längsmuskel ist nicht auf der ganzen Oberfläche des Septums vorhanden, sondern ist scharf umgrenzt und bildet einen Strang, welcher viel näher dem Schlundrohre und dem freien Rand des Septums als dem Mauerblatte verläuft. — Die übrige Oberfläche der Längsfaserschicht zeigt kaum eine Faltung; nur dicht am Mauerblatte kommt es zu einer größeren Anhäufung (Taf. XXV, Fig. 5 L'm) der Muskelfalten, welche dem Parietobasilarmuskel opponiert ist. Mit der Entfernung vom Mauerblatte, nehmen die Falten allmählich an Größe ab und verschwinden bald gänzlich.

Der Parietobasilarmuskel ist gut ausgebildet; er verläuft von der oberen Partie des Mauerblattes bis zum Fußende des Septums. Der Muskel ist scharf umgrenzt, wodurch er sich schon auf den ersten Blick von dem bereits beschriebenen Teile des Längsmuskels unterscheidet (Taf. XXV, Fig. 5 Pbm).

Bei den Septen zweiter Ordnung sind die Längsmuskelfalten auf der ganzen Seite des Septums zerstreut und gehen am freien Rande in die Falten des ähnlich geschaffenen Parietobasilarmuskels über, so, daß das Septum auf beiden Seiten beinahe symmetrisch geformt ist und auf den Querschnitten ein federförmiges Aussehen besitzt.

Zum Schluß habe ich noch einige Worte über den mesodermalen Ringmuskel zu sagen. Derselbe erstreckt sich in der,
Casimir R. Kwietnowski,

dem Entoderm anliegenden Partie der Stützlamelle des Capitulums und zerfällt in zwei Partien. Die größere, untere Partie (welche bei der Einstülpung des Capitulums oberhalb der anderen zu liegen kommt) fängt an an der Grenze zwischen dem Scapus und Capitulum, und verschwindet allmählich in der oberen Hälfte dieses letzteren. Die obere, kleinere Partie liegt nahe der Mundschuppe und befindet sich mehr in der Mitte der Stützlamelle (Taf. XXVI, Fig. 8).

Die, in die Stützlamelle eingebetteten Muskelstränge sind nahe bei einander gelagert, an der betreffenden Stelle die Bindesubstanz bis auf mehr oder weniger düne, untereinander anastomosierende Lamellen verdrängend. Von dem Entoderm sind die Muskelstränge ebenfalls nur durch eine ganz schmale Schicht der Bindesubstanz getrennt.

Fam. Antheadae.

Bolocera kerguelensis Stud.

Auf Grund dieser seiner Beschreibung reiht Studer, wie auch Angelo Andres die Bolocera den Bunodiden ein. Mit Recht ist

¹) Ich möchte die Bemerkung hinzufügen, daß die Ringfurchen am Mauerblatte nur durch die Kontraktion des Körpers hervorgerufen sind.
Revision der von Studer gesammelten Actinien.

Dem äußeren Habitus nach ähnelt Bolocera kerguelensis der Bol. longicornis Carlg. außerordentlich; die Ringmuskeln beider Formen aber weichen ziemlich stark voneinander ab. Der Sphincter der Bol. longicornis 4) ist zusammengesetzt aus einfachen, nicht verästelten Muskelfalten, welche nach oben und unten allmählich in die Ringmuskulatur des Mauerblattes übergehen; er ist also typisch diffus. Der Ringmuskel der Bolocera kerguelensis besteht zwar auch aus zahlreichen Muskelfalten, welche nach abwärts allmählich in die Ringmuskulatur des Mauerblattes übergehen, dieselben sind aber vielfach verästelt; außerdem besitzt der Ringmuskel am oberen Rande einen starken, verästelten Muskelast, welcher nach aufwärts scharf von der Ringmuskulatur des Mauerblattes abgegrenzt erscheint (Taf. XXVI, Fig. 11).

1) O. Carlgren, Studien über nordische Actinien, 1893, S. 49. 2) ibid., S. 137.
4) O. Carlgren, Nordische Aktinien, S. 53, vgl. Taf. VII, Fig. 6.

Der Tentakelspincter, welcher bei mehreren Bolocera-Arten beobachtet wurde, ist ebenfalls bei B. kerguelensis vorhanden, und zwar stark entwickelt (Taf. XXVI, Fig. 10).

An der Basis des Tentakels, wenig oberhalb des Ursprungs aus der Mund scheibe, befindet sich eine starke, ringförmige Falte der Stützlamelle, auf welche die entodermale Ringmuskelschicht des Tentakels übergeht und am freien Rande der Falte einen starken Ringmuskel durch vielfache Einfaltung der Muskelschicht bildet. Auf dem Querschnitte sieht die Ringfalte aus wie ein langer Stiel, welcher in das Lumen des Tentakels hineinragt und dessen Ende sich in einige starke, astförmige Ausläufer der Stützlamelle fortsetzt, welche selbst wieder seitliche Ausbuchtungen treiben, wodurch ein dendritisches Aussehen des Muskels zustande kommt.

Durch die Kontraktion des Muskels wird die Öffnung der Ringfalte verschlossen, und der Hohlraum des Tentakels vollständig von der Gastralhöhle getrennt.

Das leichte Abfallen der Tentakel ist dadurch bedingt, daß unterhalb der Ringfalte, am Übergang des Tentakels in die Mund scheibe, die Stützlamelle bedeutend verdünnt ist (Taf. XXVI, Fig. 10*). Die Bedeutung dieser eigentümlichen Einrichtung ist bis jetzt noch gar nicht bekannt.

Die Oberfläche des Tentakels ist bedeckt mit zahlreichen, deutlichen Längsfurchen, welche durch Unebenheiten der Stützlamelle hervorgerufen sind. Dieselbe besitzt auf der Oberfläche starke Längsrippen, welche auf dem Querschnitte wie größere oder kleinere Fortsätze der Stützlamelle aussehen. Sie sind entweder schmal und zugespitzt, oder breiter und endigen stumpf (Taf. XXVI, Fig. 9).

Die starke Entwicklung der ektodermalen Längsmuskulatur der Tentakel kommt zustande durch Zusammenfaltung der Muskelfaserschicht. Die Falten bedecken gleichmäßig die ganze Oberfläche der Stützlamelle, welche in dieselben dünne, lange Fortsätze entsendet, welche auf dem Querschnitte zarte Ästchen bilden (Taf. XXV, Fig. 7).

Die ektodermale Muskulatur der Mund scheibe ist dagegen schwach ausgebildet und bietet sonst nichts Bemerkenswertes.
Revision der von Studer gesammelten Actinien.

Was die terminale Öffnung des Tentakels anbetrifft, so konnte ich sie auch auf Schnitten nicht nachweisen.

Auf die Schilderung des histologischen Baues der Gewebe muß ich verzichten, weil das Material nicht zu solchen Untersuchungen geeignet war. Ich beschränke mich auf die Bemerkung, daß die eingehend von Carlsgren (s. S. 54) bei Bolocera longicornis beschriebene Struktur der Stützlamelle der Tentakeln auch für B. kerguelensis charakteristisch ist.

Anthea (?) kerguelensis.

Daß es sich nicht um einen Bunodes handelt, hat das Fehlen eines starken entodermalen Ringmuskels, welcher für die Familie der Bunodiden charakteristisch ist, gezeigt. Bei der untersuchten Actinie ist in der Gegend, wo sonst der Ringmuskel vorhanden zu sein pflegt, die cirkuläre Muskellamelle wenig eingefaltet, kaum stärker als an den anderen Stellen des Mauerblattes, so daß man kaum von einem diffusen Ringmuskel reden kann.

Das einzige Exemplar, das ich zur Untersuchung erhalten habe, war ziemlich stark kontrahiert. Die Fußscheibe und die untere Partie des Körpers breiter als die obere. Die Mund scheibe und teilweise auch die Tentakeln waren infolge der Kontraktion zugedeckt. Das Körperepithel war nicht gut erhalten, so daß es nicht möglich war, die auf der Zeichnung (Taf. IV, Fig. 16) abgebildeten Längsfurchen zu sehen. Auch die Wärzchen sind sehr undeutlich geworden, und ihre angebliche Anordnung in Längsreihen, je zwischen zwei Furchen (s. die Abbildung), überhaupt nicht mehr zu erkennen.

Von der natürlichen Färbung ist keine Spur mehr erhalten geblieben das ganze Tier sieht gelblich-weiß aus.
Die Tentakeln, ca. 48 in Anzahl, sind einfach, zugespitzt, bis 7 mm lang; gestellt in zwei alternierenden Kreisen (?). Alle Tentakeln gleich lang; nicht wie es auf der Zeichnung dargestellt ist, daß die Tentakeln der inneren Reihe bedeutend kürzer sind als die der peripheren Reihe.

Aus dem Mitgeteilten geht hervor, daß das Tier zu den Antheaden gehört. Leider macht die schlechte Konservierung eine genaue Untersuchung unmöglich. Auch die Studer’sche Abbildung ist mangelhaft. Ich muß es daher zweifelhaft lassen, ob die Einreihung in die Gattung Anthea sich aufrecht erhalten läßt.

Fam. Sagartidae.

Cereus brevicornis Stud.

„Körper bei ausgebreteter Tentakelscheibe cylindrisch, die Mundscheibe kreisrund, wenig breiter als der Körper. Die Tentakeln sehr zahlreich, in 6 Reihen, kurz, konisch, an der Basis etwas eingeschnürt, die innerste Reihe beginnt im halben Radius der Scheibe, die inneren Tentakeln sind die längsten, erreichen mit der Spitze aber den Scheibenrand nicht. Zusammengezogen, ist das Tier stumpf-kegelförmig, die Haut runzlig in Felder abgeteilt. Die Poren für Acontia sind überall unregelmäßig verteilt. Höhe 46 mm. Breite der Scheibe 25 mm“ (S. 542).

Die Untersuchung des oberen Randes der Körperwand zeigt das Vorhandensein eines sehr stark entwickelten mesodermalen Ringmuskels, durch welchen die Sagartiden ausgezeichnet sind.

Die in die Stützlamelle eingebetteten Stränge des Ringmuskels sind etagenförmig übereinander gelagert und voneinander durch mehr oder weniger dünne, vielfach miteinander anastomosierende Quer- und Längsbalken getrennt (Taf. XXVI, Fig. 14).

Aus den nämlichen Gründen, wie bei Bolocera, durfte ich auch bei Cereus meine Untersuchung nicht auf die innere Organisation des Tieres erstrecken.

Calliactis marmorata.

Fam. Corallimorphidae Hertwig.

Corynactis carnea Stud.

Studer gibt folgende Beschreibung von dieser Art: „Polypen cylindrisch, 6—7 mm hoch, Durchmesser 6 mm. Die Körperwand zart, fleischig, fein gestreift. Tentakeln zahlreich, in zwei Reihen; die innere so lang wie der Scheibenradius, deutlich geknöpft, die äußere nur halb so lang. Fleischfarben, nur um den Scheibenrand ein grasgrüner Ring“ (S. 542).

Von zwei Exemplaren dieser Art, welche im zugeschickten Materiale vorhanden waren, wurde ein Exemplar vollständig in Längs- und Querschnitte zerlegt und zur Untersuchung der inneren Organisation verwendet.

Zu der von Studer gegebenen Beschreibung des Äußeren kann man hinzufügen, daß die Tiere eine ziemlich breite, fest-sitzende Fußscheibe besitzen, und daß die Längsfurchen am Mauerblatte keine regelmäßige Anordnung zeigen; sie entsprechen nicht den Septeninsertionen, wie es bei den Actinien so häufig der Fall ist.

Was die Anordnung der Tentakeln anbetrifft, so stimmen meine Beobachtungen mit den von Studer gemachten Angaben nicht überein. Meinen Untersuchungen nach, sind zweierlei Tentakeln vorhanden: periphere und scheibenständige, oder Haupt- und Nebententakeln. Der periphere Tentakelkreis ist zusammengesetzt aus Tentakeln von verschiedenem Alter und verschiedener Größe, wobei die älteren, größeren Tentakeln durch die später gebildeten von ihren Plätzen etwas nach innen zu verdrängt sind; es ist aber ihre ursprüngliche Randstellung nicht zu verkennen.

Die Größe der peripheren Tentakeln, deren Zahl bei dem von mir untersuchten Exemplare 39 betrug, wechselt von 1 1/2 bis 4 mm. Es läßt sich im allgemeinen sagen, daß die größeren Tentakeln mit den kleineren alternieren; doch ist es nicht möglich, aus der Größe einen Rückschluß zu machen, welchem Cyclus ein Tentakel angehört. Die Bestimmung wird auch dadurch bedeutend erschwert, daß der vierte Tentakelcyclus wahrscheinlich nicht vollständig entwickelt ist. Mit dieser Annahme stimmt die Thatsache überein, daß auch die Septen vierter Ordnung nur teilweise ausgebildet sind.

Außer den Haupttentakeln sind zahlreiche Nebententakeln vorhanden, welche auf der Mund scheibe in radiären Reihen stehen.
In einer Reihe findet man 2 oder 3 Tentakeln hintereinander, wobei der innerste Tentakel der kleinste ist, und am meisten von den anderen gesondert, etwa auf der halben Länge des Scheibenradius steht. Die Tentakeln einer Reihe kommunizieren alle mit demselben Fach.

Den Mund Scheibesektoren, welche die Interseptalräume abschließen, fehlen die Nebententakeln. Mit jedem Zwischenfach also kommuniziert nur ein einziger, peripherer Tentakel; mit dem Binnenfach dagegen eine Reihe von drei bis vier, den peripheren Tentakel miteingerechnet.

Was die Muskulatur der Tentakeln anbelangt, so ist sie ziemlich schwach. Sie besteht aus einer ganz schwachen Schicht der entodermalen Muskeln und einer stärkeren, faltenbildenden ektodermalen Muskulatur. Die Falten sind in Gruppen gesammelt, welche auf Querschnitten zierliche Büschel darstellen. Das geknüpfte Ende des Tentakels ist fast muskellos und besitzt keine terminale Öffnung.

Die Muskulatur der Mund scheibe besteht wie gewöhnlich aus den cirkulären entodermalen und radiären ektodermalen Muskeln. Die entodermale Muskulatur ist sehr schwach; die ektodermale etwas stärker, der ektodermalen Muskulatur der Tentakel sehr ähnlich.

Das Schlundrohr ist im Querschnitte oval, nicht besonders weit. Es verlaufen seiner Länge nach in geringer Entfernung voneinander mehrere starke Rippen (Taf. XXVI, Fig. 13), welche oben in die Lippenwülste übergehen. Die Rippen ragen in das Lumen des Schlundrohres hervor und fassen zwischen sich Rinnen, welche rücksichtlich ihrer Größe den eigentlichen Schlundrinnen, an welche die Richtungsssepten inseriert sind, nicht nachstehen. Die Rippen entsprechen nicht den Septeninsertionen am Schlundrohr; nur die Septenpaare zweiter Ordnung, welche in beiden lateralen primären Zwischenfächern sich befinden, inserieren an die durch die Leistenpaare gebildeten Rinnen, so wie es bei den Richtungsssepten der Fall ist.

Die Zahl der Rippen betrug bei dem untersuchten Exemplare
19; davon 8 auf der einen, 11 auf der anderen Hälfte des Schlundrohrs, von den Schlundrinnen aus gerechnet.

Ähnliche Bildungen am Schlundrohre wurden schon z. B. von R. Hertwig bei Sicyonis crassa beschrieben; jedoch mit dem Unterschiede, daß bei dieser Form die Schlundfalten von den Insertionsstellen der Septen entspringen.

Wir wenden uns zur Beschreibung der Septen. Dieselben sind in vier Cyklen entwickelt; beim ganz reifen Tier sollten also 48 Septenpaare vorhanden sein.

Die Septen sind dünn und im allgemeinen nur mit schwachen Muskeln ausgestattet. Es sind zwei Paar Richtungssepten vorhanden, welche an die wenig ausgeprägten Schlundrinnen inserieren. Die Septen erster und zweiter Ordnung sind allein vollständig, d. h. sie erreichen das Schlundrohr; untereinander sind sie fast gleich stark. Die Septen dritter Ordnung dagegen sind bedeutend schwächer, nur etwa ein Drittel oder halb so breit wie die erstgenannten Septen.

Die Längsmuskulatur der Septen bildet eine, auf der ganzen Septenseite schwach wellenförmig gefaltete Muskelschicht; ein lokalisierter Längsmuskelstrang kommt nicht zustande. — Der Parietobasilarmuskel ist eine einfache, gar nicht gefaltete Muskelschicht am Ursprung jedes Septums auf der dem Längsmuskel abgewandten Seite.

Was den vierten Septencyklus anbetrifft, so war er bei dem untersuchten, nicht ganz reifen Tier noch nicht vollständig entwickelt. Von den 24 Paar Septen vieter Ordnung, welche einer Hexactinie zukommen, waren nur fünf Paar vorhanden, welche sämtlich einer Körperhälfte angehörten. Eine Gesetzmäßig in dem Auftreten der Septen des sich anlegenden Cyklus, war nicht zu bestimmen: drei Paar der vorhandenen Septen haben sich in Fächern zwischen Septenpaaren II und III, zwei übrige zwischen I und III entwickelt.

Das Fehlen der Geschlechtsorgane läßt sich aus der Unreife des Tieres erklären.

Der Ringmuskel (Taf. XXVI, Fig. 12) ist entodermal, schwach ausgebildet. Er besteht aus mehreren, verhältnismäßig weit von einander entfernten, zusammengesetzten Muskelfalten, von welchen die oberste die stärkste ist. Nach unten zu gehen die Falten des Sphincters in die gewöhnliche cirkuläre Muskulatur des Mauerblattes über.
Körper breit, niedrig, groß, pilzförmig. Höhe ca. 5 cm, Breite der Fußscheibe ca. 6 cm, der Mund scheibe ca. 9 cm. Die Fuß scheibe breit, festsitzend, mit tiefen radiären Furchen bedeckt. Das Mauerblatt derb, in kontrahiertem Zustande mit queren Falten und Runzeln bedeckt, die aber keine regelmäßige Anordnung aufweisen. Papillen, Warzen etc. nicht vorhanden. Die Farbe nach den Angaben von Studer grün.

Oberhalb der Fuß scheibe ist der Körper tief eingeschnürt; er verbreitert sich nach oben von hier aus bedeutend. Die Mund scheibe ist sehr breit, an Rande stark gefaltet und schirmförmig nach außen gebogen, fast gänzlich von kurzen, verästelten Tentakeln bedeckt, welche nur die Umgebung des Mundes frei lassen. Die Tentakeln sind radiär angeordnet; sie stehen ziemlich dicht bei einander, nur die innersten stehen mehr vereinzelt. Was den Bau der Tentakeln an betrifft, so sind sie zusammengesetzt aus einem ganz kurzen, weiten Stamm und wenigen Zweigen, welche von dem Stamm terminal entspringen und mehrere seitliche, fadenförmige Ausbuchtungen treiben. Nicht sämtliche Tentakeln zeigen den gleichen Bau; es ist eine ziemlich breite Randzone vorhanden, in welcher die Tentakeln einfach, kurz, keulenförmig sind. An der Peripherie der Mund scheibe sind wieder verästelte Tentakeln vorhanden, welche in einer einfachen Reihe geordnet sind.

Die innere Organisation dieser interessanten Actinie konnte ich leider nicht untersuchen, weil das Exemplar zurückgeschickt werden sollte. Es ist desto mehr zu bedauern, als bis jetzt — so viel ich weiß — das Cryptodendrum anatomisch noch nicht untersucht worden ist; man weiß also nichts über die Septenstellung, Verteilung der Geschlechtsorgane etc.

1) Klunzingbr., Korallen des Roten Meeres, 1877, S. 86. — Auf dem zugeschickten Exemplare war die radiäre Anordnung der Tentakeln nicht deutlich zu erkennen.
Die Schnitte durch den oberen Rand des Mauerblattes zeigten das Vorhandensein eines schwachen, entodermalen, cirkumskripten Sphincters (Taf. XXVI, Fig. 15).
Ich habe die Gelegenheit gehabt, die von Ceylon stammende Heterodactyla sp. zu untersuchen — eine Form, die als nahe verwandt mit Cryptodendrum angesehen wird. Trotz einer großen Ähnlichkeit beider Formen besitzt die Heterodactyla keinen Ringmuskeln, während Cryptodendrum, wie es bereits gesagt wurde, einen solchen besitzt. Es ist aber trotzdem nicht unmöglich, daß die beiden Formen ziemlich nahe miteinander verwandt sind, weil ja auch bei Cryptodendrum der Sphincter verhältnismäßig sehr klein und schwach ist.

München, November 1895.
Figurenerklärung.

Tafel XXV.

Halcampa purpurea.

Fig. 1. Querschnitt durch das Septum unterhalb des Schlundrohrs. Zeiß abgeschr. B, Ok. 2.

Fig. 2. Querschnitt durch die Ringmuskulatur der Physa. Zeiß AA. Ok. 1.

Fig. 3. Querschnitt durch die untere Partie des Septums (in Physa). Zeiß abgeschr. B, Ok. 2.

Fig. 4. Das Septum. Natürliche Größe. T Tentakel, Cap Capitulum, Sc Scapus, Phy Physa.

Halianthella kerguelensis.

Fig. 5. Querschnitt durch das Hauptseptum auf der Höhe des Schlundrohrs. Zeiß abgeschr. B, Ok. 1. S Septum, Mb Mauerblatt, Oe Schlundrohr.

Fig. 6. Tentakel, Querschn. Zeiß AA, Ok. 1.

Bolocera kerguelensis.

Fig. 7. Querschnitt durch die longitudinalen Muskulatur des Tentakels. Muskelfaser nur teilweise ausgeführt, das Ektoderm weggelassen. Zeiß DD, Ok. 1.

ec Ektoderm, en Entoderm, sl Stützlamelle, ms, Ms die Muskelschicht, Lm Längsmuskel des Septums, L'm die am Mauerblatte verlaufende Partie der Längsmuskulatur des Septums, Pbm Parietobasilmuskel, ov Eier, g Geschlechtsorgane, mf Mesenterialfilamente.

Tafel XXVI.

Halianthella kerguelensis.

Fig. 8. Querschnitt durch den Ringmuskel. Leitz abgeschr. 3, Ok. 1 (Tubus + 4,7 cm).

Bolocera kerguelensis.

Fig. 9. Querschnitt durch den Tentakel. Zeiß abgeschr. AA, Ok. 1.

Fig. 10. Querschnitt durch den Sphincter des Tentakels. T Tentakel, RM Ringmuskel. Zeiß abgeschr. B. Ok. 2.

Fig. 11. Querschnitt durch den Ringmuskel. Zeiß B, Ok. 1. (Verkleinert um $\frac{1}{3}$).
Corynactis carnea.

Fig. 12. Querschnitt durch den Ringmuskel. Leitz 3, Ok. 1. (Verkleinert um $\frac{1}{3}$.)

Fig. 13. Querschnitt durch das Schlundrohr. \mathcal{R} Richtungssepten, S^2 Septen zweiter Ordnung.

Cereus brevicornis.

Fig. 14. Querschnitt durch den Ringmuskel. Leitz 3, Ok. 1. (Verkleinert um $\frac{1}{3}$.)

Cryptodendrum adhaesivum.

Fig. 15. Querschnitt durch den Ringmuskel. Zeiß B, Ok. 3. (Verkleinert um $\frac{1}{3}$.)

$\mathcal{E}c$ Ektoderm, en Entoderm, st Stützlamelle, Mb Mauerblatt, rm, RMs Ringmuskel, mes. Rm mesodermaler Ringmuskel, ms Muskel­schicht.
Studien über das Integument der Säugetiere.

I. Die Entwickelung der Schuppen und Haare am Schwanze und an den Füssen von Mus decumanus und einigen anderen Muriden.

Von

Dr. phil. F. Römer,
Assistenten am Zoologischen Institute der Universität Jena.

Hierzu Tafel XXVII u. XXVIII.

Schon Arnstein erwähnte (1, 1876) gelegentlich einer Untersuchung über den Verlauf der Nerven im Mäuseschwanz die eigentümliche Anordnung der Haare an demselben, „die in parallelen Reihen angeordnet sind und zwar so, daß zwischen je drei Haaren ein Zwischenraum bleibt, während die zu einer Gruppe gehörigen Haarbälge so nahe aneinander gerückt sind, daß ihre Talgdrüsen sich berühren“. Weber jedoch war der erste (2, 1892), welcher die hohe phylogenetische Bedeutung der Schuppen am Schwanz der Ratten und Mäuse betonte und auf ihre wichtigen Beziehungen zu den Haaren aufmerksam machte. Er erkannte, daß hier echte Hornschuppen vorliegen, die stark abgeflacht, kaum noch das Niveau der Haut überragenden Papillen aufsitzen. Die Anordnung dieser Schuppen zu einer bei den einzelnen Arten verschiedenen großen Anzahl von Schuppenringen und die unter ihrem Hinterrande stehenden Haare, die demgemäß eine wirtelförmige Stellung einnehmen, führten Weber zu dem Schluß, daß die Schuppen das Primäre wären und die Anordnung der Haare bedingt hätten. Diese Schuppen, die sich noch bei einer Anzahl anderer Sänge-
Studien über das Integument der Säugetiere. 605
tiere erhalten haben (Castor, Myrmecophaga, Didelphys u. a.), betrachtet Weber als Reste einer früher allgemeineren Schuppenbekleidung, die man auf nicht zu langen Umwege auf die Reptilienschuppen zurückführen kann. Bei einigen Formen (Anomalurus, Manis) haben sie sich in spezifischer Weise weiterentwickelt. — Damit hatte Weber die Frage nach der Herkunft des Schuppen- und Haarkleides der Säugetiere allgemein angeregt und die Veranlassung zu allen neueren Untersuchungen gegeben. Von Arbeiten, welche diesen Gedanken Weber’s weiterspannen und auf eine breitere Basis zu stellen suchten, berühren das vorliegende Thema besonders die Arbeiten von de Meijere (5, 1893) und Reh (9 und 10, 1894). Ersterer richtete sein Augenmerk vornehmlich auf die Anordnung der Haare und fand, daß die Haare, welche auf den beschuppten Teilen der Haut in alternierenden Gruppen stehen, bei vielen Säugetieren auch auf den unbeschuppten Teilen der Haut ebensolche Gruppen bilden, welche in alternierenden Reihen über den Körper verteilt sind oder sich wenigstens auf eine derartige Anordnung zurückführen lassen. Er schloß aus diesen Befunden mit Recht, daß die jetzt schuppenlosen Teile der Haut früher gleichfalls Schuppen trugen; die Schuppen selbst gingen verloren, die Anordnung der Haare weist aber noch auf ihr früheres Vorhandensein. Letzterer suchte festzustellen, wo, systematisch und topographisch, Schuppen zu finden sind und hat durch seine ausgedehnten Untersuchungen die Zahl der Säugetierarten, welche an irgend einer Körperstelle in größerer oder geringerer Ausdehnung Schuppen aufzuweisen haben, auf nahezu 500 erhöht. Da die Schuppen besonders in den niedersten Ordnungen der Säugetiere vorkommen (Marsupialier, E dentaten, Insectivoren, Cetaceen, Rodentier), so folgerte Reh, daß sie etwas von den Vorfahren der Säuger Ererbtes vorstellen, und daß die Ursäuger selbst ein Schuppenkleid besessen haben.

Beide Autoren bedienten sich in ihren Arbeiten vorwiegend der systematisch morphologischen Untersuchungsmethode; sie studierten die topographischen Beziehungen der Schuppen und Haare an erwachsenen Tieren und suchten auf diesem Wege ihre allgemeine Verbreitung, sodann aber auch ihre phylogenetische Bedeutung zu ergründen und erklären. Die Ontogenie dieser Hautgebilde wurde dabei nur wenig berücksichtigt. Speziell für den Rattenschwanz erwähnt de Meijere nur, daß von den hinter einer jeden Schuppe hervortretenden Haaren zuerst das stärkere „Mittel-

Schuppentiere und Gürteltiere sind mit Hornschuppen bedeckt, welche in ihrer Form, Größe und Anordnung recht verschieden, in ihrem histologischen Aufbau aber gleich sind. Bei ersteren treten embryonal erst sehr spät und nur unter dem hinteren Rande der Schuppe einzelne marklose Haare auf; Talg- und Schweißdrüsen fehlen gänzlich. Bei letzteren finden sich schon früh nicht nur unter dem hinteren Rande, sondern auch zwischen den einzelnen Schuppen zahlreiche Haare mit Talgdrüsen und wohlentwickelte Schweißdrüsen, welche später bei der Verknöcherung des Panzers teilweise wieder verloren gehen. Mag man nun darin bei den Schuppentieren die letzten Reste eines einstmalen schöneren Haarkleides erblicken, dem durch die dachziegelartige Lage der großen Hornschuppen die Entwicklungsmöglichkeit genommen wurde, und die Schuppentiere von echten Haartieren ableiten (Römer), oder annehmen, daß ihr Haarkleid stets nur ein dürftiges gewesen ist, eine spätere Rückbildung erfuhr und sie daher mehr oder weniger direkt an schuppentragende Stammformen anzuschließen sind (Weber), — die Vorfahren der Gürteltiere müssen wir angesichts der wohlentwickelten Schweißdrüsen und Haare unter den echten Haartieren suchen. Auf Grund dieser beiden abweichenden Befunde hatte ich darauf hingewiesen (7, 1893), daß man, wenn sich die Schuppen auch vornehmlich in den untersten Ordnungen der Säugetiere finden, doch jeden einzelnen Fall erst embryologisch untersuchen muß, um festzustellen, wo die Schuppen und wo die Haare in Rück- oder Fortbildung begriffen sind, ehe man die Schuppenfrage verallgemeinern kann. Vor allen Dingen kann überhaupt nur die mikroskopische Untersuchung entscheiden, wo echte Schuppen vorliegen und wo nicht. Nach Weber (2, 1892) charakterisiert die echte Schuppe "eine flache, bilateral-symmetrische, mit ihrer Spitze schwanzwärts schauende Papille der Cutis, welche von der Hornbildung der..."
Studien über das Integument der Säugetiere.

607

Ich habe mir nun vorgenommen, die Anlagen der Schuppen und Haare an einer Reihe verschiedener Säuger zu verfolgen, um die Beobachtungen und Auffassungen der anderen Autoren entwickelungsgeschichtlich zu ergänzen und festzustellen, wo eine- seitig die Schuppen als alte, primäre Bildungen aufzufassen sind, welche die Stellung der Haare regelten, wo aber andererseits sekundäre Verhältnisse mitspielen, welche eine andere Deutung rechtfertigen und nötig machen, und wählte als erstes Objekt Schwanz und Füße der weißen Ratte, Mus decumanus Pall., Albino, die ja außerordentlich leicht und schnell in allen gewünschten Stadien zu züchten ist. Einige Schwierigkeit bietet dabei nur die genaue Bestimmung des Alters der Embryonen und somit des Zeitpunktes, wo die Abtötung des Muttertieres erfolgen muß. Für den vorliegenden Fall ist allerdings die genaueste Altersbestimmung

1. Das Integument des Schwanzes.

Meine Erwartungen, mit denen ich an die Untersuchung des Rattenschwanzes herantrat, haben sich durchaus nicht erfüllt. Wenn anders man den Schwanz als ein indifferentes Endglied des Rumpfes betrachtet, an dem sich noch primitive Zustände erhalten konnten, so dürfte man erwarten, in der Entwicklung seines Integuments noch Anklänge an frühere Zeiten zu finden. So hoffte

\(^1\) Siehe L. Drüner, diese Zeitschrift, Bd. XXVIII, S. 296, Anmerk.
ich speziell Aufschluß zu erhalten über die topographischen Be-
ziehungen der Schuppen und Haare bei ihren ersten Anlagen, die
vielleicht für die Phylogenie des Haares von Wichtigkeit sein
konnten. Ich war daher sehr enttäuscht, zu sehen, daß hier die
Haare viel früher auftreten als die Schuppen, allerdings — und
das will ich hier gleich vorweg bemerken — in ganz regel-
mäßiger Anordnung, die man unbedingt auf alte Zustände zurü
rückführen muß.
Die Differenzierung der Haut erfolgt überhaupt verhältnis-
mäßig spät; bei einem Embryo von 26 Tagen, also nur wenige
Tage vor der Geburt, sind weder Haar- noch Schuppenanlagen
vorhanden. Die Epidermis bietet bis zu diesem Stadium keine
Sonderheiten, ein Stratum corneum (Fig. 1) ist noch nicht ent-
wickelt, nur wenige Kerne der obersten Lage sind abgeplattet und
spindelförmig geworden. Die Kerne des Rete Malpighi sind äußerst
lebhaft gefärbt, aber noch ist keine Veränderung in ihrer Form
oder Gruppierung wahrzunehmen, die als erste Anlage eines Haares
gedeutet werden könnte. Unter den Zellen der Cutis hat dagegen
schon eine lebhafte Vermehrung stattgefunden, welche namentlich
die obersten 2—3 Lagen unter der Epidermis betrifft. Diese
könnte man vielleicht als die ersten Anlagen der Cutispapillen,
also des Schuppenkleides, deuten, doch läßt sich dagegen ein-
wenden, daß die Vermehrung nicht an einzelnen Stellen ein-
getreten ist, etwa wie bei den ersten Anlagen der Haare, sondern
rings um den Schwanz herum ganz gleichmäßig in den obersten
Lagen der Cutis. Sodann findet man auch auf den fernerem Sta-
dien (Fig. 2—4) noch keine Erhebung der Cutis zu Papillen, ob-
sich die Vermehrung ihrer Zellen noch ganz gewaltig zuge-
nommen hat und sich auch auf die tieferen Lagen erstreckt.
Immerhin mögen aber hierin noch die letzten Reste einer ehemals
viel größeren Bedeutung und Entwicklung der Cutis zu erblicken
sein; die Cutis hat in früheren Perioden viel mehr leisten müssen:
die Ausbildung mächtiger Cutispapillen. Diese Papillen sind im
Laufe der Zeit in ihrer Bedeutung zurückgetreten und geschwun-
den, aber die Gewohnheit, sie anzulegen, ist geblieben, und führt
heute noch zu einer intensiven Vermehrung der Cutiszenlen auf
früher Stufe. Freilich können auch mechanische Einflüsse die Ur-
sache dieser starken Vermehrung sein; die verhältnismäßig dünne
Cutis hat am Schwanz als einem kräftigen und lebhaften Be-
wegungssorgan, zumal bei der harten und dicken Haut viel Druck und
Zug zu erleiden und muß daher besonders fest und straff gefügt sein.
Bei einem 27 Tage alten Embryo treten die ersten Haar-
anlagen auf (Fig. 2). Sie bieten an und für sich nichts Merk-
würdiges; wir sehen dieselbe Vergrößerung und meilerartige An-
ordnung der Kerne des Rete Malpighi wie bei anderen Tieren. Bemerkenswert ist aber ihre regelmäßige Anordnung in gleichen Abständen rings um den Schwanz herum (Fig. 3 u. 4). Ihre Zahl ist bei den einzelnen Individuen etwas verschieden, doch lege ich darauf keinen besonderen Wert. Sie schwankt eben mit der Größe und Dicke des Schwanzes und demzufolge nimmt auch ihre Zahl nach der Spitze des Schwanzes zu ab; an der Schwanzbasis sind die meisten, an der Spitze die wenigsten vorhanden. Die Epidermis zeigt sonst gegen Fig. 1 nur wenige Fortschritte. Die höchst unregelmäßigen Zacken an der Oberfläche (Fig. 2) sind Kunst- oder Schrumpfungsprodukte, die allemal dann eintreten, wenn man beim Wechseln des Alkohols nicht schnell genug zu Werke geht, so daß der Alkohol an der Oberfläche des Objektes verdunstet, was ja bei stärkeren Konzentrationsgraden allzu leicht erfolgt. In Fig. 3 und 4 erscheint die Oberfläche der Epidermis mehr in natürlicher Erhaltung; hier ist schon ein St. corneum entwickelt.

Auch auf diesem Stadium hat sich die Cutis noch nicht zu Papillen erhoben. Die durch die Haaranlagen entstandenen Einsenkungen der Epidermis fassen allerdings Erhebungen der Cutis zwischen sich, welche großen Papillen ähnlich sehen. Doch kann ich ihnen den Charakter einer Cutispapille nicht zusprechen. Neben Einsenkungen sind naturgemäß auch Erhebungen vorhanden, denn wo es Thäler gibt, gibt es auch Berge. Hier sind aber die Berge überall gleich hoch; sie bilden gewissermaßen ein Hochplateau, in welches sich die Haaranlagen gleichmäßig einsenken. Auch ist hier die Vermehrung der Cutiszel len allgemein und umsaumt als gleichmäßig starkes Band Erhebungen wie Einsenkungen. Ursprünglich (Fig. 1) überall parallel der Epidermis verlaufend, wird es später von den Haaranlagen in die Tiefe und zusammen-
gedrängt, manchmal auch seitlich etwas auseinandergeschoben, denn bei einigen Haaranlagen liegen die Cutiszel len direkt unter den Haaranlagen weniger dicht, seitlich daneben aber sehr dicht.

Es erhebt sich nun die Frage, wodurch die regelmäßige An-
ordnung der Haare bedingt wird? Nach de Meijere schaut beim erwachsenen Tier unter dem hinteren Rande einer jeden Schuppe ein stärkeres Mittelhaar hervor, welches zuerst durch-
bricht, und neben dem erst später jederseits ein oder — wie ich hin-
zuflügen kann — mehrere laterale Haare erscheinen. Demgemäß müssen auch die Anlagen der Mittelhaare zuerst auftreten (Fig. 2—4), und erst später rechts und links von ihnen die Anlagen der lateralen Haare (Fig. 6). Die Zahl der Mittelhaare eines jeden Schuppenringes entspricht der Anzahl der Schuppen desselben Ringes, aber die Haare legen sich bereits in ihrer späteren Anordnung an, ehe auch nur die Andeutungen der Schuppen vorhanden sind, von denen sie nachher abhängen. Zweifelsohne läßt sich diese Anordnung nur aus den topographischen Beziehungen der Haare zu den Schuppen erklären, es fragt sich nur: zu welchen Schuppen? Zu den Schuppen, unter denen sie heute noch stehen, oder zu den längst geschwundenen Schuppen älterer Vorfahren, unter denen sie überhaupt vielleicht zuerst ins Dasein traten? Für die letztere Annahme spricht allenthalben im Tierreich die Stellung und Gruppierung der Haare auf beschuppten und unbeschuppten Teilen der Haut (De Melijere). Die Haare haben sich einstmals unter dem hinteren Rande der Schuppen entwickelt, die Schuppen schwanden mehr oder weniger, aber die Haare behielten ihre alte Gruppierung noch bei, die später wieder von Wichtigkeit wurde, als abermals Schuppen zu ihnen in Beziehungen traten. Ich will natürlich damit nicht behaupten, daß diese letzten Schuppen vollständig neue Erwerbungen sind. Sie haben aber einmal an Bedeutung und Entwicklung verloren, aus welcher Zeit die Haare ihr Recht herleiten, sich früher anzulegen, sind dann wieder in den Vordergrund getreten und mußten ihre alte Anordnung wieder einnehmen, welche die Haare so schön bewahrt hatten. Ihren Platz und die Beherrschung der Haare im ausgebildeten Zustande erwarben sie wieder, aber des Rechtes der früheren Anlage gingen sie verlustig. Mit der ersten Annahme, daß die Schuppen in der vorliegenden Form, wie wir sie heute am Rattenschwanz finden, alte Erbstücke sind, die die Stellung der Haare regelten, läßt sich das heutige vorzeitige Auftreten der Haare ungezwungen erklären, wenn man zur Cäno-
Schuppen auch bei ganz nahe verwandten Arten mit gleicher Lebensweise nicht nachweisen. Ich glaube aber, wir bedürfen solcher Gründe nicht, es genügt uns, schon jetzt constatieren zu können, daß die Schuppen des Rattenschwanzes, so wie sie am erwachsenen Tier auftreten, durchaus nicht alte primitive Bildungen sind, sondern daß hier bereits sekundäre Modifizierungen mitgespielt haben.

Fig. 8 zeigt die Anlage zweier lateralen Haare bei starker Vergrößerung, welche in derselben Weise erfolgt wie bei dem Mittelhaar; auch sind die Anlagen absolut nicht kleiner als die ersten Anlagen der Mittelhaare, der jetzige Größenumerschied resultiert also zumeist nur aus dem größeren Alter und vielleicht auch aus der besseren Ernährung des anfangs alleinigen und nachher stets stärkeren Kostgängers der Epidermis. Das Mittelhaar ist beträchtlich gewachsen, in die Tiefe gerückt und schräg gestellt. In Fig. 6 sind die Anlagen von vier Mittelhaaren mit je zwei seitlichen Haaren abgebildet. Auf Längsschnitten (Fig. 5 und 7) sieht man zwischen zwei größeren Anlagen weniger tiefe Einsenkungen der Epidermis, deren Rete Malpighi-Zellen lebhaft gefärbt sind und sich stellenweise zu meilerartigen Haaranlagen gruppiert haben. Die Haaranlagen liegen dicht zusammen, aber auch zwischen ihnen ist die Epidermis eingesenkt, so daß um den ganzen Schwanz herum eine solche Epidermisrinne läuft. Auf den jüngeren Stadien (Fig. 5), kurz vor der Geburt, ist dieses Abwechseln schön ausgeprägt oder vielleicht im Schnitte glücklich getroffen, so daß zwischen zwei Mittelhaaren je eine solche Rinne liegt. Auf den älteren Stadien (Fig. 7) sind die Haare bereits weiter auseinandergerückt und nicht mehr genau in einer geraden Linie gelagert, so daß es schwer ist, alle Mittelhaare auf einem Schnitt zu treffen. Die letzteren haben bereits eine deutlich schräge Stellung angenommen, und dementsprechend schiebt sich die Cutis über die Haaranlagen hinweg. Man könnte hierin die ersten Anlagen der Cutispapillen erblicken, denn die oberste Grenze der Cutis ist durchaus nicht mehr so gleichmäßig wie im früheren Alter (Fig. 3 und 4). Jedoch ist die Vermehrung der Cutiszellen hier absolut nicht stärker; die Zellen liegen unter den Einsenkungen der Epidermis ebenso dicht wie an den Erhebungen der Cutis. Die ganze Konfiguration ist jedenfalls in erster Linie auf die Einsenkungen der Epidermis, die Haaranlagen zurückzuführen und die Beteiligung der Cutis, wenn sie überhaupt vorhanden ist, noch äußerst gering. Die Fig. 9 und 10 stellen Quer-
schnitte von einer 2 Tage alten Ratte dar. Hier liegen schon drei fast gleich starke Haare zusammen in einer bogenartigen Erhebung der Cutis, durch eine Furche der Epidermis von-einander getrennt. Verfolgt man aber die Serie weiter nach vorn oder nach hinten (Fig. 10), so zeigt sich doch die größere Länge undDicke des Mittelhaares, die obere Grenze der Cutis wird eben, und es treten noch neue Haaranlagen an jeder Gruppe auf. Die Fig. 11 und 12 veranschaulichen dies noch besser. Die Schnitt-richtung ist zufällig fast parallel dem Haarringe gelegt, so daß fast alle Haare an ihrer Verbindungsstelle mit der Epidermis getroffen sind. In Fig. 11 haben zwei Gruppen je fünf, in Fig. 12 beide Gruppen nur vier Haare. Beide Zahlen kommen neben-einander vor, aber die Fünfzahl scheint die häufigere zu sein; man trifft aber die äußersten Haare, die jünger und daher noch kürzer sind, nur auf wenigen Schnitten. Zwischen den Gruppen liegen alternierend die Querschnitte der Mittelhaare der nächstfolgenden Gruppe, welche allemal unter der vorhergehenden wurzeln. Im weiteren Verlaufe der Serie erscheinen dann allmählich die Nebenhaare, erst eines, dann zwei jederseits, während die Haare der obersten Schicht verschwinden. In der Tiefe rücken dann alls bald wieder die Mittelhaare der dritten Reihe ein u. s. w. In diesem Alter hat bereits die Ausbildung und Verhornung des Haarschaftes angefangen. Bei drei Haaren (Fig. 12) ist er schon als kleiner, festgeschlossener Stab in die Epidermis vorgeschoben, aber noch lebhaft gefärbt; bei zwei Haaren ist er dagegen schon stark ver-hornnt und nicht mehr gefärbt. Die Talgdrüsen beginnen sich aus-zustülpen. In allen Abbildungen (Fig. 7—13) umgiebt den ganzen Schwanz ringsum eine starke Hornlage, welche an ihrer Oberfläche zwar einige unregelmäßige Zacken und Wölbungen zeigt, im übrigen aber der Epidermis völlig glatt aufliegt und nirgendwo eine Ab grenzung in Ringe oder Schuppen erkennen läßt.

Fig. 13 zeigt die Grupierung noch deutlicher; es sind fünf verschiedene Haarringe getroffen. Der Schwanz dieses Tieres fiel allerdings durch seine Kürze auf; es scheinen die einzelnen Ringe dichter zusammengedrängt zu sein. Eine Zahlung derselben oder ein Vergleich mit der Anzahl bei anderen Tieren war nicht mög lich, da äußerlich ja noch nichts von den Haarringen wahrzu nehmen war. Ich glaube aber aus der Serie ersehen zu können, daß die Zahl kaum geringer ist als bei anderen Embryonen. Von den beiden untersten Reihen sind nur die Mittelhaare getroffen, die am tiefsten in der Schwanzhaut wurzeln, und zwar dicht an ihrem
proximalen Ende, an der Haarzwiebel, daher im Bilde auch die stärksten. Die alternierend darüber liegende Reihe ist weiter vorn vor der Haarzwiebel getroffen und daher viel dünner. Die dritte Reihe zeigt bereits jederseits ein laterales und die vierte je zwei laterale Haare. Oben in der Epidermis sieht man dann noch einige Querschnitte der fünften Reihe, deren Haarschäfte schon teilweise angelegt sind, aber die Haut noch nicht überragen. In Fig. 14 dringen von oben her drei Einschnitte in die Epidermis ein, die eine regelmäßige Einteilung dieser in Felder oder Schuppen zu verursachen scheinen. Sie liegen allemal über der tiefsten Stelle der Epidermis und gerade über dem Mittelhaar, zu dem sie auch nähere Beziehungen haben, denn im weiteren Verlauf der Serie zeigt sich, daß es die Stelle ist, an welcher der Schaft des Mittelhaares die Epidermis durchdringt. Sie sind bereits durch die Epidermis bis zum St. corneum vorgedrungen. In Fig. 15 scheint diese Einteilung der Epidermis noch allgemeiner, man sieht aber hier deutlich, daß die oberen Hornzapfchen zu den darunter liegenden Haaren gehören und sich bis zu diesen verfolgen lassen. Die Hornschicht ist an diesem Vorgänge insofern aktiv beteiligt, als sie auch ihrerseits von oben her in diese Spalten eindringt, sobald sie durch den Druck des von unten kommenden Haarschaftes klaffen. Manchmal klaffen die Epidermis bereits, wenn erst ein ganz kleiner, noch lebhaft gefärbter Haarschaft angelegt ist, wie z. B. in Fig. 12. Natürlich wird dadurch auch teilweise eine wellige Oberfläche der Hornschicht veranlaßt (Fig. 15). Daß sie aber trotzdem noch eine einheitliche, nicht geteilte Schicht bildet, zeigt die in continuo abgehobene obere Partie. In Fig. 16 sehen wir vier vollständig ausgebildete Haare, mit kräftigem Schaft. Sie sind durch die Hornlage bis zum obersten Rande derselben vorgedrungen, haben sie aber noch nicht durchbrochen oder abgehoben, sondern sich an ihrer Oberfläche leicht umbiegen. Nicht viele Haare sind so weit entwickelt und es scheint mir daher die Kraft der wenigen Haare noch nicht auszureichen zur Sprengung oder Abhebung der Hornschicht. Die Erhebung der Cutis zu Papiilen ist weiter fortgeschritten; mit der größeren Schrägstellung der Haare schiebt sich auch die Cutis mehr und mehr faltenartig über sie hinweg und bildet schließlich große, den ganzen Schwanz umgreifende Falten, zwischen denen in der Tiefe die Haare stehen. Darüber legt sich ganz gleichmäßig über den ganzen Schwanz eine Horndecke, welche vor dem Durchbruch der Haare noch keine Einteilung in Schuppen oder Furchen erkennen
läßt. Die geringen Wölbungen über jedem Haar (Fig. 16) sind auf den Druck derselben zurückzuführen. Später, wenn die Haare zahlreicher und stärker geworden sind, erfolgt allgemein und gleichmäßig der Durchbruch und damit die Sprengung der Hornschicht an den betreffenden Haarringen. Das Resultat dieser Sprengung zeigt Fig. 17, ein Längsschnitt durch die Schwanzhaut einer erwachsenen Ratte. Die Erhebungen der Cutis sind höher und länger geworden, überragen das allgemeine Niveau der Haut bedeutend und umgeben den Schwanz gleichmäßig als parallele Falten. Damit hat die Horndecke ihren einheitlichen Charakter verloren und läßt zwei verschieden dicke Partien erkennen, eine dünnere in der Einsenkung, wo die Haare stehen, und eine dickere auf den Erhebungen der Cutis, den eigentlichen Hornringen oder Schuppen. Zwischen ihnen kann man deutlich die Rißstellen erkennen, an welchen die Haare die Hornschicht gesprengt haben. Sie ist hier am dünnsten, und es ist wohl anzunehmen, daß mit dem Durchbruch der Haare ein Teil der Hornsubstanz zerrissen wird. Die untersten Schichten sind einfach durchbohrt, aber in ihrer Lage nicht verändert; die obersten dagegen sind zerrissen und zum Teil auch abgehoben, aber nicht nur an den betreffenden Punkte, wo die Haare herausgetreten, sondern auch zwischen den Haaren auf dem ganzen Ring, so daß hier die Hornschicht fast überall dünner ist. Nur selten tritt man zwischen den Haaren Stellen, an denen die Hornschicht nicht Einbuße an ihrer Dicke erlitten hat und der Schicht auf den Ringen an Dicke nicht nachsteht. Am hinteren freien Ende der Schuppen ragen die zerrissenen Enden frei vor, und man kann ihre Schichtung und Zusammensetzung noch deutlich erkennen. Daß aber die Hornschicht auf dem ganzen Schwanz noch einheitlich ist, dafür sprechen diejenigen Präparate, an denen sie sich infolge der Konservierung oder des Schniedens sowohl auf als zwischen den Ringen in continuo abgehoben hat. Die lockere Schichtung der Schuppen ist selbst an alten Tieren noch allgemein. Die Fig. 18 und 19 geben noch Querschnitte durch die Schwanzhaut alter, ausgewachsener Ratten. Der eine Schnitt (Fig. 18) ist durch das untere, tiefe Ende eines Schuppenringes gelegt und zeigt deutlich die Abgrenzung der Cutis erhebungen, der Schuppenpapillen, durch Vertiefungen der Epidermis. Dadurch wird auch eine Einteilung in Hornschuppen hervorgerufen, obschon die Hornschicht auch in den Furchen von derselben Dicke ist. Die Gruppierung der Haare ist dieselbe, vier und fünf Haare in einer Schuppe. In der linken Gruppe tritt der größte Unter-
schied zwischen Mittel- und Seitenhaaren deutlich hervor, indem
das Mittelhaar am stärksten, die beiden äußersten am schwächsten
sind. Die Talgdrüsen sind stark ausgebildet, alle nach unten ge-
drückt und dicht aneinander gelagert. Auffallend ist, daß in
manchen Haarbälgen noch ein zweiter, schwächerer Haarschaft
steckt: auch vielleicht ein Beweis der überreichen Hornbildung.
Der Schnitt, dem die Fig. 19 entnommen ist, stammt von einer
Hausratte, Mus rattus L., her und ist hart auf der Grenze
zwischen zwei Schuppenringen geführt. Zu oberst sieht man noch
an drei Stellen die letzten Reste des vorhergehenden Ringes. Die
Haare sind gerade an ihrem Austritt aus der Epidermis getroffen,
die sie wallartig umfassen. Die Abgrenzung des Hornringes in
einzelne Schuppen ist hier nicht deutlich, weiter zurück aber
ebenso gut ausgeprägt wie bei der Wanderratte. Beide Ratten-
arten unterscheiden sich in ihrer Schwanzhaut nur dadurch, daß
die Papillen der Hausratte flacher und gestreckter sind, sie er-
heben sich nur wenig über das allgemeine Niveau der Haut, und
däß die Haare mit ihren Wurzeln kaum unter den vorhergehenden
Ring reichen. Die dicke Hornlage auf den Ringen ist stark pig-
mentiert, während in den Thälern jegliches Pigment fehlt. Hier
scheinen die schwarzen Haare alles Pigment für sich beansprucht
tu haben.

Die übrigen untersuchten (meist afrikanischen) Arten geben
zu besonderen Bemerkungen keinen Anlaß. Da ich von jeder Art
meist nur 1 Exemplar zur Verfügung hatte, konnte ich natürlich die
ganze Entwicklung der Schwanzhaut nicht verfolgen; ich glaube aber
aus den einzelnen Altersstufen entnehmen zu können, daß sie nicht
wesentlich anders verläuft und zu anderer Deutung Anlaß giebt.
Die Unterschiede beziehen sich meist auf die Form und Höhe der
Schuppenringe und auf die größere oder geringere Dichtigkeit der
Haare. Bei Mus bar b ar us ist der Schwanz außerordentlich
dicht behaart. Eine Gruppierung der Haare zu dreen ist zu er-
können, aber wenig schön ausgebildet. Die Papillen der Cutis
übertreffen das Niveau der Haut nur wenig und die Hornschicht
bedeckt die Erhebungen wie Einsenkungen alle gleichmäßig, so daß
ihre Oberfläche absolut glatt und eben ist. Bei Mus spec. juv.
aus Ternate stehen die Haare nicht in Gruppen, sondern einzeln,
sie sind in diesem Stadium schon weit entwickelt und wurzeln
außerordentlich tief, aber die Epidermis ist noch vollkommen glatt,
ebenso wie die nur sehr dünne Hornschicht. Mus mus cul us L.
hat auch nur niedrige Cutispapillen, die nur wenig hervortreten,
wohl aber die Haargruppen, deren Haare hier ganz nahe aneinander gerückt sind, so daß die Talgdrüsen sich berühren.

Die Untersuchung hat also gezeigt, daß die heutigen Schuppen des Rattenschwanzes nicht als alte Erbstücke der Reptilien-ähnlichen Vorfahren betrachtet werden können, sondern ähnlich wie bei Anomalurus modifizierte Gebilde sind, die sekundäre Abänderung erfahren haben. Weber's Ansicht, daß die Schuppen die Stellung der Haare bedingt hätten, läßt sich voll und ganz aufrecht erhalten und wird bestätigt durch die Anordnung und Gruppierung der Haare bei ihrer ersten Anlage. Aber dieser Satz gilt nicht für die Schuppen, wie sie heute am Schwanz des erwachsenen Tieres vor uns liegen; es sind zwar echte Hornschuppen, die sich histologisch unbedingt
an die Reptilien anschließen, auch bezüglich der Cutisbildungen, aber sie treten in anderer Form und Lage auf. Sie erheben sich als ringförmige, parallele Falten um den ganzen Schwanz herum, deren zunächst einheitliche Hornschicht von den durchbrechenden Haaren zerrissen und in dickere und dünnere Partien geschieden wird. Sie müssen sich also von den durchbrechenden Haaren beeinflussen lassen, wie oben (S. 611) bereits des näheren erläutert wurde.

2. Das Integument der Füsse.

Über die Entwicklung der Haut der Füße kann ich mich kurz fassen; sie verläuft zeitlich ebenso wie die Haut des Schwanzes. Die jüngeren Stadien, wenige Tage vor der Geburt, zeigen eine einfache, glatte Epidermis ohne eine Spur von Haaranlagen und Hornbildungen. Während die Oberseite der Füße noch fast glatt ist, gibt es auf der Unterseite in den Gelenken der Zehen zahlreiche Falten und Erhebungen, über die aber die Epidermis ohne jegliche Veränderung der Cutis oder des Rete Malpighi ebenso glatt hinwegzieht wie über die Oberseite. Die Haare legen sich auf der Oberseite der Füße in zunächst ziemlich regelmäßigen Abständen an und greifen auch auf die Seiten und die hinteren Teile der Füße über, aber die eigentliche Sohle bleibt völlig frei, so daß sie im Querschnitt durch einen Fuß mehr als die Hälfte des Randes besetzt haben. Mit der weiteren Entwicklung der Haare tritt auch eine starke Hornentwicklung ein, die gleichmäßig alle Teile des Fußes ergreift und sowohl die Erhebungen wie die Falten mit einer einheitlichen Hornlage überdeckt. An ihrer äußeren Fläche ist sie mit allerhand unregelmäßigen Zacken und Erhebungen versehen, an der inneren Seite, mit der sie der Epidermis aufliegt, dagegen völlig glatt und eben, wie man an denjenigen Präparaten, an denen sie sich in continuo abgehoben hat, feststellen kann. An der Unterseite der Füße, in den Gelenken der Zehen, ist sie vielfach geknickt und übereinander gelegt. Nur mehr erfolgen die Anlagen der seitlichen Haare, je eines rechts und links von dem ersten Haar, woraus dann im weiteren Stadium ein ähnliches Bild resultiert, wie wir am Schwanz in Fig. 13 lernten. Doch bestehen hier die Gruppen meistens nur aus drei, selten aus vier Haaren, und es liegen stets mehrere Haarreihen
übereinander. Die Dreihaargruppen sind scharf voneinander geschieden, da zwischen den Gruppen ein größerer Zwischenraum bleibt als zwischen den einzelnen Haaren. Diese Scheidung tritt schon zu Tage, ehe eine Abgrenzung der Cutis in zugehörige Papillen erreicht wird. Dieselbe kommt erst später zustande, aber sie ist auch dann nur sehr schwach und erhebt sich kaum über das Niveau der Haut; die Hornschicht überdeckt aber die ganze Oberfläche gleichmäßig.

An der Unterseite der Füße erregen noch unsere besondere Aufmerksamkeit die dicken Schwienen oder Ballen, deren die Ratte an jedem Fuß 5 bis 6 größere oder kleinere aufzuweisen hat. Fig. 20 zeigt uns einen Schnitt durch eine größere Schwiele; dieselbe ist durch und durch mit einem dichten Knäuel von Schweißdrüsen durchsetzt. Ihre Anlage läßt sich genau verfolgen, sie beginnt an einer absolut ebenen Haut, an welcher weder Haaranlagen, noch irgend welche Erhebungen der Cutis zu verzeichnen sind. Die kleinen Schwienen haben nur 4—5 Schweißdrüsen, die größeren, weiter vorn unter der Zehe gelegenen, zahlreiche, die sich mit langem Kanal tief in die Unterhaut einsenken und dort in dicht aufgerollten Knäueln endigen. In Fig. 20 sieht man fünf solcher Drüsen fast auf ihrer ganzen Länge getroffen. Daneben und dazwischen finden sich noch die nur eben angeschnittenen Gänge zahlreicher anderer, die sich in der Serie weiter verfolgen lassen. Dadurch entstehen im Bilde scheinbar papillenartige Erhebungen der Cutis zwischen den Epithelzapfen der Schweißdrüsen. Bei erwachsenen Tieren sind die Schweißdrüsen auf ihrer ganzen Länge in dichtem, festem Bindegewebe eingeschlossen, welches den Schwienen den nötigen Halt und Festigkeit giebt.

Es ergibt sich also aus diesen Befunden vollkommen der Mangel der Schuppen auf den Füßen. Die Sohlen sind mit einer dicken Hornlage bedeckt, die auch die vielen Falten und Rinnen unter den Gelenken gleichmäßig
überzieht, aber nirgendwo irgendwie an Schuppen erinnert. Auf der Oberseite legen sich die Haare mit charakteristischer Gruppierung zu dreien an und liegen in alternierender Ordnung schon in mehreren Schichten dicht übereinander, wenn sich die Oberfläche mit einer dichten Hornlage umgiebt. Nirgends zeigt diese bei der Wanderratte eine Abgrenzung und Einteilung in Schuppen, und wenn solche bei einigen Arten vorkommen, so sind sie zweifellos nachträgliche Bildungen, welche ebenso wie am Schwanze sich erst nach den Haaren anlegen und die Stellung und Anordnung derselben nicht bedingt haben können. Der Grund hierfür liegt weiter zurück in der phylogenetischen Entwicklungsreihe und kann nur in einem alten Schuppenkleide der Vorfahren gesucht werden.

Jena, Februar 1896.
Litteratur-Verzeichnis.

1) 1876. C. Arnstein, Die Nerven der behaarten Haut. Wiener Sitzgsber., math.-naturw. Klasse, Bd. LXXIV.
3) 1892. F. Maurer, Hautsinnesorgane, Feder- und Haaranlage. Morphol. Jahrb., Bd. XVIII.
10) 1894. L. Reh, Die Schuppen der Säugetiere. Jenaische Zeitschr., Bd. XXIX.

Figuren-Erläuterung.

(Die Figuren 1—19 sämtlich aus Schnitten durch die Haut des Schwanzes.)

Tafel XXVII.

Fig. 2 Desgl. Embryo, 27 Tage alt. Querschn. Ok. 2, Obj. D. Die ersten Anlagen der Mittelhaare.

Fig. 3. Von demselben Embryo. Querschn. Ok. 2, Obj. A. 6 Haaranlagen in regelmäßiger Anordnung.
Fig. 4. Desgl. Embryo, kurz vor der Geburt. Querschn. Ok. 4, Obj. A. 4 Haaranlagen in gleichen Abständen, darunter die Cutiszellen in starker Vermehrung und ein dichtes Band gleichmäßig unter der Epidermis bildend.

Fig. 5. Desgl. Embryo, kurz vor der Geburt. Längsschn. Ok. 2, Obj. A.

Fig. 6. Von demselben Embryo. Querschn. Ok. 2, Obj. A. 4 Anlagen der stärkeren Mittelhaare mit je 2 Anlagen der seitlichen Haare.

Fig. 7. Desgl. neonatus. Längsschn. Ok. 2, Obj. A. Die Entwicklung der Mittelhaare weiter vorgeschritten; die Cutis beginnt sich zu erheben.

Fig. 8. Desgl. juv., 6 St. alt. Querschn. Ok. 2, Obj. D. Die Anlagen der seitlichen Haare bei stärkerer Vergrößerung.

Fig. 9. Desgl. juv., 2 Tage alt. Querschn. Ok. 2, Obj. A. 5 Gruppen mit je 3 Haaren, darüber die bogenartige Erhebung der Cutis.

Fig. 10. Von demselben Tier. Querschn. Ok. 2, Obj. A. Auf der Grenze zwischen 2 Haargruppen die Anlage noch weiterer seitlicher Haare.

Fig. 11. Desgl. juv., 3 Tage alt. Querschn. Ok. 2, Obj. A. Zwei Gruppen zu 5 und eine zu 4 Haaren.

Fig. 12. Desgl. juv., 5 Tage alt. Querschn. Ok. 2, Obj. A. Die erste Anlage des Hornschaftes.

Tafel XXVIII.

Fig. 13. Desgl. juv., 5 Tage alt. Querschn. Ok. 2, Obj. A. 5 Haarreihen übereinander gelagert.

Fig. 14. Desgl. juv., 3 Tage alt. Querschn. Ok. 2, Obj. A. Über den Mittelhaaren die Stellen, an denen ihre Schäfte die Epidermis durchbrechen.

Fig. 15. Desgl. juv., 5 Tage alt. Längsschn. Ok. 2, Obj. A. Man sieht, daß die oberen Einschnitte zu den Haaren gehören. Oben eine abgelöste Schicht des St. corneum.

Fig. 16. Desgl. juv., 7 Tage alt. Längsschn. Ok. 2, Obj. A. Kombinationsbild aus zwei verschiedenen Schnitten, denen je 2 Haare entnommen sind. Die Haarschichten durchdringen die Hornschicht bis zu ihrem obersten Rande und biegen sich dort um.

Fig. 17. Desgl. juv., 3 Wochen alt. Längsschn. Ok. 2, Obj. A/2. Kombinationsbild aus zwei verschiedenen Schnitten.

Fig. 18. Desgl. erwachsen. Querschn. Ok. 2, Obj. A/2.

Fig. 19. Mus rattus L., erwachsen. Querschn. Ok. 2, Obj. A/2.

Fig. 20. Mus decumanus Pall., Albino. Längsschnitt durch einen Fußballen. Ok. 2, Obj. A/2. 5 lange Schweißdrüsen, die auf dem Schnitt ganz getroffen sind.
Zur Entwicklungsgeschichte des Zahnsystems der Säugetier-Gattung Galeopithecus Pall.

Von
Theodor Dependorf.

Hierzu Tafel XXIX—XXXII und 6 Figuren im Text.

Es waren also folgende Altersstufen, die ich einer eingehenden Untersuchung unterziehen konnte.
Theodor Dependorf,

Stadium A. Embryo I. Gesamtlänge, gemessen von der Schnauzenspitze über den Rücken bis zum After ... 11,5 cm

„ B „ II. Desgleichen ... 14,0 „

„ C „ Neugeborenes Männchen ... 19 „

„ D „ Halb erwachsenes Männchen ... 25,3 „

„ E „ Erwachsenes Weibchen ... 43,5 „

Die Länge des Kopfes, gemessen von der Schnauzenspitze über die Orbitalregion bis zur Protuberantia occipitalis externa, beträgt für

A. Embryo 11,5 cm ... 4,0 cm
B. Embryo 14 cm ... 4,5 „
C. Neugeborenes Männchen 19 cm ... 5,3 „
D. Halb erwachsenes Männchen 25,3 cm ... 6,5 „
E. Erwachsenes Weibchen 43,5 cm ... 9,0 „

Die merkwürdige Form des jüngsten Embryos hat mich veranlaßt, sie durch eine Zeichnung wiederzugeben. Fig. 1 gibt eine Ansicht seiner Gestalt und Größe. Der Embryo liegt in seiner Flughaut versteckt, die zum Teil über den Kopf gezogen ist. Bei a befindet sich der Kopf, bei b der Schwanz und die hinteren Extremitäten, bei c die vordere, linke Hand. Fig. 2 und 3 zeigen die Kopfform in einfacher und doppelter Größe.

Waterhouse 1) trennt Galeopithecus Pall. in zwei Arten und bezeichnet die gemene Art, welche auf Java, Borneo, Sumatra lebt, als Galeopithecus Temminckii Waterh. und die zweite Art,

welche auf den Philippinen vorkommt, als Galeopithecus Philippinensis Waterh. Beide Arten lagen mir zur Beobachtung vor.

1) Owen, Odontography, 1840—1845, p. 435, Pl. 114.
2) Blainville, Osteography, 1839—64. Artikel Lemur S. 44.
3) Giebel, Säugetiere in Bronn's Klassen und Ordnungen des Tierreiches, Bd. VI, Abt. 5.
Der Irrtum beruht darauf, daß an dem ihm zur Hand liegenden Schädel von Galeopithecus die Sutura intermaxillaris verwachsen war. Die rein systematischen Arbeiten, welche die verschiedenartigsten Zahnformeln bringen, übergehe ich und bemerke nur, daß folgende Zahnformeln für Galeopithecus aufgestellt worden sind:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carus</td>
<td>2-1-2-4</td>
<td>1-1-6</td>
</tr>
<tr>
<td>Claus</td>
<td>2-1-2-4</td>
<td>3-1-5</td>
</tr>
<tr>
<td>Cuvier</td>
<td>2-1-2-3</td>
<td>3-1-3-3</td>
</tr>
<tr>
<td>Giebel</td>
<td>2-1-2-3</td>
<td>3-1-5</td>
</tr>
<tr>
<td>Grube</td>
<td>2-1-2-3</td>
<td>3-1-5</td>
</tr>
<tr>
<td>von der Hoeven</td>
<td>2-1-2-3</td>
<td>3-1-5</td>
</tr>
<tr>
<td>Leche</td>
<td>2-1-2-3</td>
<td>3-1-5</td>
</tr>
<tr>
<td>Linné</td>
<td>2-1-2-3</td>
<td>3-1-5</td>
</tr>
<tr>
<td>Owen</td>
<td>2-1-2-3</td>
<td>3-1-5</td>
</tr>
</tbody>
</table>

Die wichtigen Angaben von Leche will ich in kurzen Zügen wiedergeben:

Der Zahnwechsel findet auffallend spät statt. „Alle Molaren (vielleicht mit Ausnahme des oberen M₃) und des unteren I₃ funktionieren eine Zeit lang zusammen mit den Zähnen der ersten Dentition 1)“. „Die Annahme, daß die sogenannten echten Backzähne (Molaren) morphologisch zu derselben Dentition wie die sogenannten Milchzähne, also zum ersten sogenannten Milchgebiß zu zählen sind, wird einem hier besonders nahe gelegt, wo die ‚Milchzähne‘ mit den permanenten Molaren eine kontinuierliche Reihe bilden, und erstere nur wenig mehr entwickelt sind als letztere.“ Die Formel für die permanenten Zähne ist: I₃ ⅔ Pm ⅔ M ⅔.

„Die Prämolaren des Unterkiefers sind Differenzierungsprodukte der Molaren; die vordere Hälfte verlängert und verschmälert sich zu einer Schiene, und zwar successive, indem dieser Umwandlungsprozeß bei Pm₃ nur angedeutet, bei Pm₂ deutlicher hervortritt, während bei Pm₁ auch die hintere Hälfte dieselbe Umwandlung erfährt.“ Ähnlich verhält es sich im Oberkiefer. Der 3. untere Id wird sehr früh ersetzt; er ist einfach stiftförmig und fällt weit früher aus als seine Altersgenossen. I₃ funktioniert daher als erster Ersatzzahn im Kiefer zusammen mit dem Milchgebiß. Auf diesem Vorkommen beruhen die Irrtümer in den bisher gemachten Angaben des Zahnersatzes. „Die für Galeopithecus eigentümliche Ausbildung des Zahnsystems ist in beiden Dentitionen gleich stark ausgeprägt; der obere M₃ hat sich — abweichend von der sonst

Zahnsystem der Säugetergattung Galeopithecus Pall. 627
giltigen Regel — sogar noch weiter vom Molartypus entfernt als sein Nachfolger in der zweiten Dentition."

"Die für Galeopithecus charakteristische Zahnform ist eine phylogenetisch sehr alte Bildung, welche schon seit lange so vollkommen der Lebensweise sich angepaßt und eine solche Konstanz erworben hat, daß die charakteristischen Merkmale in beiden Dentitionen etwa gleich stark ausgeprägt sind."

"Der untere Galeopithecus-Schneidezahn ist durch allmähliche Verbreiterung und wiederholte Zackenbildung eines Zahnes, welcher zunächst mit dem Schneidezahn bei Tupaia resp. Indrisinae übereinstimmte, entstanden."

"Der obere I₂ und der obere P₃ sind zweiwurzelig. Der erste Prämolär ist der Eckzahn. Diese Beschaffenheit ist nicht etwas für Galeopithecus Eigentümliches, sondern vielmehr ein für eine große und phylogenetisch alte Gruppe gemeinsames, primitives Anfangsstadium."

Ich habe diese Angaben zum größten Teil mit den eigenen Worten des Verfassers wiedergegeben. Im wesentlichen konnte ich auf Grund meiner entwickelungsgeschichtlichen Untersuchung das bestätigt finden, was Leche als Befund seiner Untersuchungen an zwei jungen Exemplaren (junges Männchen: Länge von der Schnauzenspitze bis zum After 0,163 m, und neugeborenes Tier: Länge von der Schnauzenspitze bis zum hinteren Beckenrand 0,100 m) angegeben hat. In mancher Hinsicht glaube ich aber auf Grund meines reichlicheren und teilweise jüngeren Materials weiter gekommen zu sein.

Ich gehe nunmehr zu meinen eigenen Untersuchungen über. Als Zahnformel stelle ich für das persistierende Gebiß auf:

\[\text{Zahnformel: } I_1I_2 \text{ C (fehlt) Pr}_1-3 \text{ M}_1-3 \]

Zunächst möchte ich Einiges über die Formverschiedenheit einzelner Zähne beider Galeopithecus-Arten hervorheben. Owen

Die von vorne nach hinten zunehmende Umbildung der Prämolaren zum Molartypus tritt im Oberkiefer und in der ersten Dentition am deutlichsten zu Tage. Die zweite Dentition zeigt das nicht so. Innerhalb dieser hat sich z. B. der 2. Prämolaren des Oberkiefers des erwachsenen Weibchens in einer eigenartigen Weise modifiziert. Er ist nach innen lingualwärts eingeknickt, so daß der proximale Teil in die Längsachse des Kiefers, der distale aber fast senkrecht zu dieser zu liegen kommt (Fig. 5). An jugendlichen Schädeln tritt diese Form und Lage des zweiten Prämolaren nicht auf. Sämtliche Molaren sowie der letzte Prämolaren des Oberkiefers sind scharf nach innen gedrängt, sie stehen schräg im

Owen weist bereits auf die starke Abnutzung der Kronen der Backzähne bei erwachsenen Individuen hin. Er führt dieses auf die vegetabilische Nahrung des Galeopithecus zurück. Mir ist diese starke Abnutzung auch aufgefallen. Um dieselbe zu verdeutlichen, habe ich von einem jüngeren und von einem ausgewachsenen Exemplare bildliche Darstellungen (s. Fig. 6—9) gegeben. Vergleichen wir beide, so sehen wir, wie aus dem Insektivoren-ähnlichen Gebiß ein ganz anderes, ein Herbivoren-ähnliches entstanden ist. Die auf den jungen Stadien so außerordentlich hervortretenden 4 Spitzen der hinteren Backzähne mit ihren meist distal-lingualwärts gelegenen Nebenzacken sind nicht mehr zu finden. Nur im Oberkiefer buccal und im Unterkiefer linguval sind Andeutungen davon vorhanden. Kleine Rinnen zwischen buccalen und lingualen Teilen der Zähne weisen auf eine frühere reichere Bezackung hin. Es sind zwei Leisten entstanden, die linguo-buccal gelegen, einander parallel gerichtet sind und zwischen sich eine flache Furchen lassen, die im Oberkiefer tiefer erscheint. Diese sekundär entstandene Form der Zähne spricht entschieden für eine herbivore Kost, abgesehen davon, daß die ganze Zahnreihe einen dunkelbraunen Überzug erhalten hat, wie er nur am Gebiß von Pflanzenfressern zu finden ist. Wir können schon jetzt feststellen, daß wir eine Bezahnung vor uns haben, die ohne jede Frage einer veränderten Lebensweise, veränderter Nahrungsauf-

<table>
<thead>
<tr>
<th>Gebißarten mit Angabe der jederseitigen Zahnzahl im</th>
<th>Oberkiefer</th>
<th>Unterkiefer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angabe der einzelnen Exemplare</td>
<td>Permanentes Gebiß (Ersatzgebiß zweiter Dentition)</td>
<td>8 funktionierende Zähne</td>
</tr>
<tr>
<td>Gal. Temm. Weibchen 43,5 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gal. Temm. Männchen 19 cm (neugeb.)</td>
<td>Kein Zahn ist wirklich durchgebrochen.</td>
<td></td>
</tr>
</tbody>
</table>

Schon aus dieser Tabelle geht hervor, daß der Ersatz der Zähne sehr spät auftritt. Das Weibchen von Galeopithecus Phil. hat noch nicht ein permanentes Gebiß, obwohl es eine Gesamtlänge von 38 cm besitzt, die der Länge eines ausgewachsenen Tieres um wenige cm zurücksteht. Das Männchen von 25,3 cm zeigt noch nicht alle Zähne durchgebrochen, es fehlen die dritten Molaren, von denen der des Oberkiefers sich im Durchbruch befindet. Der frühzeitige Durchbruch der übrigen Molaren hingegen ist auffällig. Daß der Durchbruch aller Molaren Schwankungen unterworfen ist, zeigt das Männchen von 25,3 cm; für gewöhnlich, wie Leche in Übereinstimmung mit Owen, Blainville an- giebt, bricht M₃ U vor M₃ O durch.
Zahnsystem der Säugetiergattung Galeopithecus Pall.

Festzuhalten ist jetzt schon, daß die Molaren gleichzeitig mit der ersten Dentition auftreten und funktionieren, daß nur ein Zahn, Cd U, frühzeitig ersetzt wird, daß aber im übrigen der Ersatz sehr spät eintritt. Das sind alles Thatsachen, für die auch ontogenetische Gründe sich finden werden.

Im Oberkiefer von Galeopithecus befinden sich zwei Schneidezähne, drei Prämolaren und drei Molaren, von denen die fünf ersten ersetzt werden, im Unterkiefer zwei Schneidezähne, ein Eckzahn, drei Prämolaren und drei Molaren, von denen die sechs ersten Nachfolger erhalten. Sämtliche Antemolaren sind seitlich zusammengedrückt und stellen die verschiedensten Typen zusammengesetzter konischer Zähne vor. Der erste obere I ist zweibis vierzackig, er hat entweder zwei gleichmäßige Coni oder eine Haupt- und 2–3 Nebenzacken. Der zweite I besitzt eine Hauptzacke und eine vordere und zwei hintere Einkerbungen; er ist zweiwurzelig. Der erste Prämolare gleicht dem zweiten I und ist gleichfalls zweiwurzelig. Die übrigen Prämolaren im Ober- wie Unterkiefer besitzen Schneiden, die besonders distal in mehrere Zacken auslaufen, deren längste und ansehnlichste bei den beiden ersten etwas vor der Mitte liegt. Die beiden unteren vorderen Schneidezähne sind kammförmig, der Caninus besteht gewöhnlich aus 5 Zacken, die gleichmäßig hoch sind. „Die Molaren sind annähernd kubisch oder von außen nach innen quer gezogen und zeigen auf ihrer Querfläche eine ziemlich breite und tiefe Rinne, die durch einen inneren und äußeren Wall und an jeder Ecke hervorspringende scharfe Zacken begrenzt wird.“ Die Backzähne stehen sämtlich so, daß die des Oberkiefers zwischen die des Unterkiefers greifen.

Ich gehe nunmehr zur entwickelungsgeschichtlichen Untersuchung an den drei jüngsten Stadien über und beginne mit einer Schilderung der Zahnanlagen des Embryo I von 11,5 cm Gesamtlänge.

Unterkiefer.

Unter- wie Oberkiefer sämtlicher Tiere wurden in eine Serie von Frontalschnitten zerlegt. Gleich im Beginn der Schnittserie erregen eigenartige epitheliale Gebilde unsere Aufmerksamkeit. Weit vorn an der höchsten Stelle des flach vorgestreckten, oberen Kieferrandes liegen jederseits der Verwachungslinie der beiden
unteren Kieferäste zwei im Querschnitt ovale, von Cylinderepithel umgebene Zellenhäufchen. Ihre Grenzen sind gegen das umliegende Bindegewebe scharf abgehoben. Ein jedes Zellenhäufchen stellt einen kompakten Körper von geringem Umfange vor, einen Rest der eingewucherten Zahnleiste, der von Bindegewebsfasern in dichterer Anordnung umgeben ist. Das Ganze gleicht einer größeren Epithelperle (Fig. 10–12). Eine Verbindung mit der Zahnleiste besteht nicht mehr. Geringe Ausläufer an ihrer labialen Seite lassen auf einen ehemaligen Zusammenhang mit der Zahnleiste schließen. Die späteren Stadien geben uns weiteren Aufschluß über dieses Gebilde. Sie zeigen, daß es sich weiter entwickelt, ohne seine Grundform zu verändern. Noch vor dem Ver schwinden dieser Epithelperle tritt die Zahnleiste am Grunde der Zahnfurche deutlich auf. — Im Gebiete des vorderen Teiles des Unterkiefers ist zum Verständnis der Lagebeziehungen der Zahn anlagen zu einander auf die eigenartige Form dieses Kiefer teiles Rücksicht zu nehmen. Er hat in Anpassung an die sekundäre Form der Schneidezähne eine Veränderung darin erfahren, daß sich der äußere Kieferrand zum inneren horizontal gestellt hat. Beide Kieferränder liegen in fast wagerechter Ebene, über die sich der äußere nur wenig erhebt. Die Entwicklungsgeschichte zeigt, daß auch hier die Zahnanlagen typisch liegen, und was auf den Schnittserien oben oder unten erscheint, in der That labial oder lingual der Zahnleiste gelegen ist. — Zuerst in Verbindung mit dem Mundhöhlenepithel durchzieht die Zahnleiste fast hori zontal den Kiefer (Fig. 11–13, 17). Sie ist sehr gut entwickelt, zeigt zwei Schichten Cylinderepithel und an ihrem Ende als ein konstantes Gebilde eine kolbenförmige Verdickung, die mit dem knospenförmigen Stadium der allgemeinen Zahnentwicklung über einstimmt (Fig. 17, 18). Im Querschnitt kreisrund, mit einem äußeren Ringe von Cylinderepithel und einer inneren Ausfüllung unregelmäßiger Epithelzellen hängt dieses Epithelkugelchen eng mit der Zahnleiste zusammen. Eine Einstülpung ist nirgends wahrzunehmen, ebensowenig eine stärkere Ansammlung von Bindegewebszellen an irgend einer Stelle. Letztere lagern sich nur wenig vermehrt konzentrisch um die knospenförmige Anschwellung an. Zu einer Weiterentwicklung kommt es nicht; schon beim Stadium B ist von dieser Zahnleistenverdickung nur wenig noch zu sehen. Wohl aber treten dort andere Veränderungen auf, die zur Bildung zahlreicher Epithelperlen um diesen Teil der Zahnlleiste geführt haben, so daß die Annahme berechtigt erscheint,
dieser Zahnleistenteil stelle mit seiner beginnenden Differenzierung den Rest der ersten Schneidezahnanlage vor. Hierdurch erhält auch die lingual von der Zahnleiste gelegene große Epithelhelperle ihre Erklärung. Beide Teile sind voneinander abhängig gewesen und sind die rudimentären Überbleibsel des I_1 beider Dentitionen. Wir verfolgen die Schnittserie weiter und können uns von dem Vorhandensein der Zahnleiste immer noch überzeugen. Labial von ihr nimmt das Bindegewebe eine sehr lockere Verteilung an, es ist das erste Anzeichen einer in der Ausbildung vorgeschrittenen Zahnanlage. Aber ehe wir diese treffen, sehen wir eine Verzweigung der Zahnleiste. Labial schnürt sich im rechten Winkel ein langer Ast ab, welcher aus zwei Schichten cylindrischer und dazwischen liegender rundlicher Zellen besteht und an seinem Ende eine Anschwellung zeigt, die der soeben beschriebenen gleich kommt (Fig. 17, 19—21). Dieser Nebenast ist mit seiner knospenförmigen Verdickung schnittweise zu verfolgen, mitunter ohne, dann wieder in Verbindung mit der Zahnleiste. Es ist also ein konstantes Ge- bilde. Fig. 17 gibt ein Bild davon. Mit dem Verschwinden dieses Seitenastes tritt die Anlage des zweiten Schneidezahnes der ersten Dentition auf, mit seinem Auftreten auch eine Veränderung der Zahnleiste. Kurz zuvor undeutlich und verwischt, tritt neben einer anfänglichen Verbindung der Zahnleiste mit dem Epithel der Mundhöhle die linguale Seite scharf durch ihre eng aneinander liegenden Cylinderzellen hervor. Es hat sich hier kaum ein kappen- förmiges Stadium differenziert (Fig. 23, 24). Die labiale Anlage des I_2 steht durch eine schwache Brücke mit dieser Ersatzanlage in Verbindung. I_2 ist weiter entwickelt. Seine Anlage ist in der proximo-distalen Richtung stark verbreitert, labio-lingual verflacht. Schmelz und Dentin sind an ihrer Spitze in feinen Schichten abgelagert (Fig. 28). Das mittlere Schmelzepithel ist zur Schmelzpulpa geworden. Die Odontoblasten liegen einschichtig als große, funktionsfähige Zellen dem inneren Dentin an. Die vielfach geteilte Krone ist sichtbar und die Teilung bereits be- endigt. Da diese Schneidezähne fast horizontal durchbrechen, so hat jeder Frontalschnitt die einzelnen Zinken fast senkrecht zu ihrer Längsachse getroffen. Wir finden somit auf den Bildern in jedem Zahnsäckchenringe, der sämtliche Zinken umschließt, in der Anzahl wechselnde Querschnitte der einzelnen Zinken, die gleichfalls gefaltete Ringe darstellen. Ein jeder dieser Einzerringe besitzt seine eigene Pulpa, seine eigene Dentin- und Schmelzs- chicht, liegt durch die mittlere Schmelzschicht oder die Schmelz-
pulpa von seinem Nachbar getrennt und reiht sich distal an seinen proximal befindlichen Nachbarn an. Nur in der Gegend des Zahnhalases laufen sämtliche Teile zu einem breit gedrückten Ringe zusammen, wie ihn Fig. 29 von einem älteren Stadium wiedergiebt. Nach und nach treten im Laufe der Serie acht Einzelringe auf, von denen der proximale (1.) der breiteste, der distale (8.) breiter als die mittleren ist (Fig. 28). Je näher wir uns der Zahnkrone befinden, desto stärkere Kalkablagerungen finden wir und desto geringer erscheint die Formverschiedenheit der einzelnen Zinken. In der Nähe des Zahnhalases und in ihm selbst sind keine Hartgebilde vorhanden. Die Pulpa ragt weit in die Spitzen der Zinken hinein und verschmilzt an der Basis. Der dritte Schneidezahn der ersten Dentition zeigt das gleiche Verhalten. Seine Zahnleiste ist schwach mit dem Mundhöhlenepithel verbunden und erscheint überhaupt anfangs zerrissen. Labial von ihr entspringt gleichfalls ein Seitenast und bringt an seinem Ende die beschriebene Verdickung. Auch dieses Gebilde ist konstant, ja es zeigt sogar einen Zusammenhang mit der labialen Fläche des Zahnsäckchens, beziehungsweise des äußeren Schmelzepithels der Anlage des I_d. Der linguale Teil dieses Seitenastes tritt in teilweise Verbindung mit der Anlage. Es ist dieser Befund für die Auffassung der ganzen Lagebeziehungen von Wichtigkeit. Hierdurch steht fest, daß der Seitenast zum Bereich des I_d gehört, ebenso wie wir rückschließend den ersten labialen Seitenast zum Bereich des I_d rechnen dürfen. Ferner ist es aber auch zur Gewißheit geworden, daß diese epithelialen Reste labial der Anlagen der ersten Dentition gelegen sind. Sie sind Ausläufer der Zahnleiste, also epithelialen Ursprungs, und zeigen Ausbildungsstufen, die als frühe Stadien der Entwicklung von Zahnanlagen angesprochen werden müssen, Anlagen, die aber nicht weiter zur Entwicklung kommen. Das zeigt einmal Embryo II, wo überhaupt keine Seitenäste mehr vorhanden sind, sondern nur noch Reste der knospenförmigen Verdickungen (Fig. 21), zweitens aber auch ihr ganzes Aussehen; sie verschwinden in den späteren Stadien. Da sie labial von der ersten Dentition liegen, so stehe ich nicht an, diese epithelialen Reste für Rudimente einer präalakteen Dentition zu halten. Diese Annahme hat meiner Meinung nach durchaus nichts Auffälliges. Bedenken wir, daß durch Leche und Kükenthal bereits bei einer Reihe niederer Säugetiere — Cetaceen, Didelphiden, Erina-ceiden — derartige Reste einer vererberten und zu Grunde gehenden Zahngeneration aufgefunden sind, daß ferner Galeopithecus auch
ein alter Placentalier und mit Insectivoren verwandt ist, so glaube ich meiner Annahme einen höheren Grad der Wahrscheinlichkeit zugestehen zu dürfen.

Die Anlage von \(I_d_4 \) befindet sich ungefähr auf gleicher Stufe wie die von \(I_d_2 \). Ihre Lage, Ausbildung, Ausdehnung und Verkalkung zeigt keine bedeutenden Unterschiede von \(I_d_4 \). Nur zähle ich hier 9 Zinken und finde dieselben weniger mit Hartgebilden versehen. Die Anlage ist lingual mit der Zahnleiste im Zusammenhang; letztere hat sich in der Mitte von \(I_d_3 \) zu einem Fortsatz emanzipiert mit einer Differenzierung zum knospenförmigen Stadium. Im Vergleiche zu \(I_d_2 \) ist \(I_d_3 \) also ein wenig, zumal in Bezug auf die Ersatzzahnbildung, in der Entwicklung zurück. Beide Anlagen der Schneidezähne sind von Ersatzzahnanlagen begleitet, und gehören daher der ersten Dentition zu.

Schon während des Auftretens der ersten Schneidezahnanlagen erscheint dicht unterhalb des Mundöhlenepithels eine weitere Zahnanlage. Eingeleitet wird diese Erscheinung durch das deutliche Hervortreten der Zahnleiste, dem bald eine höhere Differenzierung dieses Organes bis zum kappenförmigen Stadium folgt. Labial vom Schmelzorgan liegt ein ausgebildeter Zahn, so daß wir zwei Anlagen nebeneinander vor uns haben, die beide auf durchaus verschiedenen Stufen ihrer Entwicklung stehen. Der ausgebildete labial gelegene Zahn ist stiftförmig und von geringer Größe. Er ist verkalkt, besitzt eine eingeengte Pulppe, keine Wurzel und keine Schmelzpulpe (Fig. 30). Letztere ist vollkommen reduziert, und ein Mantel von äußeren und inneren Schmelzpithel-Zellen umgibt, zumal an der Basis, das kleine Zähnchen. Der lingual gelegene Schmelzkeim hat die Kappenform. Der Beginn des charakteristischen UmwachSENS der Pulppe durch das innere Schmelzepithel zeigt den Übergang zum glockenförmigen Stadium (Fig. 30). Der Hals dieses Schmelzorgans erstreckt sich nach oben labial in die Nähe des fast ausgebildeten Zahnes und verschwindet dort allmählich in das umliegende Gewebe. Beide Anlagen sind Geschwister, die auf gleicher Höhe der Zahnleiste liegen. Die weit auseinander stehenden Entwicklungstufen beider, die dichte Annäherung, die Art der Lage des Schmelzkeimhalses sprechen sehr dafür. Selbst ohne einen besonderen Nachweis einstmaliger Verbindung, wie ihn in der That das Stadium B gibt, sind beide Anlagen als den unteren Eckzahn angehörig zu betrachten. Denn wir wissen aus den Untersuchungen von Leche, daß der dritte Zahn des Unterkiefers (bei Leche \(I_3 \)) in seiner ersten Dentition
Theodor Dependorf,

ein kleiner Stiftzahn ist, frühzeitig ausfällt und als erster in der Zahnreihe ersetzt wird. Dieser Befund aber stimmt vollkommen mit den embryonalen Ergebnissen überein.

Nach dem Verschwinden dieser Zahnanlage durchzieht die Zahnleiste in ihren Resten den Unterkiefer. Sie erscheint dicht unter dem Epithel der Mundhöhle bis in die Nähe der nun fol-

\(^1\) Ich behalte die Bezeichnung Prämolär anstatt Milchmolar auch in der ersten Dentition bei.
Zahnsystem der Säugetiergattung Galeopithecus Pall.

Wir kommen nunmehr zu den eigentlichen Molaren, die sich durch ihre typische vierzackige Form vor den übrigen Zähnen des Unterkiefers auszeichnen. Eine jede Zacke nimmt die Ecke eines Würfels ein. Als Verbindungsbücken treten zwischen den einzelnen Zacken leistenförmige Erhebungen auf, die als ein Cingulum den ganzen Zahn umgeben.

Des durchlaufenden Erscheinens der Zahnleiste war bereits gedacht worden. Während des Auftretens der im Beginn der Verkalkung stehenden Anlage des ersten Molaren konnte ich das Gleiche feststellen. Ungefähr in der Mitte der Anlage tritt eine deutliche Differenzierung der Zahnleiste zum freien Zahnleisten-
Theodor Dependorf, ende auf. Diese Differenzierung ist nicht so weitgehend wie bei den Prämolaren, trotzdem aber hat das schwache Bündchen der Zahnleiste eine Verlängerung lingual der Anlage nach unten zu erfahren und ist an seinem freien Ende abgerundet. Die Cylinderzellen treten scharf hervor (Fig. 34). Eine Verbindung zwischen Zahnleiste und Anlage ist nicht mehr vorhanden. Zottige Auswucherungen an der labialen Seite der Zahnleiste und der lingualen oberen Fläche der Anlage sprechen für den ehemaligen Zusammenhang beider Teile. Beim zweiten Molar ist die Anlage noch mit der Zahnleiste in Verbindung, das freie Zahnleistenende geht lingual oberhalb der Anlage nach der Tiefe zu ab (Fig. 36). Das Auftreten der freien Zahnleistenenden ohne Differenzierung zu einem vorgeschrittenen Stadium, aber auch ohne einen Hinweis auf Reduktion schließt die Möglichkeit eines Er satzes nicht aus.

Der zweite Molar ist schwach verkalkt; die ersten Schichten von Schmelz und Dentin beginnen sich an den Spitzen abzulagern. Das weist auf eine langsamere Entwicklung hin. Auch die Nebenzacken treten noch nicht scharf hervor, sie zeigen sich erst mit vorschreitender Ablagerung der Hartsubstanzen deutlich. Die vier
Hauptzacken sind in ihrer Anlage wohl zu erkennen. M_2 ist noch, wie ich bereits kurz erwähnte, mit der Zahnleiste in Verbindung, welche fortgesetzt als ein schmales Bändchen lingual von M_2 unterhalb des Mundhöhlenepithels durch den Kiefer zieht. Wiederum ist in der Mitte der Anlage das Ende der Zahnleiste lingual eingesenkt und tritt deutlich hervor. Diese Erscheinung stimmt mit der des M_1 überein, zeigt aber bei M_2 den wichtigen Unterschied, daß die Verbindung zwischen Zahnleiste und Zahnanlage noch vorhanden ist, was lediglich mit der geringeren Entwicklung der ganzen Anlage des M_2 zusammenhängt.

Auf das Auftreten freier Zahnleistenenden lingual von Molen ist bei Galeopithecus um so mehr Wert zu legen, als es mit anderen bereits von KüKenthal bei Pinnipediern, von LeChe bei Erinaceus, Didelphyiden gemachten Befunden übereinstimmt. Auch hierin gleicht Galeopithecus den Insectivoren.

Über dem hinteren Teile des M_2 besteht keine Verbindung der Anlage mit der Zahnleiste mehr. Noch im Bereiche von M_2 wird die Zahnleiste deutlicher und senkt sich tiefer ein, bis sie schließlich zu einem knospenförmigen Schmelzkeime anschwillt (Fig. 37), der ohne Verbindung mit dem Epithel der Mundhöhle bleibt. Es ist die beginnende Anlage des M_3. Seine Lage über M_2 erkläre ich, wie LeChe bei Erinaceus, durch die Kürze des Kiefers bedingt.

Da auch die Molaren 1 und 2 freie Zahnleistenenden lingual besitzen, und da sie sich von derselben Zahnleiste ungefähr gleichzeitig — M_3 entwickelt sich aus besonderen Gründen später — differenzieren, so sind diese Anlagen augenscheinlich der ersten Dentition zuzurechnen. Aber es ist die Möglichkeit zu erwägen, daß wir in den freien Enden der Zahnleiste den Rest einer dritten Dentition vor uns haben, daß die Molaren demnach sowohl zur ersten wie zur zweiten Dentition gehören.

(Siehe Zusammenstellung folg. Seite.)

Cd ist also am weitesten entwickelt, alsdann folgen in geringen Abstufungen Id_2, Id_3, Prd_2, M_1. Die übrigen stehen bis auf M_3 auf gleicher Höhe ihrer Ausbildung. M_3 liegt über dem hinteren Ende der Anlage von M_2 als knospenförmiger Schmelzkeim. T_1 ist in rudimentären Resten vorhanden. Auffällig ist bei allen Anlagen die geringe Entwicklung der Ersatzzahnanlagen im Vergleich zu den vorgeschrittenen Stadien der Anlagen der ersten Dentition. Der Grund liegt in der guten Ausbildung der
Zusammenstellung der im Unterkiefer des Stadiums A gefundenen Zahnanlagen.

<table>
<thead>
<tr>
<th>Embryo I, Stadium A. Ges. Länge 11,5 cm</th>
<th>Erste Dentitionsreihe</th>
<th>Zweite Dentitionsreihe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reduziertes knospenförmiges Stadium.</td>
<td>Zu einer Epithelperle reduziertes Schmelzorgan.</td>
</tr>
<tr>
<td>3</td>
<td>Krone zum Teil verkalkt.</td>
<td>Knospenförmiger Schmelzkeim.</td>
</tr>
<tr>
<td>C</td>
<td>Ganz verkalkt.</td>
<td>Beginn des glockenförmigen Schmelzkeimes.</td>
</tr>
<tr>
<td>P1</td>
<td>Schwache Verkalkung der Zäcken.</td>
<td>Freies Zahnleistenende.</td>
</tr>
<tr>
<td>P2</td>
<td>Stärkere Verkalkung der Zäcken.</td>
<td>Freies Zahnleistenende mit knospenförmiger Verdickung.</td>
</tr>
<tr>
<td>P3</td>
<td>Schwache Verkalkung der Zäcken.</td>
<td>Freies Zahnleistenende mit schwacher knospenförmiger Verdickung.</td>
</tr>
<tr>
<td>M1</td>
<td>Stärkere Verkalkung der Zäcken.</td>
<td>Freies Zahnleistenende.</td>
</tr>
<tr>
<td>M2</td>
<td>Beginnende Verkalkung.</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>Knospenförmiger Schmelzkeim.</td>
<td></td>
</tr>
</tbody>
</table>

von ihr zuerst ergriffen, erst dann erstreckt sich dieser Vorgang allmählich in die unteren Teile.

Die Pulpa ist gleichmäßig im Innern der Anlagen verteilt. Es herrschen weniger weit verzweigte Blutgefäße vor als besonders dicht gelagerte Bindegewebszellen. Die Odontoblasten liegen reihenweise an den äußeren Grenzen der Pulpa; wo Dentin ge-
Theodor Dependorf,

bildet ist, liegen sie diesem einschichtig im Innern an und senden ihren Hauptfortsatz in dasselbe hinein.

Die Zellen der Schmelzspula sind weniger sternförmig als in einzelnen Fasern ausgezogen, die unter sich zusammenhängen.

Das Zähnsäckchen ist noch schwach angelegt. Es besteht aus einer dünnen Lage von bindegewebigen Fasern, legt sich dicht an die äußeren Schmelzzellen und verliert sich an der Basis der Zahnanlage zum Teil in die Pulpa, zum Teil in das angrenzende Bindegewebe (Fig. 45).

Stadium B. Embryo von 14 cm.

Die bereits beim jüngeren Embryo geschilderten Lageverhältnisse im vorderen Teile des Unterkiefers sind auch hier dieselben. Die beschriebene Epithelperle ist gewachsen, ohne ihre Grundform geändert zu haben (Fig. 13, 14). Kalk findet sich nicht vor. Ihre frühere Verbindung mit der Zahnleiste, die hier ein rudimentäres Aussehen hat, ist teilweise nachzuweisen. Es finden sich labial der Perle Züge von Epithelresten, die bis in die Nähe der Leiste verlaufen und für verkümmerte Reste eines ursprünglichen Verbindungsstranges zu halten sind. Die Zahnleiste ist gespalten und vielfach geschlängelt. Sie ist auf den Schnitten ein unregelmäßig gebauter Strang mit vielen zerrissenen Ausläufern. Das Auftreten mannigfacher, äußerst kleiner Epithelperlen in ihrer Umgebung zeigt an, daß dieser Teil der Zahnleiste in starker Rückbildung begriffen ist. „Die Epithelperlen sind Degenerationsprodukte der Zahnleiste selbst.“ Es sind sehr kleine Gebilde, die zerstreut ohne irgend eine Anordnung, meist lingual der Zahnleiste liegen.

Vergleichen wir damit das Stadium A, so sehen wir, wie hier also die wahrscheinlich ursprüngliche Verbindung der Epithelperle mit der Zahnleiste und zweitens die beginnende Auflösung der Zahnleiste in ihrer vorderen Partie vorhanden ist. Die kolbige Anschwellung der letzteren ist zum Teil erhalten geblieben (Fig. 13). Es ist diese der Rest der früheren Anlage des Id₁, welcher in Verbindung mit der lingualen Epithelperle die Rudi-

mente des ersten Schneidezahnes des Unterkiefers beider Dentitionen vorstellt.

Die Reste der prälastealen Dentition treten in Form von Epithelperlen labial der beiden Schneidezähne der ersten Den-
Zahnsystem der Säugetiergattung Galeopithecus Pall. 643
tition auf (Fig. 21). Die Verbindungsstränge sind geschwunden, die Epithelperlen unverändert geblieben. Letztere gehen im Laufe der weiteren Entwicklung vollständig zu Grunde, ältere Stadien zeigen keine Spur mehr.
Alle übrigen Zahnanlagen weichen nur durch die größere Aufnahme von Kalksalzen von den bereits beschriebenen des Stadiums A ab. Während sich aber die erste Zahngeneration schnell ihrer Vollkommenheit nähert, schreitet die Ausbildung ihrer Ersatzzahnanlagen langsam voran. Id₄ besteht aus sieben an der Krone getrennten Zinken, Id₃ aus acht. An der Basis vereinigen sich auch hier die Zinken zu einem einheitlichen Zahnhalse. Ihre Ersatzzahnanlagen entsprechen denen vom Stadium A. Die Ersatzanlage von Id₃ beginnt sich einzustülpen. Die beiden Anlagen des Caninus, die ich oben als Geschwister bezeichnete, bestätigen die bereits gemachte Annahme, daß beide zu einander gehören. Die Anlage der ersten Dentition hängt noch mit der Zahnleiste zusammen, von der auch der von ihr lingual gelegene Schmelzkeim entsprungen ist (Fig. 32). Der stiftförmige Zahn ist also C₁ und der linguale Schmelzkeim sein Ersatz. Dieser befindet sich auf dem glockenförmigen Stadium ohne Kalkablagerung, aber mit entstehender Schmelzpulpa (Fig. 31).
Die Form der Prämolaren ist in ihren Grundeigenschaften unverändert geblieben; auffallend ist auch hier der allmähliche Übergang zum Molartypus, der sich beim Prd₃ am meisten zeigt. Ihre Ersatzzahnanlagen haben sich wenig verändert; die Epithelzellen gehen die hohe cylindrische Form lingual und am Ende der Zahnleiste ein (Fig. 34).
änderter Cylinderzellen. Ich sehe hierin die beginnende Rückentwicklung, die ihren Ursprung oberhalb des freien Zahnleistenendes nimmt, um von da aus allmählich die unteren Teile zu ergreifen. Die Veränderung der Zellen zeigt sich in ihrer unregelmäßigen Lagerung und in ihrem geringeren Vermögen, Farbstoffe aufzunehmen (Fig. 38).

\(M_3 \) ist ein Schmelzkeim in Kappenform. Die Zahnleiste ist stark kolbig verdickt, zeigt hohe cylindrische, dunkel gefärbte Zellen und beginnt sich an labialer unterer Seite einzustülpen. Der Schmelzkeimhals ist nicht mehr mit dem Mundhöhlenepithel in Verbindung; die Anlage liegt im Bereich von \(M_2 \) (Fig. 39).

Stadium C.

Neugeborenes Männchen. Gesamtlänge 19 cm.

Der erste rudimentäre Schneidezahn hat sich mit seiner labial gelegenen Zahnleiste auch hier noch erhalten (Fig. 15). Die Zahnleiste ist weit mehr rückgebildet als beim Stadium B (Fig. 16). Im Gegensatz hierzu ist das linguale Rudiment gewachsen. Es lassen sich sehr genau der äußere Epithelring und die eingeschlossenen, unregelmäßig gelegenen Epithelzellen auf den Schnitten unterscheiden. Noch deutlicher aber treten Teile von ehemaligen Verbindungssträngen auf, wodurch die ursprüngliche Zusammengehörigkeit wiederum bestätigt wird. Zugleich mit diesen Resten tritt die Krone des im Durchbruch begriffenen zweiten Id auf. Dieser Zahn ist vollkommen verkalkt, besitzt keine Schmelzpulpa mehr und hat keine Wurzel angelegt. Lingual verläuft die auch
hier noch sichtbare Zahnleiste in ihren Überresten. \(\text{Id}_3 \) steht dem zweiten in der Entwickelung nach. Sein Durchbruch ist noch nicht zu erwarten. Ihre Ersatzzahnanlagen sind auf dem glockenförmigen Stadium ohne Kalkablagerung (Fig. 26, 27). \(\text{Cd} \) zeigt einen neuen Befund. Seine Ersatzzahnanlage, die sich auf dem vorgeschrittenen glockenförmigen Stadium befindet, besitzt an ihrer lingualen Seite ein freies Zahnleistenende, welches noch vollkommen mit der Anlage in Verbindung steht. Dasselbe ist nicht bis zu einem höher entwickelten Stadium differenziert, sondern tritt nur als das freie Ende der Zahnleiste auf, aus dem sich ein Ersatzzahn bilden kann (Fig. 40). Als was ist dieser neue Fortsatz aufzufassen? Ist er die mögliche Anlage zu einer dritten Dentition, oder stellt er die zweite vor, so daß der labiale stiftförmige Zahn zur prälactealen Dentition zu rechnen ist? Eine weitere Entwicklung dieses freien Zahnleistenendes findet nicht statt. Das folgende Stadium D, Männchen von 25,3 cm Gesamtlänge, weist weder ein Rudiment noch eine Weiterentwicklung auf. \(\text{Cd} \) muß auf Grund seiner gleichzeitig mit den übrigen Anlagen der ersten Dentition beginnenden Entwicklung und in Bezug auf seine Lage zu der Zahnleiste der ersten Dentition zugerechnet werden. Sein allgemeiner Entwicklungsgrad ist im Gegensatz zu den übrigen Zahnanlagen nicht viel höher stehend. Der bestehende Unterschied erklärt sich aus der rudimentären Form von \(\text{Cd} \). In dem Grade, wie der Vorgänger sich schneller entwickelte, hat sich auch der Ersatzzahn rascher entfaltet, und so sehen wir \(\text{C} \) nur deshalb schon teilweise verkalkt.

Die rudimentäre Form von \(\text{Cd} \) erklärt sich daraus, daß dieser Zahn infolge des mächtigen Wachstums der Nachbarzähne aus der Reihe derselben verdrängt wurde und sich wegen fortgesetzten Platzmangels nicht zu einer funktionsfähigen Form entwickeln konnte. Erst sein Nachfolger \(\text{C} \) erhielt durch sekundäre Verlängerung des vorderen Unterkieferteiles den für seine größere Entfaltung notwendigen Raum. \(\text{C} \) ersetzt frühzeitig seinen Vorgänger und funktioniert fast während des ganzen Lebens des Galeopithecus. Er legt sich aber wie ein jeder Zahn der zweiten Dentition an, indem sich sein Schmelzkeim lingual seitwärts des freien Zahnleistenendes entwickelt (Fig. 31). Den Charakter der Zugehörigkeit zur zweiten Dentition wird er aber mit zunehmender Reduktion seines Vorgängers mehr und mehr verlieren, ja schließlich mit dem Verschwinden von \(\text{Cd} \) sich gleichzeitig mit der ersten Dentition anlegen. Die Zahnleiste aber verbraucht ihr ganzes
Theodor Dependorf,

Das weitere Eingehen auf die sämtlichen Zahnanlagen des Unterkiefers würde Beschriebenes größtenteils wiederholen. Ich beschränke mich deshalb darauf, den Status aller Zahnanlagen im allgemeinen darzulegen. Von den Zähnen sind I₂, C₀, Prd₀ am weitesten entwickelt, sie stehen sämtlich, zumal I₃ C₀, dicht vor ihrem Durchbruch durch den Kiefer. Die Alveolen aller Zähne sind ausgebildet, doch liegen wegen Kürze der Kiefer häufig zwei Zahnanlagen nebeneinander. Die Hartgebilde sind bis auf die Basis vorgedrungen, ohne eine Wurzel gebildet zu haben. Überall umgreift die Herwicz'sche Epithelscheide die in die Kiefer hineinragenden Dentinflächen (Fig. 46). Das Zahnsäckchen schützt im Verein mit dem äußeren Schmelzepithel und der Schmelzpulpa die aufwärts drängenden Zähne. Die meisten liegen nahe unter dem Epithel der Mundhöhle. Die gebildeten Zacken gleichen in ihrer Zahl und Größe denen des Stadium A beschriebenen. Die Pulpae reicht bis hoch in die Krone, eine Erscheinung, wie wir sie auch bei den Amphibienzähnen sahen. Die Schmelz- und Dentinschichten sind infolgedessen nur schmal angelegt. Die anlagernden Odontoblasten sind produktionsfähig. Gefäße durch-
ziehen netzartig die Pulpa, sie treten mannigfach durch die Öffnungen an der Basis ins Innere. An den Stellen, wo sich später die Wurzeln entwickeln, bleibt die Basis geöffnet, die Teile zwischen den späteren Wurzeln sind bereits vollständig geschlossen. Hier zeigen sich Dentin und Schmelz. Von Wichtigkeit sind die einzelnen Ausbildungsstufen der Ersatzzahnanlagen. Mit Ausnahme der zwei Schneidezähne und des Eckzahnes sind die übrigen Schmelzkeime der Ersatzzähne fast auf ihrer bisherigen Entwicklungsstufe stehen geblieben. Wie zu vermuten war, beginnt bei C die Verkalkung zuerst; Schmelz und Dentin sind an seiner Krone abgeschieden. Bei I_2 treffen wir das vorgeschrittene Glockenstadium mit mehrfacher Einschnürung des inneren Schmelzepithels ohne Ablagerung von Hartgebilden an (Fig. 26). I_3 zeigt die Glockenform mit beginnender mehrmaliger Einstülpung (Fig. 27). Die Schmelzkeime der Ersatzanlagen der Prämolaren 1 und 3 sind kolbig verdickt, der des Prd_4 auf dem beginnenden kappenförmigen Stadium. Um alle Keime legt sich Bindegewebe in konzentrischen Lagen ab. Das freie Zahnleistenende lingual von den Molaren ist noch mehr als bisher rückgebildet worden. Reste der Zahnleiste sind hier durchgängig vorhanden, stellenweise Reste der dichotomischen Gabelung (Fig. 41, 42). Keine Anlage steht mehr in Verbindung mit der Zahnleiste. M_3 ist bedeutend weiter entwickelt als beim Stadium B. Noch im Bereiche von M_2 erscheint nahe dem Mundhöhlenepithel seine gut entwickelte Anlage. Es ist ein vollkommen glockenförmiges Stadium entstanden. Die vier typischen Backzahnzacken legen sich mit wohlentwickelter Pulpa an, von der Schmelzpulpa und dem Zahn säckchen eingeschlossen. Die Anlage reicht noch über M_2 hinaus, besitzt aber keine Alveole, da sie vollkommen frei im Bindegewebe nahe der Mundhöhlenepithelhaut liegt. Ein freies Zahnleistenende habe ich neben M_3 nicht gefunden.

Zusammenfassung. Der Ausbildungsgrad der einzelnen Zähne ist folgender: Cd ist am meisten entwickelt, Id_2 und Id_3 folgen alsdann, auf diese Prd_2 und Prd_3. M_3 ist am weitesten zurück, zwischen diesen liegen M_1, Prd_1, M_2. Die Ersatzzahn anlagen stehen auf verschiedenen Entwicklungsstufen, unter denen die der zwei Schneidezähne und des Eckzahnes am höchsten stehen. Im allgemeinen aber ist ihre Weiterentwicklung eine langsamer gewesen. Die Zähne werden also ungefähr folgendermaßen der Reihe nach durchbrechen:

Cd, Id_2, Id_3, Prd_2, Prd_3, M_1, Prd_1, M_2, M_3.

Nach den vergleichenden Untersuchungen der embryologischen Befunde der Zahnanlagen bezw. der Ersatzzahnanlagen der unteren Schneidezähne geht die Entwicklung derselben folgendermaßen vor sich. Die erste Anlage dieser Kammzähne gleicht der eines jeden anderen Zahnes (Fig. 22, 23). Bei der Anlage zur beginnenden Kappenform tritt die erste Abänderung auf, wie dieses die Ersatzzahnanlagen zeigen (Fig. 24). Der Schmelzkeim zieht sich proximo-distal stark aus, so daß er, in der Mitte frontal getroffen, einem breiten Epithelstreifen gleich. Das Ganze umlagert dichtes Bindegewebe. Auf dem Stadium der Kappenform beginnt in der Mitte der Anlage eine mehrfache Ein- stülzung. Die hierdurch entstehenden Einbuchtungen markieren sich stärker durch Herabwachsen der Mittellamellen bei zunehmender Vergrößerung des ganzen Schmelzkeimes. Die Seitenflächen folgen den Lamellen, stülpen sich zusammen mit diesen ein und bilden so, indem sie bis zu einer bestimmten Grenze vor- dringen, die Zinken. Die Kappen- wie Glockenformen sind zu diesem Zwecke ebenfalls labio-lingual abgeflacht (Fig. 25—27). Die Einbuchtungen treten nicht alle gleichzeitig auf, sie erfolgen zuerst in der Mitte, proximal und distal legen sich die übrigen an, so daß immer an diesen Grenzen der größte Raum für sich neu entwickelnde Zinken vorhanden ist. Hierdurch erklärt sich auch die breitere Fläche der proximalen und distalen Zinken am ausgebildeten Kammzahn. Bei beginnender Verkalkung tritt keine Teilung mehr ein. Beifolgende Textfiguren veranschaulichen den Entwicklungsgang. Natürlich folgt das Schmelzepithel stets den Einstülpungen, woraus die spätere Schmelzablagerung an den Zinken hervorgeht. Wird eine solche Anlage im Querschnitt ge-
trogen, so erscheinen Bilder, wie sie Fig. 27, 28 wiedergeben. Je nach der Anzahl der ausgebildeten Zinken, sowie nach der Schnittfläche erscheinen mehr oder weniger ringartige, vom Schmelzepithel umschlossene Gebilde in der Schmelzpulpa eingebettet. Wird der Zahnshals getroffen, so erscheint ein einfacher plattgedrückter Ring (Fig. 29).

Es lassen sich diese Kammformen aus Formen herleiten, wie sie C im Unterkiefer und I₁, I₂ im Oberkiefer zeigen. Die seitlichen Einkerbungen sowie die zahlreiche Zackenbildung macht besonders C zum Übergangstypus.

Oberkiefer.

Bei Beschreibung der Befunde im Oberkiefer kann ich mich kürzer fassen, da die Vorgänge bei der Zahnbildung und die Beziehungen der einzelnen Zahnanlagen zu einander keine wesentlichen Abweichungen vom Unterkiefer zeigen. Es erscheint mir auch im Interesse der Einfachheit angebracht, sämtliche Stadien, die ich vorher einzeln darlegte, in der Gesamtheit zu behandeln.

Spuren einer prälastealen Dentition oder einer dritten Zahn-Generation habe ich im Oberkiefer nicht gefunden.

Da die erwachsenen Exemplare im Vorderteil des Zwischenkiefers keine Zähne besitzen, so war es von großem Interesse, nach Resten einstiger Anlagen zu forschen, um so die ursprüngliche Zahl der Schneidezähne festzustellen. Ich habe aber auf den
Schnittserien keines der Embryonen auch nur Rudimente von einer Zahnleiste oder eines Schmelzkeimes angetroffen. Die Kiefer sind schon stark verkalkt. Das Epithel der Mundhöhle ist an dieser Stelle stärker verdickt und papillenreich.

Die drei Prämolaren sind ihren korrespondierenden Antagonisten im Unterkiefer ähnlich und verhalten sich in Bezug auf Ausbildung beider Dentitionen wie diese. Der allmäßliche Übergang vom Prämolar- zum Molartypus ist unverkennbar. Proximal einzackig, erhält distal jede Anlage zwei Zacken, die bei der ersten als zwei Spitzen, eine linguale Neben- und eine labiale Hauptspitze auftreten, bei der zweiten an Größe zunehmen und bei der
Zahnsystem der Säugetiergattung Galeopithecus Pall.

dritten das Bild eines im Querschnitt getroffenen echten Molaren wiedergeben (Fig. 35). Die Ersatzzahnanlage des dritten Prämo-

laren ist am meisten differenziert, sie erreicht beim Stadium C die Kappenform. Die beiden übrigen verhalten sich untereinander

gleich. \(M_1 \) ist am meisten, \(M_3 \) am wenigsten entwickelt, zwischen beiden steht \(M_2 \). Die Verkalkung der einzelnen Zacken verläuft

diemlich gleichartig, beim Stadium A lagert sich jedoch lingual früher Kalk ab als labial. Proximal findet sich zwischen beiden

Zacken auf den Frontalschnitten eine kleine Zacke als Erhebung. Der ganze labiale Teil der Molaren ist nach der Gaumenseite zu

stark verlängert und in der Höhenausdehnung zusammengedrückt, eine Folge der Artikulation. Das freie Zahnleistenende ist bei \(M_1 \)

und \(M_2 \) verkümmert. Die gabelige Verzweigung ist noch vorhanden (Fig. 43). Die Schmelzzellen sind vollkommen rudimentär,

die Anordnung verändert, der vielfach zerrissene Strang von Bindegewebe durchsetzt. Die Anlagen aller Zähne waren auf

\(M_3 \) ist beim Embryo I noch nicht angelegt; es läßt sich nur die Zahnleiste im hintersten Teile des Oberkiefers nachweisen. Die

erste Differenzierung erfolgt beim Stadium B noch im Bereiche von \(M_2 \), das Stadium C zeigt die Glockenform mit geringer Kalk-

ablagierung. \(M_3 \) bleibt ohne Ersatzanlage.

Auf dem Stadium A befand sich hinter der Anlage des \(M_2 \) eine Partie im Kiefer, welche, stark verkalkt, weder Reste einer

Zahnanlage noch Reste der Zahnleiste aufwies. Dieser freie Raum ist im Gegensatz zu der sonst überraschend gedrängten Lage

der übrigen Zahnanlagen sehr auffällig und kann vielleicht auf den Ausfall einer früheren Zahnanlage zurückgeführt werden. Auf den

älteren Stadien wird dieser Raum von den sich stark entwickelnden Anlagen des \(M_3 \), aber mehr noch des \(M_2 \) ausgefüllt.

Die Durchbruchszeiten für die einzelnen Zähne stimmen ungefähr mit denen im Unterkiefer überein. Es treten die Zähne folgendermaßen in Funktion: \(M_1 \), \(M_2 \), \(M_3 \), \(M_1 \), \(M_2 \), \(M_3 \), \(M_2 \), \(M_3 \).

Stadium D.

Das junge Männchen von 25,3 cm Gesamtlänge besaß im Oberkiefer 7, im Unterkiefer 8 durchgebrochene Zähne. Auf den

Schnitten finden sich oben 5 und unten gleichfalls 5 Ersatzzähne.

Das Dentin zeigt Gefäßkanäle und Interglobularräume. Der Schmelz ist einfach streifig und besteht aus quergestellten Prismen,

¹) Owen, Odontography, 1840—45, p. 437.
Zahnsystem der Säugetiergattung Galeopithecus Pall.

653
die der Schmelzzusammensetzung des Lamantin (Manatus) entsprechen. Er zeigt eine sehr einfache Struktur. Das Cement ist fein lamelliert, vaskulär und sitzt in einer dünnen Schicht dem Dentin auf.

Stadium E.

Im übrigen bietet dieses Stadium nichts Neues mehr.

Stadium F und G.

Die Molaren brechen im Gegensatz zu Galeopithecus Temminckii Waterh. später durch, sie sind größer als die der anderen Art. Überhaupt ist das ganze Gebiß kräftig entwickelt. Die Zahl
Theodor Dependorf,

Zusammenstellung und Schlußfolgerung.

Oberkiefer jederseits: I₁, I₂, Pr₁₋₃, M₁₋₃,
Unterkiefer „ I₂, I₃, C, Pr₁₋₃, M₁₋₃,

während das Gebiß der ersten Dentition sich so zusammensetzt:

Oberkiefer jederseits: Id₁, Id₂, Prd₁₋₃, M₁₋₃,
Unterkiefer „ Id₂, Id₃, Cd, Prd₁₋₃, M₁₋₃.

Sowohl das Gebiß der ersten wie der zweiten Dentition hat die gleiche Anzahl von Zähnen. Zu denselben Ergebnissen ist auch LECHE gekommen, während, wie wir uns erinnern wollen, die früheren Autoren zum Teil andere Ansichten vertreten haben.
Zahnsystem der Säugetiergattung Galeopithecus Pall.

<table>
<thead>
<tr>
<th>Unterkiefer</th>
<th>Überblick der Anlagen der zweiten Dentition bei den Stadien 1—A—E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Embryo II</td>
<td>Embryo mit Spitze 11,5 cm</td>
</tr>
<tr>
<td>B. Embryo II</td>
<td>Embryo mit Spitze 14 cm</td>
</tr>
<tr>
<td>C. Neugeborenes</td>
<td>Mäuseren 19 cm</td>
</tr>
<tr>
<td>D. Junges Tier</td>
<td>Erwachsenes Tier 23,3 cm</td>
</tr>
<tr>
<td>E. Erwachsenes Tier</td>
<td>43,5 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oberkiefer</th>
<th>Überblick der Anlagen der zweiten Dentition bei den Stadien 1—A—E</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. klopfig</td>
<td>ohne Zahnlästensfortsatz</td>
</tr>
<tr>
<td>M. klopfig</td>
<td>rudimentärer Zahnlästensfortsatz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterkiefer</th>
<th>Überblick der Anlagen der zweiten Dentition bei den Stadien 1—A—E</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Oberkiefer</th>
<th>Überblick der Anlagen der zweiten Dentition bei den Stadien 1—A—E</th>
</tr>
</thead>
<tbody>
<tr>
<td>M,</td>
<td>ohne Zahnlästensfortsatz</td>
</tr>
<tr>
<td>M,</td>
<td>rudimentärer Zahnlästensfortsatz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterkiefer</th>
<th>Überblick der Anlagen der zweiten Dentition bei den Stadien 1—A—E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr,</td>
<td>Kappenform. Beginn der Kappenform differenzierbar. Form.</td>
</tr>
<tr>
<td>Pr,</td>
<td>Kappenform. Beginn der Kappenform differenzierbar. Form.</td>
</tr>
<tr>
<td>Pr,</td>
<td>Kappenform. Beginn der Kappenform differenzierbar. Form.</td>
</tr>
<tr>
<td>Pr,</td>
<td>Kappenform. Beginn der Kappenform differenzierbar. Form.</td>
</tr>
<tr>
<td>Pr,</td>
<td>Kappenform. Beginn der Kappenform differenzierbar. Form.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oberkiefer</th>
<th>Überblick der Anlagen der zweiten Dentition bei den Stadien 1—A—E</th>
</tr>
</thead>
<tbody>
<tr>
<td>M,</td>
<td>ohne Zahnlästensfortsatz</td>
</tr>
<tr>
<td>M,</td>
<td>rudimentärer Zahnlästensfortsatz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterkiefer</th>
<th>Überblick der Anlagen der zweiten Dentition bei den Stadien 1—A—E</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Oberkiefer</th>
<th>Überblick der Anlagen der zweiten Dentition bei den Stadien 1—A—E</th>
</tr>
</thead>
<tbody>
<tr>
<td>M,</td>
<td>ohne Zahnlästensfortsatz</td>
</tr>
<tr>
<td>M,</td>
<td>rudimentärer Zahnlästensfortsatz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterkiefer</th>
<th>Überblick der Anlagen der zweiten Dentition bei den Stadien 1—A—E</th>
</tr>
</thead>
<tbody>
<tr>
<td>M,</td>
<td>ohne Zahnlästensfortsatz</td>
</tr>
<tr>
<td>M,</td>
<td>rudimentärer Zahnlästensfortsatz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oberkiefer</th>
<th>Überblick der Anlagen der zweiten Dentition bei den Stadien 1—A—E</th>
</tr>
</thead>
<tbody>
<tr>
<td>M,</td>
<td>ohne Zahnlästensfortsatz</td>
</tr>
<tr>
<td>M,</td>
<td>rudimentärer Zahnlästensfortsatz</td>
</tr>
</tbody>
</table>

Glossenformige Stadien mit Ablagerung von Hartgebilden in verschiedenen Form und Stärke. Alle Ersatzanlagen von 1—Pr sind in Funktion, Wurzelbildung nahezu vollendet.

Wurzelbildung ist nahezu vollendet.

Der vordere Teil des Zwischenkiefers ist zahnlos. Ich konnte embryologisch weder die Zahl der ausgefallenen Zähne noch Reste der Zahnleiste feststellen. Es sind hier wenigstens einer, wenn nicht zwei Schneidezähne zu Grunde gegangen. Der jetzige obere \(I_1 \), ist rudimentär, \(I_1 \) erscheint weniger rückgebildet. Allerdings schwankt seine Größe. Er zeigt gleich \(C \) im Unterkiefer einen sehr primitiven Zahntypus.

Wenn die Zähne nach der Geburt durchbrechen, sind es noch sehr zarte Gebilde mit dünner Schmelz- und Dentinwände. Die Tätigkeit der Odontoblasten dauert auch während des Gebrauches der Zähne fort. Sie wird erst durch die vollkommene Wurzelbildung eingeschränkt, welche sehr spät zur Vollendung gelangt. Die Bildung der Wurzeln tritt bei Galeopithecus im allgemeinen später auf, als es bei den höheren Säugetierformen beobachtet wurde. Noch bei dem halberwachsenen Männchen \(D \), bei dem die erste Dentition in Funktion stand, ist die Wurzelbildung dieser Zahnserien nicht vollendet. Das neugeborene Tier, Stadium \(C \), zeigt überhaupt noch keine Anfänge zur Wurzelbildung. Ich halte diese Erscheinung für eine den alten Säugetierformen zukommende Eigenschaft, so besitzt z. B. Dromatherium unvoll-
Zahnsystem der Säugetiergattung Galeopithecus Pall.

Sicherheit von denselben zu unterscheiden. Das ist für das Gebiß der Insectivoren etwas ganz Charakteristisches.

Zahnsystem der Säugetiergattung Galeopithecus Pall.

Theodor Dependorf,
der Prämolaren zu einem mehr bunodonten, sowie die starke Abnutzung der echten Molaren gehören, mit dem Gebisse der herbivoren Säugetiere zu vergleichen. Hieraus ergeben sich leicht die bestehenden Abänderungen seines Gebisses.

Die distale Verbreiterung des Talons ist nur ein weiterer Ausdruck für die Anpassung an die herbivore Lebensweise und die beginnende Kieferverkürzung. Die Prd der höheren Säuger haben Molarform. Sie erlangten diese aber erst dadurch, daß die echten Molaren wegen Kürze der Kiefer nicht zum frühzeitigen Durchbruch kamen, und die sogenannten Milchmolaren frühzeitig dieselbe Funktion erhielten wie die echten Molaren. Diese Bedingung fällt bei Galeopithecus fort.

Außer diesen mehr äußerlich sichtbaren Eigenarten bestätigen direkte embryologische Befunde bei Galeopithecus die An-
Zahnsystem der Säugetiergattung Galeopithecus Pall. 661

nahme eines an die niederen Säugetiere erinnernden Zahnsystems. Und zwar gehören hierher:

1) Das Auftreten von Resten einer sogenannten prälactealen, d. h. vor der ersten Dentition erscheinenden Zahngeneration, welche als eine Vererbung von den nächsten Vorfahren aufzufassen ist, deren Dentitionszahl eine höhere war.

2) Das Auftreten einer dritten Dentition, die meiner Ansicht nach gleichfalls der Rest eines einstmalig reicheren Zahnwechsels der Vorfahren ist.

3) Die Thatsache, daß neben den Molaren lingual ein freies Zahnleistenende existiert.

Theodor Dependorf,

Zahnsystem der Säugetiergattung Galeopithecus Pall. 663

1) LECHE, Zur Entwicklungsgeschichte des Zahnsystems der Säugetiere. Bibl. zoologic., Heft 17, 1895, S. 49.

Theodor Dependorf,

nicht nur lingual der echten Molaren, wo die Zahnleiste sich ganz oberhalb der Zahnanlage abgeschnürt hatte, sondern auch bei den übrigen Zähnen, bei denen das freie Zahnleistenende sich stets in der Höhe der Mitte lingual der labialen Anlage befand. Bei den höheren Säugern hat sich das Verhalten von Zahnleiste und Zahnanlage zu einander etwas geändert. Bei diesen schnürt sich das freie Zahnleistenende lingual unten von der labialen Zahnanlage ab, so daß es scheint, als entstünde von und am älteren Schmelzkeim ein neuer Zahn. Damit nähern sich zwei Dentitionen in ihrer Zusammengehörigkeit und werden mehr voneinander in gewissem Sinne abhängig, als es bei den niederen Säugern der Fall ist. Zugleich aber wird durch diese engere Aneinanderlagerung beider Teile eine Verschmelzung derselben begünstigt; das freie Zahnleistenende braucht nur ganz in den Bereich der labialen Zahnanlage gezogen zu werden, um die Verschmelzung herbeizuführen. Bei den echten Molaren sehen wir diesen Prozeß bereits frühzeitig, schon bei niederen Säugern eintreten, die linguale Wand der Anlage entspricht zum größten Teil dem freien Zahnleistenende, aus dem sich später die ganze linguale Fläche entwickelt. Somit verschmilzt das freie Zahnleistenende hier mit der labialen Anlage; die echten Molaren sind Verschmelzungsprodukte zweier Säugetier-Dentitionen. Das freie Zahnleistenende lingual oberhalb der Molaren ist nicht die zweite Dentition, sondern schon vermöge ihrer Verkümmerung und eigenartigen, an Verhältnisse bei den Reptilien erinnernden Lage eine ältere, dritte Dentition, die nicht mehr zur Entwicklung kommt. Ihr Auftreten gleicht dem der prälactealen Dentition vollständig; diese beiden Dentitionen haben sich hier noch in kämmerlichen Resten erhalten und verschwinden bei den höheren Formen. KÜKENTHAL hat mehrfach auf diese Art der Anlage der echten Molaren aufmerksam gemacht, ebenso wie er die Ansicht von HERTWIG hervorhebt, der in seinem Lehrbuch der „Entwicklungs geschichte der Menschen und der Säugetiere“ sagt: „Außerdem entwickeln sich die Schmelzorgane der hinteren Backzähne (die Molarzähne), welche keinem Wechsel unterworfen sind, somit überhaupt nur einmal angelegt werden, am rechten und linken Ende der beiden Epithelleisten.“ KÜKENTHAL fügt hinzu: „Diese beiden Epithel-

1) KÜKENTHAL, Entstehung und Entwicklung des Säugetierstammes. Biolog. Centralblatt, Bd. XII, No. 13, 1892, S. 405, \[Anmerk. 2.\]

Bd. XXX. N. F. XXIII. 43
leisten sind aber nichts anderes als die ersten Anlagen der Schmelzorgane der ersten und zweiten Dentition, die bei den Prämolaren gesondert bleiben."

Ob sich Ersatzzahnanlagen nicht allein zeigen, sondern auch bis zur Funktion entwickeln, hängt für gewöhnlich von der Größe der Vorgänger ab. Sind diese klein und rudimentär, so bleibt naturgemäß ein beträchtliches Material für einen Ersatz vorhanden. So können sich daher manchmal dritte Dentitionen stärker entwickeln, weil die vorhergehenden in Reduktion begriffen sind.

werden, desto länger verbleibt die Zahnleiste in der Nähe der ersten Anlage, desto später schnürt sie sich ab, um schließlich in ihr aufzugehen, wie es die echten Molaren zeigen. Ist jedoch bei den Säugetieren die erste Anlage rudimentär, so tritt die Abschnürung eher auf und die Anlage der folgenden Dentition entwickelt sich in dem Grade kräftiger, als die vorhergehende rudimentär wird, und schließlich ganz verschwindet. Alsdann besteht nur eine Dentition in hochspezialisierter Form, und diese Dentition wird in Zukunft das jetzige „Ersatzgebiß“ sein. Das aber ist eine Erscheinung, wie sie uns heute ähnlich bei Pinnipedien und Chiropteran entgegentritt!

43 *
Die erlangten Resultate fasse ich in folgenden Punkten zusammen:

1) Das Gebiß des Galeopithecus Pall. ist diphyodont.
2) Das Zahnsystem des Galeopithecus zeigt alte Zustände.
3) Die beiden Dentitionen sind einander in Form und Funktion gleichwertig.
5) Reste prä lactealer und dritter Dentition sind rudimentäre Gebilde, sie sind Erbstücke der direkten nächsten Vorfahren.
6) Der Typus der Prämolaren der 1. Dentition ist nicht durch den Milchmolartypus hindurchgegangen.
7) Die unteren vorderen Zähne sind im Zusammenhang mit der oberen Lücke im Zwischenkiefer, der unteren Horizontalstellung des Kiefers sowie Abnutzung der Molaren nur Produkte des Nahrungserwerbes und -verarbeitung.
9) Die freien Zahnleistenenden lingual der Molaren sind Reste einer dritten Dentition.
10) Das Gebiß des Galeopithecus stellt ein primitives Insectivorengebiß vor, welches durch eine veränderte Lebensweise Änderungen erlitt.
Erklärung der Figuren.

Table XXIX—XXXII.

Fig. 1. Embryo I, 11,5 cm Gesamtlänge von Galeopithecus Temminckii Waterh. in natürlicher Größe von der linken Seite gesehen. a Kopf, b Schwanz, c vordere Extremität.

Fig. 2 u. 3. Kopf desselben Embryos von der linken Seite in natürlicher und doppelter Größe.

Fig. 4. Oberer Id des Galeopithecus philippinensis Waterh. 4a vom jüngeren, 30,7 cm Gesamtlänge, 4b vom älteren Stadium, 39 cm Gesamtlänge (viermal vergrößert).

Fig. 5. Oberer vierter Zahn (Pr) des ausgewachsenen Weibchens von Galeopithecus Temm. Stadium E, 43,5 cm Gesamtlänge (viermal vergrößert).

Fig. 6 u. 7. Unter- und Oberkiefer des halberwachsenen Männchens von Galeopithecus Temm. Wat., 25,3 cm Gesamtlänge (doppelte Größe). 6a Unterkiefer der rechten Seite von innen gesehen. 6b zweiter Schneidezahn des Unterkiefers (viermal vergrößert). 6c vorletzter durchgebrochener Backzahn des Unterkiefers (viermal vergrößert).

Fig. 7. 7a Oberkiefer der rechten Seite von innen gesehen. 7b vorletzter durchgebrochener Backzahn des Oberkiefers von oben gesehen (viermal vergrößert). 7c zweiter Schneidezahn des Oberkiefers labial gesehen (viermal vergrößert).

Fig. 8 u. 9. Teile des Unter- und Oberkiefers der rechten Seite vom erwachsenen Weibchen Galeop. Temm. Wat., 43,5 cm Gesamtlänge, zur Darstellung der Backzähne.

Fig. 9 a. Galeopithecus Pall. Gebiß mit Ersatzgebiß. Seitenansicht von der linken Seite (nach Owen).
Dieodcor Dependorf,

Bei allen übrigen Figuren bedeutet:

me = Mundhöhlenepithel
sl = Zahnleiste
fl = freies Zahnleistenende
za = Zahnanlage
d = Dentin
o = Odontoblastenschicht
p = Pulpa
sch = Schmelz
b = Bindegewebe
schp = Schmelzpulpa
isch = inneres Schmelzepithel
asch = äußeres Schmelzepithel
msch = mittleres Schmelzepithel

Fig. 10—46. Frontalschnitte durch Unter- und Oberkiefer der rechten Seite der Stadien A—D von Galeopithecus Temminckii. Die Abbildungen sind größtenteils mit Cam. lucida Zeiß, Obj. A, Ok. 2, angefertigt. Ausnahmen hiervon sind besonders angegeben. Alle Frontalschnitte sind so orientiert, daß die rechte Seite vom Leser der labialen, die linke der linguale Fläche entspricht.

Fig. 10—18. Anlagen des reduzierten unteren I1 erster und zweiter Dentition von den Stadien A—C.

Fig. 10—12, 17, 18. Anlagen des unteren I1 vom Stadium A, Embryo von 11,5 cm Gesamtlänge. Fig. 10, 11 schwach vergrößert, Fig. 12 stark vergrößert, Komp.-Okul. 4, Apochrom.

Fig. 17. Reduzierte Anlage von I1 auf dem Stadium A, Zahnleiste mit kolbenförmiger Verdickung und den Resten der ersten prälactealen Dentition. rzα = rudimentäre Zahnanlage, zβ = Zahnfurche, rzβ = rudimentäre vorausgangene Zahnanlage (prälacteale Dentition), klβ.ν = kolbenförmige Verdickung der Zahnleiste.

Fig. 18. Die kolbenförmige Verdickung der Zahnleiste von Fig. 17 vergrößert. Ok. 2, Apochrom., Cam. luc. Zeiß.

Fig. 13, 14. Anlage des unteren reduzierten I1 auf dem Stadium B, Embryo 14 cm Gesamtlänge. Fig. 13 wenig, Fig. 14 stark vergrößert. Okul. 2, Apochrom., Cam. luc.

Fig. 15, 16. Anlage des unteren I1 auf dem Stadium C, neugeborenes Männchen, 19 cm Gesamtlänge. rzl Reste der Zahnleiste.

Fig. 19—21. Reste der vorausgegangenen prälactealen Dentition im Unterkiefer. Fig. 19 labial vom unteren Id3, Fig. 20 labial vom unteren Id2, Fig. 21 das auf dem Stadium B zu einer Epithelperle degenerierte distale Ende der prälactealen Anlage labial vom unteren Id2.

Fig. 22—27. Verschiedene Entwickelungstufen der Ersatzzahnanlagen der unteren Incisivi 2 und 3.

Fig. 23, 24. Unterer I2 vom Stadium A an verschiedenen Stellen frontal getroffen. Fig. 23 stark vergrößert (Komp.-Okul. 8, Apochrom., Cam. luc.).
Zahnsystem der Säugetiergattung Galeopithecus Pall.

Fig. 22. Unterer 1\textsubscript{3} vom Stadium B, in der vorderen Hälfte frontal getroffen.

Fig. 25. Unterer 1\textsubscript{1} vom Stadium B, frontal getroffen.

Fig. 26. Unterer 1\textsubscript{3} vom Stadium C, sagittal getroffen.

Fig. 27. Unterer 1\textsubscript{2} vom Stadium C, halb frontal, halb sagittal getroffen.

Fig. 28. Frontaler Schnitt des unteren Id\textsubscript{2} vom Stadium B mit 6 quer getroffenen Zinken. Cam. luc. Zeiß, Okul. 4, Obj. A.

Fig. 29. Frontaler Schnitt durch den Zahnhalshals vom unteren Id\textsubscript{3} des Galeopithecus, Männchen, 19 cm Gesamtlänge.

Fig. 30—32. Anlagen des unteren vierten Incisivus erster und zweiter Dentition. Fig. 30 vom Stadium A, Fig. 31, 32 vom Stadium B.

Fig. 31. Zweite Dentition (Ersatzanlage) vom unteren Id\textsubscript{4}.

Fig. 32. Verbindung der Anlage der ersten Dentition von Id\textsubscript{4} mit der lingual gelegenen Zahnleiste. 2a1 Zahnanlage erster Dentition, 2a2 Zahnanlage zweiter Dentition.

Fig. 33. Freies Zahnleistenende lingual des unteren Prd\textsubscript{2} vom Stadium A.

Fig. 34. Freies Zahnleistenende lingual des unteren M\textsubscript{1} vom Stadium B.

Fig. 35. Distaler, frontal geschnittener Teil des oberen Prd\textsubscript{2} des Stadiums B.

Fig. 36. Freies Zahnleistenende lingual des unteren M\textsubscript{2} vom Stadium A in Verbindung mit der labialen Anlage.

Fig. 37. Erste Anlage des unteren M\textsubscript{3} des Stadiums A.

Fig. 38. Freies Zahnleistenende des unteren M\textsubscript{2} vom Stadium B in Verbindung mit der labialen Anlage von M\textsubscript{2}. vbdSt Verbindungsstrang.

Fig. 39. Anlage des unteren M\textsubscript{3} des Stadiums B. 2a M\textsubscript{2} Zahnanlage von M\textsubscript{2}.

Fig. 40. Freies Zahnleistenende lingual der Ersatzanlage (Anl. 2. Dentition) des unteren vierten I vom Stadium C, 19 cm Gesamtlänge.

Fig. 41. Freies Zahnleistenende (verkümmert) lingual des unteren M\textsubscript{1} vom Stadium C.

Fig. 42. Freies Zahnleistenende lingual des unteren M\textsubscript{2} vom Stadium C.
Fig. 43. Reste des freien Zahnleistenendes des oberen M₁ vom Stadium B (14 cm Gesamtlänge).

Fig. 44. Zwei nebeneinander liegende Zahnanlagen im Oberkiefer vom Stadium B (Prd₂ und Prd₃).

Fig. 45. Unterer Ende der Hertwig'schen Epithelscheide an der Umbiegungsstelle eines Prd des Stadiums B. Ubg Umbiegungsstelle.

Fig. 46. Unterer Ende der Hertwig'schen Epithelscheide eines Prd vom Stadium C.
Jahresbericht

der
Medizinisch-naturwissenschaftlichen Gesellschaft

zu Jena

für das Jahr 1895 erstattet von

Fritz Regel,
d. Z. I. Vorsitzenden.

I. Im Laufe des Jahres 1895 fanden 13 Gesamtsitzungen (mit Ausnahme einer) im Hörsaal des Physikalischen Institutes und 9 Sitzungen der Sektion für Heilkunde in den Räumen des Landkrankenhauses statt. In den Gesamtsitzungen wurden 18, in den Sitzungen der Sektion für Heilkunde 21 Vorträge und Demonstrationen gehalten, nämlich:

Herr W. Semon: Die Jenaer Denkschriften.
" Drüner: Die neueren Untersuchungen über Zellteilung.

Herr Wagenmann: Über hereditären Irismangel.
" Riedel zeigt einen Parotistumor.
" " zeigt einen Kranken, welcher nach Entleerung von Flüssigkeit aus den Hirnventrikeln epileptische Anfälle für längere Zeit verlor.
" Riedel zeigt einen Kranken mit operierter Hirncyste.
" Stintzing zeigt einen Fall von Thomson'scher Krankheit.
" Matties zeigt eine Kranke mit Sklerodermie und Raynaud'scher Gangrän.

Herr Ziehen: Über die Funktion des Stirnhirns.
Herr Binswanger spricht über Encephalitis subcortical. chron. und progressive Paralyse.

Ziehens zeigt eine Kranke mit motor. und sensibler Hemi-
plegie durch Läsion der inneren Kapsel.

Herr Stahl: Die Vegetation von Mexiko.

Herr Warda zeigt einen Kranken mit gekreuzter Hemiplegie durch Läsion an der Basalfläche der Brücke.

Overweg spricht über die Wirkung der Geschosse des neuen Infanteriegewehres.

Diskussion über den Vortrag des Herrn Overweg.
Herr Riedel zeigt einen Kranken mit Tumor der Pleura.

Matthes spricht über das Wesen der Tuberkulinwirkung.

Herr Haeckel: Die Stammesgeschichte der Säugetiere.

Herr B. Schultze spricht über den Scheintod Neugeborener.

Binswanger zeigt einen Fall von nicht eitriger Encephalitis.

6. Gesamtsitzung am 17. Mai
(im Chemischen Laboratorium).
Herr Knorr: Das Morphium.

Herr Binswanger: Über traumatische Neurose.

Herr Stahl: Der Pflanzenschlaf.

Herr Gärtner: Über Wasseruntersuchung.

Thomae: Über Steiner'sche und Poncelet'sche Polygone.

Herr Haeckel: Gedenkrede auf Thomas Huxley.

Gumprecht: Medizinische Beobachtungen auf einer Reise nach Algier im Frühjahr 1895.
10. **Gesamtsitzung am 26. Juli.**

Herr **Verworn**: Über Wüstensandschliffe.

„ **Semon**: Anthropologie und Ethnologie der Australneger (Erster Teil).

11. **Gesamtsitzung am 1. November.**

Herr **Semon**: Anthropologie und Ethnologie der Australneger (Zweiter Teil).

7. **Sitzung der Sektion für Heilkunde am 7. November.**

Herr **Stintzing** zeigt ein junges Mädchen mit Lähmung des linken Trigeminus und Facialis; die Natur der Erkrankung ist nicht sicher festzustellen.

„ **Stintzing** zeigt einen Kranken mit Syringomyelie.

„ **Riedel** zeigt einen Kranken mit Monopelgie eines Arms durch intracerebrale Blutung infolge von Verletzung.

„ **Riedel** bespricht einen Kranken, bei welchem nach Gewaltteinwirkung auf den Kopf epileptische Anfälle eingetreten waren.

12. **Gesamtsitzung am 29. November**

Herr **Leubuscher**: Über ein neues Pfeilgift.

„ **Walther**: Die Lebensbezirke des Meeres.

8. **Sitzung der Sektion für Heilkunde am 5. Dezember.**

Herr **Binswanger** zeigt einen Kranken mit Encephalitis subcorticalis chronica.

„ **Binswanger** bespricht einen Kranken, welcher nach einem Unfall eine Monopelgie des linken Arms zeigte. Die Entscheidung, ob Simulation oder Hysterie vorliegt, war zur Zeit noch nicht sicher zu geben.

13. **Gesamtsitzung am 13. Dezember.**

Herr E. **Haeckel**: Über Stammesgeschichte der Echinodermen.

9. **Sitzung der Sektion für Heilkunde am 19. Dezember.**

Herr **Overweg** spricht über Sanitätsdienst im Kriege an der Hand der Erfahrungen, welche im Feldzug 1870/71 gewonnen wurden.

II. Zu den Gesellschaften, Redaktionen u. s. w., die im Jahre 1894 ihre Schriften übersandten, kamen neu hinzu 5; von 4 Gesellschaften wurde die Übersendung bisher nicht in den Tausch gegebener Schriften erreicht:

D. V.
3) Soc. entomolog. de Bruxelles.
6) R. Society of Victoria, Melbourne.
8) Linnean Society, Sydney.

Außerdem wurden ergänzt (durch Tausch mit hiesigen Veröffentlichungen):

Außerdem ging eine größere Zahl einzelner Veröffentlichungen und kleiner Schriften als Geschenk oder mit Bitte um Tausch ein, ohne daß auf letzteren eingegangen werden konnte.

Mit einigen Gesellschaften und Instituten schweben noch die Verhandlungen betr. Tausch oder Ergänzung.

Danach stellte sich im Jahre 1895 die Liste der Gesellschaften und Redaktionen, deren Publikationen die Medizinisch-naturwissenschaftliche Gesellschaft teils im Tauschverkehr, teils als Geschenke erhält, folgendermaßen:

<table>
<thead>
<tr>
<th>Ort:</th>
<th>Name der Gesellschaft oder der Redaktion:</th>
<th>Schriften:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin</td>
<td>Physiologische Gesellschaft</td>
<td>Verhandlungen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zentralblatt für Physiologie.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verhandlungen.</td>
</tr>
<tr>
<td></td>
<td>Medizinische Gesellschaft</td>
<td>Verhandlungen.</td>
</tr>
<tr>
<td></td>
<td>Gesellschaft naturf. Freunde</td>
<td>Sitzungsberichte.</td>
</tr>
<tr>
<td>Breßlau</td>
<td>Schlesische Gesellschaft f. vaterländische Kultur</td>
<td>Jahresberichte.</td>
</tr>
<tr>
<td>Danzig</td>
<td>Naturforschende Gesellschaft</td>
<td>Schriften.</td>
</tr>
<tr>
<td>Erlangen</td>
<td>Physik.-med. Sozietät</td>
<td>Sitzungsberichte.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berichte.</td>
</tr>
<tr>
<td>Freiburg i. B.</td>
<td>Naturforschende Gesellschaft</td>
<td>Kataloge.</td>
</tr>
<tr>
<td>Gießen</td>
<td>Zoologische Jahrbücher, Abt. für Systematik etc.</td>
<td>Berichte.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verhandlungen.</td>
</tr>
<tr>
<td>Halle</td>
<td>Kaiserl. Leopold.-Carol. Akademie der Naturforscher</td>
<td>Abhandlungen.</td>
</tr>
<tr>
<td></td>
<td>Naturforschende Gesellschaft</td>
<td>Berichte.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modellerschein.</td>
</tr>
<tr>
<td>Ort</td>
<td>Name der Gesellschaft oder der Redaktion:</td>
<td>Schriften:</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Hanau</td>
<td>Wetterauische Gesellschaft für die gesamte Naturkunde</td>
<td>Berichte.</td>
</tr>
<tr>
<td>Heidelberg</td>
<td>Biologische Anstalt</td>
<td>Veröffentlichungen.</td>
</tr>
<tr>
<td>Kiel</td>
<td>Wiss. Kommission z. Untersuch. d. deutschen Meere</td>
<td></td>
</tr>
<tr>
<td>Kassel</td>
<td>Verein für Naturkunde</td>
<td>Berichte.</td>
</tr>
<tr>
<td>Königsberg i. P.</td>
<td>Physikal.-ökonomische Gesellschaft</td>
<td>Schriften.</td>
</tr>
<tr>
<td>Lüneburg</td>
<td>Naturwissenschaft Verein f. Lüneburg</td>
<td>Jahreshefte.</td>
</tr>
<tr>
<td>Reinerz</td>
<td>Ärztlicher Verein</td>
<td>Sitzungsberichte.</td>
</tr>
<tr>
<td>Wernigerode</td>
<td>Westfälischer Provinzialverein f. Wissenschaft und Kunst</td>
<td>Sitzungsberichte.</td>
</tr>
<tr>
<td>Würzburg</td>
<td>Physikalisch-mediz. Gesellschaft</td>
<td>Sitzungsberichte.</td>
</tr>
<tr>
<td>Triest</td>
<td>Österreic - Ungarn</td>
<td>Verhandlungen.</td>
</tr>
<tr>
<td>Krakau</td>
<td>Akademie der Wissenschaften</td>
<td>Anzeiger.</td>
</tr>
<tr>
<td>Prag</td>
<td>K. Böhmische Gesellschaft der Wissenschaften</td>
<td>Abhandlungen.</td>
</tr>
<tr>
<td>Triest</td>
<td>Società Adriatica di Scienze Naturali</td>
<td>Sitzungsberichte.</td>
</tr>
<tr>
<td>Graz</td>
<td>K. K. Geologische Reichsaustalt</td>
<td></td>
</tr>
<tr>
<td>Prag</td>
<td>K. K. Zoolog.-Botan. Gesellschaft</td>
<td></td>
</tr>
<tr>
<td>Wien</td>
<td></td>
<td>Sitzungsberichte.</td>
</tr>
<tr>
<td>Graz</td>
<td></td>
<td>Anzeiger.</td>
</tr>
<tr>
<td>Prag</td>
<td></td>
<td>Jahrbuch.</td>
</tr>
<tr>
<td>Wiesbaden</td>
<td></td>
<td>Verhandlungen.</td>
</tr>
<tr>
<td>Würzburg</td>
<td></td>
<td>Abhandlungen.</td>
</tr>
<tr>
<td>Triest</td>
<td></td>
<td>Verhandlungen.</td>
</tr>
<tr>
<td>Bern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiesbaden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Würzburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiesbaden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Würzburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiesbaden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Würzburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiesbaden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Würzburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiesbaden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Würzburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiesbaden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Würzburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiesbaden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Würzburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ort</td>
<td>Name der Gesellschaft oder der Redaktion</td>
<td>Schriften</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>52) Bern</td>
<td>Naturforschende Gesellschaft</td>
<td>Mitteilungen</td>
</tr>
<tr>
<td>53) Genf</td>
<td>Institut National Genevois</td>
<td>Mémoires</td>
</tr>
<tr>
<td>54)</td>
<td>"</td>
<td>Bulletin</td>
</tr>
<tr>
<td>55)</td>
<td>" Société de physique et d'histoire naturelle</td>
<td>Mémoires</td>
</tr>
<tr>
<td>56) Bologna</td>
<td>Accademia delle Scienze dell'Istituto di Bologna</td>
<td>Memorie</td>
</tr>
<tr>
<td>57)</td>
<td>"</td>
<td>Rendiconto</td>
</tr>
<tr>
<td>58) Florenz</td>
<td>Società botanica Italiana</td>
<td>Nuovo Giornale,</td>
</tr>
<tr>
<td>59)</td>
<td>"</td>
<td>Bullettino</td>
</tr>
<tr>
<td>60) Mailand</td>
<td>Società Italiana di Scienze Naturali</td>
<td>Atti</td>
</tr>
<tr>
<td>61)</td>
<td>"</td>
<td>Memorie</td>
</tr>
<tr>
<td>62) Neapel</td>
<td>R. Accademia delle Scienze Fisiche e Matematiche</td>
<td>Atti</td>
</tr>
<tr>
<td>63)</td>
<td>"</td>
<td>Rendiconto</td>
</tr>
<tr>
<td>64)</td>
<td>" Zoologische Station</td>
<td>Mitteilungen</td>
</tr>
<tr>
<td>65) Perugia</td>
<td>Accademia medico-chirurgica</td>
<td>Atti e Rendiconti</td>
</tr>
<tr>
<td>66) Pisa</td>
<td>Società Toscana di Scienze Naturali</td>
<td>Atti</td>
</tr>
<tr>
<td>67)</td>
<td>"</td>
<td>Processi verbali</td>
</tr>
<tr>
<td>68) Turin</td>
<td>" Archives Italiennes de Biologie</td>
<td></td>
</tr>
<tr>
<td>69)</td>
<td>" Archivio per le Scienze Mediche</td>
<td></td>
</tr>
<tr>
<td>70)</td>
<td>" R. Accademia delle Scienze</td>
<td>Memorie</td>
</tr>
<tr>
<td>71)</td>
<td>"</td>
<td>Atti</td>
</tr>
<tr>
<td>72)</td>
<td>"</td>
<td>Osservazioni mete-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cologiche</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73) Caen</td>
<td>Société Linnéenne de Normandie</td>
<td>Bulletin</td>
</tr>
<tr>
<td>74)</td>
<td>"</td>
<td>Mémoires</td>
</tr>
<tr>
<td>75)</td>
<td>"</td>
<td>Mémoires</td>
</tr>
<tr>
<td>76) Marseille</td>
<td>Musée d'histoire naturelle (Zoologie)</td>
<td>Annales</td>
</tr>
<tr>
<td>77) Paris</td>
<td>Musée d'histoire naturelle</td>
<td>Archives</td>
</tr>
<tr>
<td>78)</td>
<td>Société zoologique de France</td>
<td>Mémoires</td>
</tr>
<tr>
<td>79)</td>
<td>"</td>
<td>Bulletin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81)</td>
<td>"</td>
<td>Annuaire</td>
</tr>
<tr>
<td>82)</td>
<td>" Société entomologique</td>
<td>Annales</td>
</tr>
<tr>
<td>83)</td>
<td>"</td>
<td>Mémoires</td>
</tr>
<tr>
<td>84) Löwen</td>
<td>" La Cellule.</td>
<td></td>
</tr>
<tr>
<td>85) Lättich</td>
<td>Archives de Biologie.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86) Amsterdam</td>
<td>K. Akademie van Wetenschappen</td>
<td>Verhandelingen</td>
</tr>
<tr>
<td>87)</td>
<td>"</td>
<td>Verslagen</td>
</tr>
<tr>
<td>88)</td>
<td>"</td>
<td>Jaarboek</td>
</tr>
<tr>
<td>Ort</td>
<td>Name der Gesellschaft oder der Redaktion</td>
<td>Schriften:</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>K. Zoologisch Genootschap Natura artis magistra</td>
<td>Bijdragen.</td>
</tr>
<tr>
<td>'s Gravenhage</td>
<td>K. Natuurkundige Vereeniging in Nederlandsch-Indie</td>
<td>Tijdschrift.</td>
</tr>
<tr>
<td>Haarlem</td>
<td>Musée Teyler</td>
<td>Archives.</td>
</tr>
<tr>
<td>Leiden</td>
<td>Nederlandsche Dierkundige Vereeniging</td>
<td>Catalogue.</td>
</tr>
</tbody>
</table>

Großbritannien.

<table>
<thead>
<tr>
<th>Ort</th>
<th>Name der Gesellschaft oder der Redaktion</th>
<th>Schriften:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge</td>
<td>Philosophical Society</td>
<td>Transactions.</td>
</tr>
<tr>
<td>Dublin</td>
<td>The R. Dublin Society</td>
<td>Proceedings.</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>Royal Society</td>
<td>Transactions.</td>
</tr>
<tr>
<td></td>
<td>R. College of Physicians</td>
<td>Reports.</td>
</tr>
<tr>
<td></td>
<td>Linnean Society</td>
<td>Transactions.</td>
</tr>
<tr>
<td></td>
<td>Royal Society</td>
<td>Journal.</td>
</tr>
<tr>
<td></td>
<td>Royal Society</td>
<td>Philos. Transactions.</td>
</tr>
<tr>
<td></td>
<td>B. Microscopical Society</td>
<td>Proceedings.</td>
</tr>
<tr>
<td></td>
<td>Zoological Society</td>
<td>Transactions.</td>
</tr>
</tbody>
</table>

Quarterly Journal of Microscopical Science.

Dänemark.

<table>
<thead>
<tr>
<th>Ort</th>
<th>Name der Gesellschaft oder der Redaktion</th>
<th>Schriften:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopenhagen</td>
<td>K. Danske Videnskaberne Selskab Skrifter.</td>
<td></td>
</tr>
</tbody>
</table>

Norwegen.

<table>
<thead>
<tr>
<th>Ort</th>
<th>Name der Gesellschaft oder der Redaktion</th>
<th>Schriften:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christiania</td>
<td>Norske Medicinske Selskab</td>
<td>Forhandlinger.</td>
</tr>
<tr>
<td></td>
<td>Archiv for Matematik og Naturvidenskab</td>
<td>Norsk Magazin.</td>
</tr>
</tbody>
</table>

Schweden.

<table>
<thead>
<tr>
<th>Ort</th>
<th>Name der Gesellschaft oder der Redaktion</th>
<th>Schriften:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockholm</td>
<td>Svenska Läkare Sällskap</td>
<td>Hygica.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Förhandlingar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handlingar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ofversigt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bihang.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lefnadsteckningar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Läkare Förenings Förhandlingar.</td>
</tr>
<tr>
<td>Ort</td>
<td>Name der Gesellschaft oder der Redaktion:</td>
<td>Schriften:</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>126) Helsingfors</td>
<td>Finska Vetenskaps Societet</td>
<td>Acta.</td>
</tr>
<tr>
<td>127)</td>
<td>"</td>
<td>Öfversigt.</td>
</tr>
<tr>
<td>128)</td>
<td>"</td>
<td>Bidrag till Kännedom of Finnlands Natur och Folk.</td>
</tr>
<tr>
<td>129)</td>
<td>"</td>
<td>Observations météorolog.</td>
</tr>
<tr>
<td>130) Katharinenburg</td>
<td>Société Ouralienne de médecine</td>
<td>Mémoires.</td>
</tr>
<tr>
<td>131) Moskau</td>
<td>Société Impériale des naturalistes</td>
<td>Mémoires.</td>
</tr>
<tr>
<td>132)</td>
<td>"</td>
<td>Bulletin.</td>
</tr>
<tr>
<td>133) St. Petersburg</td>
<td>Comité géologique</td>
<td>Mémoires.</td>
</tr>
<tr>
<td>134)</td>
<td>"</td>
<td>Bulletin.</td>
</tr>
<tr>
<td></td>
<td>Nordamerika.</td>
<td>I. Canada.</td>
</tr>
<tr>
<td>138) Otawa</td>
<td>Geol. and Nat. History Survey of Canada</td>
<td>Reports.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Catalogues.</td>
</tr>
<tr>
<td>139)</td>
<td>"</td>
<td>II. Vereinigte Staaten.</td>
</tr>
<tr>
<td>140) Baltimore</td>
<td>John Hopkins University</td>
<td>Studies from the Biol. Laboratory.</td>
</tr>
<tr>
<td>141)</td>
<td>"</td>
<td>Circulars.</td>
</tr>
<tr>
<td>142) Boston</td>
<td>Society of Natural History</td>
<td>Memoirs.</td>
</tr>
<tr>
<td>143)</td>
<td>"</td>
<td>Proceedings.</td>
</tr>
<tr>
<td>144)</td>
<td>"</td>
<td>Occasional Papers.</td>
</tr>
<tr>
<td>145) Cambridge</td>
<td>Mus. of Comparative Zoology</td>
<td>Memoirs.</td>
</tr>
<tr>
<td>146)</td>
<td>"</td>
<td>Annual Report.</td>
</tr>
<tr>
<td>147)</td>
<td>"</td>
<td>Bullins.</td>
</tr>
<tr>
<td>148) Granville (Ohio)</td>
<td>Denison University</td>
<td>Bull. of the Scientific Laboratories.</td>
</tr>
<tr>
<td>149) St. Louis</td>
<td>Missouri Botanical Garden</td>
<td>Annual Report.</td>
</tr>
<tr>
<td>150) Nebraska</td>
<td>University of Nebraska</td>
<td>University Studies.</td>
</tr>
<tr>
<td>151) New Haven</td>
<td>Connecticut Academy of Arts and Sciences</td>
<td>Transactions.</td>
</tr>
<tr>
<td>152)</td>
<td>"</td>
<td>The American Journal of Science.</td>
</tr>
<tr>
<td>154) Philadelphia</td>
<td>Academy of Natural Sciences</td>
<td>Proceedings.</td>
</tr>
<tr>
<td>155)</td>
<td>"</td>
<td>The American Naturalist.</td>
</tr>
</tbody>
</table>

III. Von den Schriften der Gesellschaft erschienen im Jahre 1895:

1) Jenaische Zeitschrift für Naturwissenschaft, Bd. XXIX, Heft 3 und 4 (Doppelheft), und Bd. XXX, Heft 1;

IV. Der Kassenbericht wurde von Herrn Thomae geprüft und für richtig gefunden. Die Einnahme betrug 2848 Mark, die Ausgaben betrugen 1812 Mark, bleibt ein Barvorrat von 1036 Mark.

Den Vorstand der Gesellschaft bildeten:
Fritz Regel, I. Vorsitzender,
Ernst Haeckel, II. Vorsitzender,
Max Fübringer, Redakteur,
Karl Konrad Müller, Bibliothekar.

Mitgliederverzeichnis.
Frühere Ehrenmitglieder waren die Herren:

<table>
<thead>
<tr>
<th>Name</th>
<th>Jahr der Ernennung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karl Schimper († 1867)</td>
<td>1855</td>
</tr>
<tr>
<td>Dietrich Georg Kieser</td>
<td>1857</td>
</tr>
<tr>
<td>Louis Soret († 1890)</td>
<td>1864</td>
</tr>
<tr>
<td>Albert von Bezold († 1868)</td>
<td>1866</td>
</tr>
<tr>
<td>Thomas Huxley († 1895)</td>
<td>1867</td>
</tr>
<tr>
<td>Matthias Jacob Schleiden († 1881)</td>
<td>1878</td>
</tr>
<tr>
<td>Oskar Schmidt († 1886)</td>
<td>1878</td>
</tr>
<tr>
<td>Charles Darwin († 1882)</td>
<td>1878</td>
</tr>
<tr>
<td>Franz von Ried († 1895)</td>
<td>1892</td>
</tr>
</tbody>
</table>

I. Ehrenmitglieder.
1) Karl Gegenbaur, Heidelberg 1873
2) Ottomar Domrich, Meiningen 1892
3) Ernst Haeckel, Jena (1861) 1894.
II. Ordentliche Mitglieder. Jahr der Aufnahme.

1) Prof. Dr. Ernst Abbe, Jena 1863
2) Prof. Dr. Felix Auerrach
3) Prof. Dr. Karl von Bardeleben
4) Dr. Gustav Bachus, Assistenzarzt 1894
5) Prof. Dr. Wilhelm Biedermann
6) Prof. Dr. Otto Binswanger
7) Dr. Fritz Bockelmann, prakt. Arzt, Rudolstadt 1875
8) Dr. Hermann Braus, Assistenzarzt, Jena 1894
9) Dr. Friedrich Buchbinder, Gymnasialprof. a. D. 1889
10) Dr. Otto Bürstenbinder, Assistenzarzt 1894
12) Dr. Siegfried Czapski 1885
13) Prof. Dr. Berthold Delbrück 1885
14) Prof. Dr. Wilhelm Detmer 1875
15) Dr. Leo Drüner, Assistenzarzt 1894
16) Dr. Paul Duden, Assistenzarzt 1894
17) Wilhelm Eber, Medizinalassessor 1893
18) Dr. Heinrich Eggeling, Geh. Staatsrat, Univ.-Kurator 1887
19) Dr. Gustav Eichhorn, prakt. Arzt 1891
20) Prof. Dr. Hermann Engelhardt 1888
21) Dr. Gustav Fischer, Verlagsbuchhändler 1885
22) Prof. Dr. Gottlob Frege 1874
23) Prof. Dr. Max Förbringer, Hofrat 1888
24) Dr. Christian Gänge, Privatdozent 1875
25) Prof. Dr. August Gärtnern, Hofrat 1886
26) Dr. Giese, prakt. Arzt 1893
27) Prof. Dr. Georg Götz 1889
28) Prof. Dr. Theodor Freiherr von der Goltz 1885
29) Dr. Ferdinand Gumprecht, Assistenzarzt 1892
30) Prof. Dr. Heinrich Haeckel, 1884
31) Dr. Johann Hjort, Christiania 1896
32) Gustav Jonas, Apotheker, Jena 1890
33) Prof. Dr. Johannes Kessel 1886
34) Dr. Otto Knopp, Privatdozent 1889
35) Prof. Dr. Ludwig Knorr 1889
36) Rudolf Koch, Bankier 1893
37) Wilhelm Koch, Bankier 1893
38) Dr. Karl Kolessch, Gymnasiallehrer 1891
39) Prof. Dr. Ludolf Kreih 1892
41) Fritz Krieger, Geh. Justizrat, Oberlandesgerichtsrat 1889
42) Prof. Dr. Willy Kükenthal 1886
43) Dr. Wilhelm Leube, Assistenzarzt 1892
44) Prof. Dr. Georg Leubüscher, Bezirksarzt 1882
45) Prof. Dr. G. Linck 1894
46) Hermann Maser, Rechtsanwalt 1893
47) Dr. Matte, Assistent an der Ohrenklinik 1896
48) Dr. Max Matthes, Privatdozent 1891

44
Jahresbericht.

49) Dr. Paul Millitzer, prakt. Arzt
50) Prof. Dr. Wilhelm Müller, Geheimer Hofrat
51) Dr. Karl Konrad Müller, Oberbibliothekar
52) Prof. Dr. Richard Neumeister
53) Dr. Hermann Obermüller, Assistenzarzt
54) Dr. Max Overweg, Stabsarzt
55) Prof. Dr. Eduard Pechuel-Lösche
56) Dr. Emil Pfeiffer, Fabrikdirektor a. D.
57) Prof. Dr. Theodor Pfeiffer
58) Dr. Adolf Piltz, Privatdozent
59) Ernst Piltz, Institutslehrer
60) Gott. Prüssing, Fabrikdirektor
61) Dr. Karl Pulfrich
62) Prof. Dr. Fritz Regel
63) Prof. Dr. Bernhard Riedel, Hofrat
64) Dr. Paul Riedel
65) Dr. Fritz Römer, Assistent am zool. Institut
66) Dr. Leo Sachse, Gymnasialprofessor a. D.
67) Prof. Dr. Hermann Schaffer
68) Prof. Dr. Ludwig Schillbach
69) L. Schimmelpenning, Postdirektor a. D.
70) Dr. Otto Schott, Fabrikdirektor
71) Prof. Dr. Sig. Bernhard Schulzle, Geh. Hofrat
72) Paul Schulzle, Oberinspektor
73) Prof. Dr. Konrad von Seelhorst
74) Prof. Dr. Moritz Seidel, Geh. Medizinalrat
75) Prof. Dr. Richard Semon
76) Dr. Lucas Siebert, prakt. Arzt
77) Prof. Dr. Felix Skutsch
78) Prof. Dr. Ernst Stahl
79) Prof. Dr. Roderich Stintzing
80) Dr. Heinrich Stay, Privatdozent, Institutsdirektor
81) Dr. Rud. Straubel, Privatdozent
82) Dr. R. Teuscher, Arzt, Privatgelehrter
83) Prof. Dr. Johannes Thomae, Hofrat
84) Prof. Dr. Max Verworn
85) Prof. Dr. August Wagenmann
86) Prof. Dr. Johannes Walther
87) Dr. Alfred Welcker, Assistenzarzt
88) Dr. Theodor Wette, Assistenzarzt
89) Friedrich Wiegmann, Apotheker
90) Prof. Dr. Adolf Winkelmann, Hofrat
91) Dr. Wilhelm Winkler, Privatgelehrter
92) Dr. Adolf Witzel, Privatdozent
93) Prof. Dr. Ludwig Wolff
94) Prof. Dr. Theodor Ziehen
95) Prof. Dr. Paul Zimmermann
96) Sanitätsrat Dr. Zöber

Jahr der Aufnahme.

Jena 1893
1865
1891
1890
1893
1891
Erlangen 1884
Jena 1887
1892
1884
1893
1890
1891
1882
1889
1893
1890
1876
1855
1856
1880
1882
1858
1879
1890
1864
1887
1881
1884
1881
1890
1877
1894
1873
1879
1891
1892
1886
1892
1891
1893
1886
1887
1893
1892
1886
1895
1894.

Frommannsche Buchdruckerei (Hermann Pohle) in Jena. — 1539
Fig. 12

Fig. 13

Fig. 14
Ohne Prismen.
Kupfer.
Eisen.
Silber.
Blei.
Zink.

Winkelmann & Straubel phot.
Lichtdruck von J. B. Oerneller, München.
Jenaische Zeitschrift

für

NATURWISSENSCHAFT

herausgegeben

von der

medizinisch-naturwissenschaftlichen Gesellschaft

zu Jena.

Dreissigster Band.

Neue Folge. Dreundzwanzigster Band.

Erstes Heft.

Mit 7 lithographischen Tafeln und 1 Abbildung im Text.

Preis: 8 Mark.

Jena,

Verlag von Gustav Fischer

1895.

Zusendungen an die Redaktion erbittet man durch die Verlagsbuchhandlung.

Ausgegeben am 18. Oktober 1895.
Inhalt.

Germanos, Dr. N. K., Bothriocephalus schistochilos n. sp. Ein neuer Cestode aus dem Darm von Phoca barbata. Mit Tafel I u. II und 1 Abbildung im Text

Jaworowski, A., Die Entwicklung des Spinnapparates bei Trochosa singoriensis Laxm. mit Berücksichtigung der Abdominalanhänge und der Flügel bei den Insekten. Mit Tafel III u. IV

Tjksing, Dr. Berthold, Ein Beitrag zur Kenntnis der Augen, Kiefer- und Kiemenmuskulatur der Haie und Rochen. Mit Tafel V—VII

Fürbringer, Max, Ueber die mit dem Visceralskelet verbundenen spinalen Muskeln bei Selachiern

Verlag von Gustav Fischer in Jena.

Soeben erschienen:

Dr. W. Biedermann,
Professor der Physiologie in Jena,
Elektrophysiologie.
Zweite Abteilung.
Mit 149 Abbildungen. 1895. Preis 9 Mark.
Die I. Abteilung erschien im Herbst 1894 und kostet 9 Mark.

R. FRIEDLÄNDER & SOHN, Berlin NW., Carlstr. 11.

Soeben erschienen:

Zoologisches Adressbuch.
Namen und Adressen

der lebenden

Zoologen, Anatomen, Physiologen und Zoopalaeontologen, sowie der künstlerischen und technischen Hülfskräfte.

Herausgegeben im Auftrage der Deutschen Zoologischen Gesellschaft von

R. Friedländer & Sohn.
Preis: 10 Mark franco.

Wie sehr ein solches Werk bisher gefehlt hat, braucht nicht erst ausführlich zu werden. Das vorliegende Buch, das über 12000 genaue Adressen enthält, das bei jedem Namen auch die Spezialität angiebt, mit welcher sich der Forscher beschäftigt, das am Schluss in 3 Registern die Namen, die Orte und — was besonders hervorzuheben ist — auch die Specialitäten zusammenfasst, wird diese Lücke ausfüllen. Sein Wert wird dadurch erhöht, dass auch alle Künste und Gewerbe, die mit der Zoologie im Zusammenhange stehen (Präparatoren, Austopfer, Naturalienhändler, Zeichner und Maler von Tieren, Verleger, Mikroskopenfabriken etc.) Aufnahme gefunden haben.
Jenaische Zeitschrift
für
NATURWISSENSCHAFT
herausgegeben
von der
medizinisch-naturwissenschaftlichen Gesellschaft
zu Jena.

Dreissigster Band.
Neue Folge, Dreundzwanzigster Band.
Zweites und Drittes Heft.

Mit 14 lithographischen Tafeln und 4 Abbildungen im Text.

Preis: 18 Mark.

Jena,
Verlag von Gustav Fischer
1896.

Zusendungen an die Redaktion erbittet man durch die Verlagsbuchhandlung.
Inhalt.

Plehn, Marianne, Neue Polycladen gesammelt von Herrn Kapitän Chierchia bei der Erdumschiffung der Korvette Vettor Pisani, von Herrn Prof. Dr. Kükenthal im nördlichen Eismeer und von Herrn Prof. Dr. Semon in Java. Mit Tafel VIII—XIII

137

Hesseler, Karl, Ueber Regenerationsvorgänge bei Lumbriciden. Mit Tafel XIV und XV

177

Bekent, Waclaw, Zur Kenntnis des Parablastes und der Keimblätter-differenzierung im Ei der Knochenfische. Mit Tafel XVI—XVIII und 4 Figuren im Text

291

Bloch, Isaak, Die embryonale Entwicklung der Radula von Paludina vivipara. Hierzu Tafel XIX—XX a

350

Verlag von Gustav Fischer in Jena.

Handbuch der Anatomie des Menschen

in acht Bänden.

In Verbindung mit

weiland Prof. Dr. A. von Brunn in Rostock, Prof. Dr. J. Disse in Marburg, Prof. Dr. Eberth in Halle, Professor Dr. Eisler in Halle, Prof. Dr. Fick in Leipzig, Prosector Dr. M. Heidenhain in Würzburg, Prof. Dr. F. Hochstetter in Innsbruck, Prof. Dr. M. Holl in Graz, Prof. Dr. Kühnt in Königsberg, Privatdozent Dr. Mehnert in Strassburg, Prof. Dr. F. Merkel in Göttingen, Privatdozent Dr. Nagel in Berlin, Prof. Dr. Pfitzner in Strassburg, Prof. Dr. Puschmann in Wien, Prof. Dr. G. Schwalbe in Strassburg, Prof. Dr. Siebenmann in Basel, Prof. Dr. F. Graf Spee in Kiel, Prof. Dr. C. Toldt in Wien, Prof. Dr. Zander in Königsberg, Prof. Dr. Ziehen in Jena, Prof. Dr. Zuckerkandl in Wien

herausgegeben von Prof. Dr. Karl von Bardeleben in Jena.

Lieferung 1: Skeletlehre.

Von Professor Dr. J. Disse in Marburg.

Mit 69 Abbildungen (Originalholzschnitten) im Text. Preis für Abnehmer des ganzen Werkes 3 Mark, Einzelpreis 4 Mark.

Lieferung 2: Harn- und Geschlechtsorgane.

Abteilung I. Die weiblichen Geschlechtsorgane.

Von Dr. W. Nagel, Privatdocent an der Universität in Berlin.

Mit 70 teilweise farbigen Originalholzschnitten. Preis für Abnehmer des ganzen Werkes 5,50 Mark, Einzelpreis 7 Mark.
Jenaische Zeitschrift für NATURWISSENSCHAFT

herausgegeben
von der medizinisch-naturwissenschaftlichen Gesellschaft zu Jena.

Dreissigster Band.
Neue Folge, Dreundzwanzigster Band.
Viertes Heft.

Mit 10 lithographischen Tafeln, 2 Lichtdrucktafeln und 14 Abbildungen im Text.

Preis: 14 Mark.

Jena,
Verlag von Gustav Fischer
1896.

Zusendungen an die Redaktion erbittet man durch die Verlagsbuchhandlung.
Inhalt.

HAECKEL, Ernst, Die cambrische Stammgruppe der Echinodermen 393
AUERBACH, I. VON, Untersuchungen über die Spermatogenese von Paludina vivipara. Mit Tafel XXI und XXII 405
WINKELMANN, A. und STRAUß, R., Ueber einige Eigenschaften der Röntgen'schen X-Strahlen. Mit Tafel XXIII und XXIV 555
LINSTOW, v., Ueber Taenia (Hymenolepis) nana v. SIEBOLD und murina DUJ. Mit 8 Figuren im Text 571
KWIETNOWSKI, Casimir R., Revision der Actinien. welche von Herrn Prof. Studer auf der Reise der Korvette Gazelle um die Erde gesammelt wurden. Mit Tafel XXV und XXVI 583
RÖMER, F., Studien über das Integument der Säugetiere. I. Die Entwicklung der Schuppen und Haare am Schwanze und an den Füssen von Mus decumanus und einigen anderen Muriden. Mit Tafel XXVII und XXVIII 604
DEPENDORF, Theodor, Zur Entwicklungsgeschichte des Zahn- systems der Säugetier-Gattung Galeopithecus Pall. Mit Tafel XXIX—XXXII und 6 Figuren im Text 623
REGEL, Fritz, Jahresbericht der medizinisch-naturwissenschaftlichen Gesellschaft zu Jena für das Jahr 1895 673

Verlag von Gustav Fischer in Jena.

Handbuch der Anatomie des Menschen
in acht Bänden.
In Verbindung mit
weiland Prof. Dr. A. VON BRUNN in Rostock, Prof. Dr. J. DISSE in Marburg, Prof. Dr. EBERTH in Halle, Professor Dr. EISLER in Halle, Prof. Dr. FICK in Leipzig, Prosektor Dr. M. HEIDENHAIN in Würzburg, Prof. Dr. F. HOCHSTETTER in Innsbruck, Prof. Dr. M. HOLL in Graz, Prof. Dr. KUHN in Königsberg, Privatdozent Dr. MEHNERT in Strassburg, Prof. Dr. F. MERKEL in Göttlingen, Privatdozent Dr. NAGEL in Berlin, Prof. Dr. PFITZNER in Strassburg, Prof. Dr. PUSCHMANN in Wien, Prof. Dr. G. SCHWALBE in Strassburg, Prof. Dr. SIEBENMANN in Basel, Prof. Dr. F. Graf SPEE in Kiel, Prof. Dr. C. TOLDT in Wien, Prof. Dr. ZANDER in Königsberg, Prof. Dr. ZIEMEN in Jena, Prof. Dr. ZUCKERKANDL in Wien
herausgegeben von
Prof. Dr. Karl von Bardeleben in Jena.

Lieferung 1: Skeletlehre.
Von Professor Dr. J. DISSE in Marburg.
Mit 69 Abbildungen (Originalholzschnitten) im Text.
Preis für Abnehmer des ganzen Werkes 3 Mark, Einzelpreis 4 Mark.

Lieferung 2: Harn- und Geschlechtsorgane.
Abteilung I. Die weiblichen Geschlechtsorgane.
Von Dr. W. NAGEL, Privatdocent an der Universität in Berlin.
Mit 70 teilweise farbigen Originalholzschnitten.
Preis für Abnehmer des ganzen Werkes 5,50 Mark, Einzelpreis 7 Mark.