North the Coloured Guy to the 23 Plates

(Corner of title-page restored)
ILLUSTRATIONS
OF THE
GEOLOGY OF YORKSHIRE;
OR, A
DESCRIPTION OF THE STRATA AND ORGANIC REMAINS
OF THE
YORKSHIRE COAST:
ACCOMPANIED BY A
GEOLOGICAL MAP, SECTIONS, AND PLATES OF THE FOSSIL
PLANTS AND ANIMALS.

By JOHN PHILLIPS, F.G.S.
Keeper of the Museum of the Yorkshire Philosophical Society;
Honorary Member of the Philosophical Societies
of Yorkshire, Leeds, and Hull.

Je ne doute pas, que dans peu d'années peut-être, je ne sois reduit a dire, que l'ouvrage que
je termine aujourd'hui, et auquel j'ai consacre tant de travail, ne sera qu'un leger aperçu, qu'un
premier coup d'oeil jeté sur ces immenses creations des anciens temps.
Cuvier, Ossements Fossiles, Tome V. page 487.

YORK:
PRINTED FOR THE AUTHOR,
BY THOMAS WILSON AND SONS, HIGH-OUSEGATE.
1829.
TO

WILLIAM SMITH, ESQ.

WHO HAS SPENT HIS LIFE

IN ESTABLISHING THE

PHILOSOPHICAL PRINCIPLES OF GEOLOGY,

AND IN APPLYING THEM, WHEN ESTABLISHED,

TO PRACTICAL USE,

THIS WORK

IS RESPECTFULLY DEDICATED,

BY HIS AFFECTIONATE NEPHEW,

AND GRATEFUL PUPIL,

JOHN PHILLIPS.
CONTENTS

INTRODUCTION xi

CHAPTER I. Principles of Geology.—Sketch of its history and progress. Stratification and arrangement of rocks, and distribution of organic remains.—Effects of internal convulsions, and external agents.—The deluge, the sea, rivers, and volcanoes ... 1

CHAPTER II. Geological description of the eastern part of the county, and tabular view of Yorkshire strata; illustrated by a coloured map 31

CHAPTER III. Description of the strata of the Yorkshire coast from Spurn Point to Redcar, including the heights of the cliffs; illustrated by coloured sections ... 38

CHAPTER IV. Organic remains.—Their state of conservation, and mode of distribution in the earth.—Catalogues of the fossils of each stratum, beginning with those of the chalk.—Synoptic list of the species of plants and animals discovered in the strata of the eastern part of Yorkshire.—Fossils of the diluvium.—Kirkdale cave.—Illustrated by fourteen plates of organic remains ... 106

CHAPTER V. On the basaltic dyke.—On the economical uses of mineral products in the eastern part of Yorkshire 179
LIST OF SUBSCRIBERS.

His Grace the Archbishop of YORK.
Right Honourable Earl FITZWILLIAM.
Right Honourable Earl of HAREWOOD.
Right Honourable Earl of LONSDALE.
Right Honourable Earl of MEXBOROUGH.
Right Honourable Lord Viscount GALWAY.
Right Honourable Lord Viscount MILTON, M.P. F.R.S. &c.
Right Honourable Lord MUNCASTER.
The YORKSHIRE Philosophical Society.
The LEEDS Philosophical and Literary Society.
The SHEFFIELD Literary and Philosophical Society.
W. H. Fitton, M.D. F.R.S., &c. President of the Geological Society, (2 copies.)
Sir John V. B. Johnstone, Bart. President of the Scarborough Philosophical Society.
Rev. H. H. Piper, President of the Sheffield Literary and Philosophical Society.
M. T. Sadler, M.P. President of the Leeds Philosophical and Literary Society.
Rev. William Venables Vernon, F.R.S. F.G.S., President of the Yorkshire Philosophical Society.
Henry Woolcombe, President of the Plymouth Institution.
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abraham, J. H.</td>
<td>F.L.S. Sheffield</td>
</tr>
<tr>
<td>Aldam, William, jun.</td>
<td>Leeds</td>
</tr>
<tr>
<td>Alderson, John, M.D.</td>
<td>Hull</td>
</tr>
<tr>
<td>Allan, Thomas, F.R.S.</td>
<td>&c. Edinburgh</td>
</tr>
<tr>
<td>Allen, Oswald</td>
<td>York</td>
</tr>
<tr>
<td>Allis, Thomas</td>
<td>York</td>
</tr>
<tr>
<td>Ampleforth College</td>
<td>Library</td>
</tr>
<tr>
<td>Atkinson, James</td>
<td>York</td>
</tr>
<tr>
<td>Atkinson, Rev. John</td>
<td>Pontefract</td>
</tr>
<tr>
<td>Atkinson, John, jun.</td>
<td>Leeds</td>
</tr>
<tr>
<td>Backhouse, James</td>
<td>York</td>
</tr>
<tr>
<td>Backhouse, Joseph</td>
<td>York</td>
</tr>
<tr>
<td>Backhouse, Thomas</td>
<td>York</td>
</tr>
<tr>
<td>Bailey, Richard, jun.</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Bailey, Samuel</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Baines, Edward</td>
<td>Leeds</td>
</tr>
<tr>
<td>Banks, George</td>
<td>Leeds</td>
</tr>
<tr>
<td>Barker, Edward</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Barnes, Rev. T.</td>
<td>(2 copies,) Castleford</td>
</tr>
<tr>
<td>Barnes, Rev. Dr.</td>
<td>Canon of Christ Church</td>
</tr>
<tr>
<td>Barstow, Thomas</td>
<td>Naburn</td>
</tr>
<tr>
<td>Barton, Edward</td>
<td>Malton</td>
</tr>
<tr>
<td>Bathurst, Rev. W. H.</td>
<td>Barwick-in-Elmet</td>
</tr>
<tr>
<td>Baxter, R. Doncaster</td>
<td></td>
</tr>
<tr>
<td>Bean, William</td>
<td>Scarborough</td>
</tr>
<tr>
<td>Beckwith, Stephen</td>
<td>M.D. York</td>
</tr>
<tr>
<td>Belcombe, H. S.</td>
<td>M.D. York</td>
</tr>
<tr>
<td>Belcombe, Mrs.</td>
<td>Scarborough</td>
</tr>
<tr>
<td>Bethell, Richard</td>
<td>Rise</td>
</tr>
<tr>
<td>Birchall, Edwin</td>
<td>Bailey Grove, Leeds</td>
</tr>
<tr>
<td>Bland, T. D.</td>
<td>Kippax Park</td>
</tr>
<tr>
<td>Blayds, Thomas</td>
<td>Burley, near Leeds</td>
</tr>
<tr>
<td>Boden, James</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Bodley, ——</td>
<td>Brighton</td>
</tr>
<tr>
<td>Boultbee, Henry</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Boulter, Henry</td>
<td>Yarmouth</td>
</tr>
<tr>
<td>Bowman, Rev. John</td>
<td>Paul</td>
</tr>
<tr>
<td>Branson, Thomas</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Brereton, ——</td>
<td>Beverley</td>
</tr>
<tr>
<td>Bright, Richard</td>
<td>Ham Green, Bristol</td>
</tr>
<tr>
<td>Brown, John</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Brownell, R. R.</td>
<td>Nercfield, near Sheffield</td>
</tr>
<tr>
<td>Brownell, Charles</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Bulmer, George</td>
<td>York</td>
</tr>
<tr>
<td>Bulmer, John</td>
<td>York</td>
</tr>
<tr>
<td>Bulmer, Rev. William</td>
<td>York</td>
</tr>
<tr>
<td>Burdekin, Richard</td>
<td>York</td>
</tr>
<tr>
<td>Cam, John</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Cammell, George</td>
<td>Hull</td>
</tr>
<tr>
<td>Carr, John</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Cayley, John</td>
<td>Low-Hall, Brompton</td>
</tr>
<tr>
<td>Chantrell, R. D.</td>
<td>Leeds</td>
</tr>
<tr>
<td>Chapman, Henry</td>
<td>York</td>
</tr>
<tr>
<td>Charlton, W. jun.</td>
<td>Hesleyside, Hexham</td>
</tr>
<tr>
<td>Cholmeley, Francis</td>
<td>Brandsby</td>
</tr>
<tr>
<td>Cholmeley, Francis, jun.</td>
<td>Brandsby</td>
</tr>
<tr>
<td>Clark, G. W.</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Clarkson, Barnard</td>
<td>Kirkham Abbey</td>
</tr>
<tr>
<td>Cluley, Francis</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Cobb, Robert</td>
<td>Malton</td>
</tr>
<tr>
<td>Cole, John</td>
<td>Scarborough</td>
</tr>
<tr>
<td>Coleman, James</td>
<td>Pontefract</td>
</tr>
<tr>
<td>Colver, John</td>
<td>Hull</td>
</tr>
<tr>
<td>Cooke, John</td>
<td>York</td>
</tr>
<tr>
<td>Copsie, F. James</td>
<td>(2 copies,) York</td>
</tr>
<tr>
<td>Croft, Rev. Robert</td>
<td>Rowley, near Cave</td>
</tr>
<tr>
<td>Cumberland, George</td>
<td>George, Bristol</td>
</tr>
<tr>
<td>Danby, William</td>
<td>Swinton Park</td>
</tr>
<tr>
<td>Davey, George</td>
<td>Malton</td>
</tr>
<tr>
<td>Davies, Robert</td>
<td>York</td>
</tr>
<tr>
<td>Davis, Rees</td>
<td>(6 copies,) Hull</td>
</tr>
<tr>
<td>Davis, John Ford</td>
<td>M.D. Bath</td>
</tr>
<tr>
<td>Davison, Rev. T.</td>
<td>W. Ferrybridge</td>
</tr>
<tr>
<td>Dawson, Christopher</td>
<td>Royds Hall</td>
</tr>
<tr>
<td>Dewsnap, T.</td>
<td>Broom Grove, near Sheffield</td>
</tr>
</tbody>
</table>
LIST OF SUBSCRIBERS.

Dikes, William Hey, F.G.S. Curator of the Hull Philosophical Society.
Dillwyn, L. W., F.R.S., &c. Swansea.
Donkin, Thomas, Elvington.
Dunn, John, Secretary of the Scarborough Philosophical Society.
Dunn, Henry, Wakefield.
Dunn, Thomas, Sheffield.

Eadon, Charles, Sheffield.
Eamonson, Rev. B. Bramham.
Edgar, Mrs. York.
Egerton, W., M.P. Tatton Park, Cheshire.
Eglin, Joseph, Cottingham, Hull.
Ellis, Rev. William, Doncaster.
Ellison, Michael, Sheffield.
Entwistle, James, Potter Newton, Leeds.

Fairbank, Josiah, Sheffield.
Fall, J. Hull.
Favell, Charles F., M.D. Sheffield.
Ferguson, Rev. D. Walkington, Beverley.
Field, James Wilmer, Heaton.
Fielding, George, Hull.
Fludyer, Miss

George, E. S., F.L.S. Curator of the Leeds Philosophical Society.
George, T. W. Leeds.
Gerard, C. Brompton.
Gibson, Edward, Secretary of the Hull Philosophical Society.
Gillott, John, Scarborough.
Gleadow, T. W. Hull.

Goldie, George, M.D. Secretary of the Yorkshire Philosophical Society.
Goodhall, H. H. East-India House.
Gott, Benjamin, Armley House.
Graham, Rev. John, York.
Graham, Rev. J. B. York.
Gray, Jonathan, York.
Gray, William, jun. Secretary of the Yorkshire Philosophical Society.
Greaves, H: Broom Hill, near Sheffield.
Green, Rev. William, Ledsham.
Gregory, Samuel, Sheffield.

Hailstone, Samuel, F.G.S. Bradford.
Hall, John, Sheffield.
Hall, Thomas, Malton.
Hamerton, James, Hellifield Peel, Skipton.
Hardy, James, Sheffield.
Harrison, Thomas, F.L.S. F.G.S. London.
Hemington, Robert, Paul.
Henshaw, Rev. William, Sheffield.
Hey, John, Leeds.
Hey, William, Leeds.

Hird, L. H. Low-Moor House.
Hirst, George, Leeds.
Hodgson, John, Scarborough.
Hogg, John, Leeds.
Hollfrey, Rev. William, Fishlake.
Holland, R. G. Sheffield.
Holmes, Rev. Thomas, Wilberfoss.
Hornor, Benjamin, York.
Horsfall, Abraham, Hull.
Houlton, John, Farley Castle, Bath.
LIST OF SUBSCRIBERS.

Houndsfield, B. Clough House, Sheffield. Marshall, John, M.P. Headingley Hall.
on the Forest. Meynell, George, York.
Hutton, William, F.G.S. Newcastle. Meynell, Thomas, Friargate, Yarm.
Ingle, Rev. C. York. Mitchell, Samuel, Sheffield.
Irvin, Rev. J. Scarborough. Mitton, Michael, Pontefract.
Jackson, William, Sheffield. Montgomery, James, Hon. Associate of
Jeffcock, John, Cowley, near Sheffield. the Royal Soc. of Literature, Sheffield.
Jeffcock, William, Cowley, near Sheffield. Murchison, R. I., F.R.S. L.S. and For-
Jelly, Henry, Bath. reign Secretary of the Geol. Society.
Jowitt, Benjamin, Pontefract. Murray, Peter, M.D. Scarborough.
Kendall, Rev. F. Riccal. Muscroft, James, Pontefract.
Knight, Arnold, M.D. Sheffield. Overend, Hall, Sheffield.
Landon, Rev. James, Aberford. Oxley, Charles, Pontefract.
Lawton, George, York. Palfreyman, L. Secretary of the Sheffield
Leatham, William, (2 copies,) Heath, Philosophical Society.
Leath, James, Burton Park, Leeds. Parker, J. C. Hull.
Lee, John Edward, Hull. Parker, Thomas James, Sheffield.
Leeds Library. Peckett, Henry.
Longden, Henry, Sheffield. Phillips, R., F.R.S. L.S. G.S. &c. Bir-
Lutwidge, Charles, Hull. Poole, William, Sheffield.
Maclaren, Charles, Edinburgh. Porter, James, Barnsley.
LIST OF SUBSCRIBERS.

Radcliffe Library, Oxford.
Ramskill, John, Pontefract.
Ray, James, Sheffield.
Read, Joseph, Wincobank Hall, Sheffield.
Read, John, Norton, near Sheffield.
Reedall, George, Sheffield.
Rhodes, Miss, (2 copies,) Park-place, Leeds.
Richardson, Rev. B. Farley Castle, Bath.
Richardson, Rev. W. Ferrybridge.
Richardson, James, Leeds.
Ripley, Richard, Secretary of the Whitby Philosophical Society.
Robinson, Charles, York.
Robinson, Henry, York.
Robinson, George, Hull.
Rodgers, Messrs. Sheffield.
Rose, Alexander, Edinburgh.
Rowntree, John, Scarborough.
Salmond, William, F. G. S.
Sanders, J. N. Bristol.
Sanderson, T. The Edge, near Sheffield.
Sanderson, James, Ditto.
Sanderson, Charles, Parkgate Iron Works, Sheffield.
Sandwith, Thomas, Beverley.
Sansom, Messrs. Sheffield.
Saunders, W. H. Sheffield.
Scott, Joseph, Badsworth Hall.
Sharp, Rev. S. Wakefield.
Sheffield Subscription Library.
Shepherd, H. J. Beverley.
Shepley, Michael, F. G. S. London.
Shore, Samuel, Norton Hall, Derbyshire.
Shore, Offley, Richmond Hill, Sheffield.
Silver top, Col. F. G. S. Minster-Acres, Hexham.
Simpson, Rev. T. W. Thurnscoe Grange.
Simpson, Thomas, M. D. York.
Simpson, William, York.
Smith, W. Clifford, near Sheffield.
Smith, Thomas, Huntington.
Smith, Henry, Scarborough.
Smith, Edward, Sheffield.
Smith, Marcus, Sheffield.
Smithson, Richard, Malton.
Stanley, Richard, Sheffield.
Stead, Mrs. Ann, Weaver Bridge, Cumberland.
Stickney, William, Ridgmont, Hedon.
Stillington, Rev. E. Hotham, Cave.
Strickland, Eustachius, (2 copies,) York.
Swineard, Frederick, York.
Sykes, Rev. C. Rooss.
Taunton, W. Pyle, Stoke, Bristol.
Taylor, John, Everley, Scarborough.
Taylor, Michael, York.
Taylor, Rev. William, York.
Terry, Avison, Hull.
Terry, John, Hull.
Thompson, Corden, M. D. Sheffield.
Thompson, P. Beilby, M. P. Escrick Park.
Thorpe, Anthony, York.
Thurlow, Rev. C. A. Scalby, Scarborough.
Timm, Charles, M. D. Sheffield.
Tindall, Robert, jun. Scarborough.
Tindall, John, Scarborough.
Tindall, James, Scarborough.
Todd, J. & G. York.
Torrie, T. Jameson, Edinburgh.
Travis, William, M. D. Scarborough.
Trueman, Edward, Pontefract.
Turton, George, Sheffield.
Tuke, Daniel, York.
LIST OF SUBSCRIBERS.

Tuke, Samuel, York.
Tweed, J. D., F. H. S. Halifax.

Vernon, Rev. C. V. Rothbury, Northumberland.
Vernon, Rev. Archdeacon, Stokesley.

Walker, Samuel, Bath.
Walker, John, Malton.
Walton, Thomas, Pontefract.
Ward, T. Asline, Park House, Sheffield.
Warde, Rev. William, Pontefract.
Wasse, Jonah, M. D. Moat Hall.
Waterhouse, Thomas, Sheffield.
Watson, John, Parkgate Iron Works, Rotherham.
Watson, W. Shirtcliffe Hall, Sheffield.
Watson, J. K. Hull.
Weddell, Thomas, Scarborough.
Wellbeloved, Rev. Charles, York.
Whitaker, J. Fairwood Lodge, Wiltshire.
Williamson, John, M. D. Leeds.
Williamson, John, Scarborough.
Wilkinson, John, Sheffield.
Wilson, Mrs. Ledstone Hall.
Wilson, Thomas, Fulford.

Wilson, J. Endcliffe Hall, near Sheffield.
Wilson, Edmund, Sheffield.
Wilson, John, Sheffield.
Wilson, Isaac, Hull.
Witham, H., F.G.S. (4 copies) Lartington.
Wood, John, York.
Wood, G. W., F. G. S. Manchester.
Wood, Sir Francis L. Bart. (2 copies,) Hemsworth.
Woodall, John, jun. Scarborough.
Woolley, William, Hull.
Wright, William, Secretary of the Yorkshire Philosophical Society.
Wright, James, Sheffield.
Wyllie, Marm. M. P. Constable Burton.

Yeoman, J. Whitby.
York Subscription Library.
York Mechanics' Institute.
Young, Rev. G. Secretary of the Whitby Philosophical Society.
Younge, C. Brinkcliffe Edge, Sheffield.
Younge, G. Sheaf House, near Sheffield.
Younge, Robert, F.L.S., Secretary of the Sheffield Philosophical Society.
Younge, W., M. D., F. L. S. &c. Sheffield.
INTRODUCTION.

In laying before the Public the fruits of my own researches into the Geology of the Eastern part of Yorkshire, I think myself called upon to notice the light which has been already thrown upon the subject, by the labours of those who have preceded me in this investigation.

The first person in England who studied, and who taught others to study, the structure of the earth upon the strict principles of the inductive philosophy, was Mr. Smith. Having provided himself with methods of identifying the strata by an attentive examination of all the circumstances which distinguish the one from the other, and especially by a comparative survey of their organic contents, he extended his observations to districts far distant from that in which they were originally commenced, and fixed at length on a substantial basis, the important doctrine of general formations.

It was in 1794, that Mr. Smith first saw the wolds and moorland hills in the eastern part of Yorkshire; and guided by the knowledge which he had even then acquired, of the correspondence of contour between different portions of the same strata, he decided at once, on a distant view, that the wolds were composed of chalk, and that the moorlands belonged to the oolitic series of rocks. This opinion was fully expressed in his manuscript Map of the Strata of England, for the publication of which proposals were issued in 1800.
The coast was afterwards further examined by him in 1813: in 1817, I had the advantage of accompanying him to Whitby and Scarborough, and was much occupied there with him also in 1820. In his Geological Map of Yorkshire published in 1821, the lines of chalk, Kimmeridge clay, and coralline oolite, are traced with considerable accuracy, but the lower beds are erroneously named, owing to the anomalous character of the strata, which in this district represent the oolites of Bath. The error, however, was quickly discovered by Mr. Smith, and corrected in several copies of the map which I coloured for his friends. In the same year he shewed me some fossils * collected by him near Scarborough, which I immediately recognised as belonging to the Kelloways rock; but so cautious is this experienced geologist in the application of his own rules, that he scrupled to rely on such evidence of identity between two points so distant as the localities in Wilts and in Yorkshire; and it was not until 1824, that he satisfied himself by a re-examination of the cliffs at Scarborough, with a particular view to their relations with other rocks, of the distinct existence there, both of this and of most of the other members of the series which lies between the coralline oolite and the lias.

Having now obtained a correct view of the stratification of the whole coast, he laid down the details of his observations on the map, and communicated them in conversation to his friends; but the only account of these discoveries which has been published, was in the notice taken of them in the Report of the Yorkshire Philosophical Society for 1824, and in a paper † on the Geology of Cave, which contains an

* Ammonites calloviensis, ammonites Königii, and the small variety of gryphaea dilatata.
† Annals of Philosophy, for June, 1826.
account of the continuation of this range, examined by the Rev. Wm. Vernon and myself, where it emerges from under the chalk hills.

Whilst Mr. Smith was occupied in these researches, it was my good fortune to receive the directions of the Yorkshire Philosophical Society to arrange, as accurately as possible, in the order of stratification, the fossils in their extensive collection. I was delighted to find, in the prosecution of this duty, innumerable proofs of the truth of Mr. Smith's views respecting the distribution of organic fossils, and saw very clearly that many of the strata in the north-eastern part of Yorkshire might be confidently identified with well-known formations in the south of England. For this purpose, I drew up several comparative catalogues of fossils, which, under an amended form, will be found in the following pages. I began also in 1824, with the advantage of Mr. Smith's society on the coast, the Section which is now submitted to the public; and having engaged to deliver an extended course of Lectures on Geology before the Philosophical Societies of Yorkshire, Leeds, and Hull, I resumed the task in the autumn of 1825, and measured and examined in detail all the cliffs from Redcar to Bridlington. The Section, which I was thus enabled to draw on a very large scale, was exhibited and minutely explained to the members of these institutions; it was shewn to Mr. Murchison on his way to Brora; and a copy of it was used by M. M. Ouenhausen and Von Decken in their examination of the Yorkshire coast.

In October, 1827, I again surveyed and measured the whole coast from Redcar to Scarborough, and prepared sections of certain parts for M. Adolphe Brongniart, as well as drawings of some remarkable fossil plants; and in June, 1828, the labour of admeasurement was
repeated along the entire line, from Dimlington heights in Holderness, to Redcar.

It will thus appear that no pains have been spared to copy the natural sections of this coast as perfectly as possible; and when it is added, that to complete my knowledge of the subject, I have assiduously investigated and measured the interior of the country, have drawn upwards of four hundred species of fossils, and examined above a hundred more, having received the most liberal and ample assistance from all the collectors on the coast, and from many geologists in other parts of the county; it will not, I hope, be thought that this work has been attempted without sufficient materials to render it useful.

The strata which I have undertaken to describe, have received the notice of several eminent geological writers; they have been, in some degree, illustrated by the general map of Mr. Greenough, and by the remarks of Mr. Conybeare, in his outlines of the Geology of England; by the comparative view which Mr. Murchison has given of the analogous strata discovered at Brora; and by Professor Sedgwick's paper* on some parts of this district, in which he has shewn the identity of the alum shale of Whitby, with the lias of Dorsetshire, and of the Scarborough oolite and its subjacent sandstone, with the coralline oolite and calcareous grit of the southern counties, and has successfully compared the substratum of the vale of Pickering with the Kimmeridge clay. But these publications are far from embracing the whole of the subject, nor have I borrowed from them any thing but a confirmation of my own deductions. The details of the present work have been

* Annals of Philosophy for May, 1826.
INTRODUCTION.

derived from no other source than the personal observation of the author; and the general views which it contains, of the geological relations of the district, have been founded upon those details.

In 1822, a work was published by the Rev. G. Young and Mr. Bird,* of which the object appears to differ very little from mine; and some apology, perhaps, is due from me for entering upon a field of research which may seem to be already occupied. I take this opportunity of acknowledging the descriptive accuracy of the "Geological Survey of the Yorkshire Coast;" but that survey differs from my undertaking in many material respects. I have not only given a general section of the coast, but have measured the heights, and have added sections in detail. It has been my object not only to figure the most remarkable fossils, but to describe every ascertained species, and to construct a complete catalogue of all that have been hitherto discovered on the coast, distributed in the order of the strata to which they belong. But the most essential difference between the two undertakings is this,—that whilst the authors of the "Survey" have contented themselves with assigning the local relations of the strata, I have considered them also in reference to the general system of geology, and have identified them even in their minute divisions, by a close examination and comparative survey, both of their mineral characters and of their organic contents, with corresponding portions of the same strata in other parts of Great Britain. There are

* Death, after long illness, has prevented this amiable artist from contributing any more to the illustration of the geology of his native county. The distinction which he acquired was of the most honourable kind, gained without the advantages of a liberal education, by the resolute application of a vigorous and original mind. As a painter, Mr. Bird's talents, more fortunately encouraged, might have raised him to eminence; as a geological observer, his merit was conspicuous and original; and his devotion to the subject was proved, by unremitting attention to the phenomena of his neighbourhood during the last fifteen years of his useful life.
instances in which even the local identity of beds cannot be ascertained by their mineral characters and relative position alone, and in some of these my opinion will be found to differ from that of the authors of the "Survey," in consequence of their having rejected the principle of identification by the organized fossils, a principle which I consider as the most important yet established in geological science, and of which I trust that the present work will be found to furnish some new and strong confirmations.

I cannot omit this opportunity of expressing my sincere thanks to the Officers of the Philosophical Societies of Yorkshire, Leeds, Hull, Whitby, and Sheffield, for the liberality with which they have opened to me their rich and valuable museums; as well as to the proprietors of above twenty private cabinets, who have zealously forwarded my views. To those friends who have kindly interested themselves in the success of my publication, I have endeavoured to prove my sense of obligation by devoting myself to render it more worthy of their patronage. But there is one individual whose constant and considerate benevolence, warm encouragement, and valued participation in my geological pursuits, demand my highest thanks; and those only who like me have found unexpected kindness and unmerited attention, can fully understand the feelings with which I mention the Reverend W. V. Vernon, President of the Yorkshire Philosophical Society.
CHAPTER I.

PRINCIPLES OF GEOLOGY.

Condensed view of the discoveries respecting the structure of the earth, which have produced the modern practical system of Geology.

The most extensive subject which falls within the range of human acquirement, is the study of nature. To comprehend the phenomena of the material world, and to illustrate the secret laws by which they are governed, requires the joint labour of many minds. To facilitate this investigation, nature is conceived to be divided into distinct sections, each of which gives title to a science. Geology is one of these, and its professed object is to develop the natural history of the earth. It aspires to learn the various materials of which our planet is composed, and to determine the manner, and, as far as secondary causes are concerned, the means of its construction. Mineralogy, chemistry, botany, zoology, are all associated with geology; their advancement keeps pace with its progress, and every discovery which rewards the cultivation of them, throws new light on the revolutions which have visited the earth. Even the astronomer, who employs himself in observing other planets and other systems, and the mathematician, who determines the forms and densities of spheroids, are fellow-labourers with the practical observer of the strata.
PRINCIPLES OF GEOLOGY.

If, then, so many delightful themes of human study are directly or indirectly connected with the earth, there is no need to assert the interest, it would hardly be possible to display all the advantage, which is to be expected from the study of geology. It must be evident that not only our daily wants are supplied, and our comforts provided, by various productions which acknowledge the earth for their common parent, but that the charms of scenery, and all the lovely variety of nature, are so intimately dependent on peculiarities in the structure of the earth, that no one can think uninteresting a science which embraces the contemplation of so many sources of human enjoyment. Let us, then, be spared that question which is clamorously repeated to the authors of new discoveries, "What is the use of it?" To those who direct the thousands that labour in the mine or the coal-pit, I refer the question, What is the use of the principles which have extended our control over the subterranean riches of our country? In the extension of mines and collieries, and in the construction of roads and canals, we experience the value of a science, which, though noiseless in its career, and with no pretension in its appearance, lends strong support to national wealth and individual happiness;—a science which, under many discouragements, has gradually uplifted itself and spread itself around, till there is, perhaps, no corner of the earth which contains not a man desirous of investigating its physical history.

Geology, as a system of observation and induction, is decidedly of modern origin. Some of the more obvious facts connected with it, could not, indeed, be overlooked in the most inattentive age. Such are the sinking of rivers into the ground, and gliding along subterranean channels, of which such elegant descriptions ornament the poems of antiquity. Nor did the ancients pass, without a momentary reflection, those fossil shells which are inclosed in rocks, and buried in mountains, far removed from the sea. The lines of Ovid are known to every one; and the simple conclusion he draws of the dry land having once been sea *, has

* vidi factas ex aequore terras,
Et procul a pelago concha jaceere marina.
served as the basis of many later hypotheses which contain no more information. The Pythagorean doctrine of the intermutations of substance, and repeated revolutions in the nature of all created things, of which this is urged as an example, has not a little resemblance to some of Dr. Hutton's speculations on cosmogony, whilst in Ovid's description of chaos, we really seem to behold the germ of a Wernerian theory.

We may pass the centuries of darkness which succeeded the splendid era of Rome, and fix our attention on times more approaching our own. The discoveries of Newton, in celestial mechanics, introduced a new order of inquirers concerning the history of the earth; but, unhappily, few of them followed the steps of their illustrious leader. The "theories," as they were arrogantly termed, of Burnet, Whiston, Woodward, and Buffon, are now remembered only as the splendid errors of illustrious men, and the systematic hypothesis of Whitehurst, though far better supported by the practical knowledge of its author, has shared the same unregretted fate. To rank with these neglected dreams, the respected opinions of Hutton and Werner, would be unjust: the former, a man of capacious intellect and original genius, has combined in his system much that is excellent and much that is extravagant; but its errors have been corrected by the progress of inquiry, and its truths illustrated even by his opponents. Werner's fame rests secure on accurate observation and sagacious generalization of facts. From an examination of a small tract of country, he deduced principles which are found to be universally applicable. He first taught that the earth is constructed after a regular plan, and composed, near the surface, of rocks laid on one another, in a constant order of succession. His theoretical views, though zealously embraced by his numerous disciples, were of little value, and rather obscured the real utility of his practical system.

Geologists have commonly placed Mr. Smith in comparison with Werner; and have agreed that in England one was accomplishing what occupied the attention of the other in Germany, and that both were unconsciously acting on the same plan, and producing the same results. This is strictly true as far as relates to their practical opinions; but
Mr. Smith is no theorist in the ordinary sense of the word. His whole life has been spent in practical researches, to prove the truth, and extend the benefit, of those general laws of structure which he was the first to promulgate in England. Besides discovering, at nearly the same period as Werner, the principle of the arrangement of secondary strata, he added the important doctrine, that organic fossils are distributed in the earth according to regular laws, and may be employed to discriminate and identify the rocks. Werner and Smith are, therefore, the leaders of the modern school of geology, and whilst every fresh investigation illustrates the truth of their general principles, their names will be honoured with increasing respect, though every "theory" should be forgotten.

The methodical development of first principles in geology, attempted in the following pages, is the result of repeated reflections on the subject, for the purpose of public instruction. It is a condensed abstract of parts of my lectures. Hoping that this account of the strata of the Yorkshire coast would be read by others besides professed geologists, I thought it desirable to furnish them with a plain distinct introduction to the science, in order to avoid obscurity and tedious repetition.

Formerly, the materials near the surface of the earth were thought to be everywhere alike, just as agriculturists now speak of the vegetable mould; and the internal parts were supposed to be a mere heap of minerals confusedly blended together: a very little experimental investigation was sufficient to overthrow so groundless a notion. One district has beneath the surface, chalk; another, oolitic limestone; a third, coal; a fourth, granite; and these are never mixed or confounded together; so that the most careless observer finds himself constrained to admit that not disorder, but method, appears in the situation of different rocks.

A person proceeds from London to North Wales: After passing low diluvial plains about London, he climbs, by a long slope, the chalk-hills of Oxfordshire and Berkshire; then crosses vales of clay and sandstone, ascends a range of oolitic limestone; traverses wide plains of blue and
red marl; arrives in districts where coal, iron, and limestone abound; and finally sees Snowdon composed of slate. And if, in proceeding from London to the Cumberland lakes, he finds the same succession of low plains, chalk-hills, clay vales, oolitic limestone ranges, blue and red clays, coal, iron, and limestone tracts, succeeded by the slate rocks which compose the well-known summit of Skiddaw, will he not conclude that something beyond mere chance has brought together these rocks in such admirable harmony? Will he not have reason to conjecture, that, in the interior of the earth, regularity of arrangement must prevail?

To such a conclusion we are forcibly impelled by exploring the relative position of rocks, as it is displayed in wells, quarries, and mines, the works of human industry, or laid bare in cliffs and ravines by the hand of nature. Here every one has seen the rocks formed in layers or tabular masses, placed one upon another, like the leaves of a book. These layers are called strata.

The sea-coast of Yorkshire affords excellent opportunities of examining into this matter; for there cliffs of great altitude, in prominent and accessible situations, are composed of several distinct layers of rock, which are piled one upon another in a regular order, preserve a definite thickness, and appear under the same circumstances in many distant places. But though one tract of country exceeds another in opportunities of this nature, yet the principle of stratification among rocks is confined to no country; for whether in the new or the old world, in continents or in islands, it is so remarkable and so constant, that colliers sink deep pits, and miners undertake expensive levels, in full confidence that no exception to its generality will affect the success of their enterprises. It is not a speculative truth, but a practical law of nature, and is, probably, the fact of most extensive influence in the whole system of geology.

The Wernerian school of geology held it to be a universal law of structure, and even Cuvier says, “All rocks are stratified.” But such expressions are incorrect. How can the term strata be applied to basalt,
porphyry, and other unconformed masses? That granite is sometimes internally stratified, has been asserted—an appearance I never witnessed—but every geologist knows abundance of examples in which it displays no trace of such a structure. These rocks, and some few others, are exceptions to the law of stratification; and if, as appears probable, their origin is different from that of stratified rocks, we need not wonder that they assume other modes of arrangement. But, neglecting these particular rocks, it is certain that stratification is the most general phenomenon hitherto discovered by geologists. Recognised by observers of different opinions, and in opposite quarters of the globe, it well deserves to be considered a fundamental doctrine. Let us inquire how these strata are combined in the crust of the earth; for so, perhaps, we may best designate the very limited depth to which it has been explored by human enterprise and science.

To ascertain the manner in which strata are placed in the crust of our globe, is certainly the great object of practical geology. The first rudiments of this knowledge should be early implanted in the mind of the student, by leading him to the contemplation of some well-marked natural section. Let him visit the sea-coast, and observe for himself whether or not the following proposition is true.

That, in a local tract, strata are superimposed on one another in a certain constant order of succession, like the leaves of a book.

Let us take the Yorkshire coast for an example. (See the Section.) Gristhorpe cliff is crowned by calcareous sandstone rocks, which lie upon a thick argillaceous stratum; under this is a brown ferruginous rock; and still lower is a thin calcareous layer full of fossils. The same calcareous sandstone is found on the top of Red cliff, and it rests in the same manner upon the argillaceous stratum, brown rock, and fossil bed. In Scarborough castle hill, the same calcareous sandstone, argillaceous stratum, brown rock, and fossil bed, occur in the very same order of succession. It is needless to multiply examples, or every part of the coast from Flamborough to Saltburn might be cited in proof of the
above important proposition. And though we only refer to a particular
district, yet, without doubt, any part of the world, where the strata are
distinctly visible, would equally illustrate the doctrine of local constancy
in the order of succession among rocks; because in every country this
conclusion has been drawn from actual observations. But it may be
inquired: How can the strata be thus traced across provinces and king-
doms? we see them, indeed, exposed on the sea-coast, but how are we
to guide our inquiries inland, when wells and pits fail us? I answer, that
as the different rocks lie not quite horizontal, but gently sloping into the
interior, the surface of the earth is formed on their edges. Thus, com-
pare the accompanying geological map and section, and observe in the
section the chalk rising uninterruptedly from Bridlington to Speeton,
when,—another stratum, the blue clay, having risen from beneath it to
the surface,—that rock passes off inland, and keeps a regular course
through the country. In the same manner, the calcareous grit rises from
the sea at Filey, ascends to the summits of Gristhorpe and Red cliffs,
afterwards attains the height of Oliver's mount, and ranges away in a
direction parallel to the chalk. The same is the case with all the other
strata, represented by the colours on the map. Thus, the surface of the
earth is formed on the edges of the strata, a wise and admirable pro-
vision, whereby mankind, though till lately regardless of the benefit, are
provided with so great a variety of mineral matter, suited to the various
and increasing wants of civilized life. To trace the rocks through the in-
terior of a country, demands, it must be confessed, greater diligence and
care, than when we see them exposed on the sea-side; but the result,
thus prudently obtained, may be as absolutely trusted. Nor are facilities
wanting to the practised inquirer. To him, the forms of hills, the char-
acter of surface, the very herbage and colour of the soil, afford most
valuable data, and when corrected by the accounts of wells and pits,
and observations of roads and water-courses, leave little room to doubt
the accuracy of his deductions.

This being proved, we may now inquire if there be a conformity of
rocks over large districts, an accordance of composition, a similarity of
succession, and a connexion of strata, sufficient to unite together obser-
vations in distant countries: without doubt there is such conformity. The series of strata in Yorkshire, taken in a general way, is the following; chalk, gault?, Kimmeridge clay, coralline oolite, calcareous grit, Oxford clay, Kelloways rock, cornbrash, the Bath oolite rocks, lias, red marl and sandstone, magnesian limestone, coal series, mountain limestone, and slate rocks. The series in the south of England is precisely accordant, except that the magnesian limestone is there deficient, and that the Kimmeridge clay is covered by some strata which do not reach into Yorkshire. Besides, we find the Yorkshire strata actually united with those of the same name in other parts of England, so that there can be no doubt of the general continuity of the strata, and of constancy in their order of succession. The same conclusion is upheld by independent research in foreign countries. There, as in England, it is demonstrated, that, to as great a depth as can be accurately examined, various rocks are laid on one another, in a certain consecutive series, by which it is not difficult to assign to each its unvarying place in the scale; and that these rocks are not formed in insulated patches, but in widely-extended strata, which hold their courses across provinces and kingdoms.

This encourages us to inquire whether there be not some general analogy of the rocks, not only across islands and kingdoms, but even across whole continents; for if this should prove to be the case, we shall be enabled to propose general laws of structure, applying equally to every part of the globe. For the purpose of this comparison, we must not think to employ the characters of individual rocks, however remarkable they may appear, but we must group together analogous formations, and look only on the greater features of nature. We must consider the physiognomy of the earth, and, amidst many local variations, trace the lines of general agreement.

Reviewing the series of British rocks, we shall observe three great divisions, of which two are extremely obvious; the rocks of the mountains and the strata of the plains: the third division possesses, perhaps, quite as definite characters, but they are not manifested without more research. The mountainous regions of Britain are composed of hard,
often crystallized rocks, variously associated and related to one another, commonly stratified at high angles of declination, and for the most part destitute of organic remains. Such are granite, gneiss, mica slate, quartz rock, primitive limestone, serpentine, and slate. From the Shetland Isles to Cornwall, a general conformity in character unites the mountain groups. From these elevations, the rocks above-named dip or decline on all sides into the earth, sink deep under the more level regions, and are there covered up and buried beneath various deposits of limestone, sandstone, coal, clay, chalk, and other strata of inferior hardness, and not crystallized, but amply stored, nay filled to admiration, with plants, corals, shells, and other remains of organized beings. Besides these, there is a third division of rocks; viz. sienite, porphyry, basalt, &c. which are of local occurrence, appear in peculiar forms, and present particular phenomena. They repose indiscriminately upon the rocks of the mountains or those of the plains, and occasionally divide them by dykes, yet have only an accidental connexion with either. Such is the general character of the geology of Britain. And I may appeal to the progress of the science for proof, that such is the general character of the whole face of the earth.

In every country the great mountain ranges are composed of the lowest rocks with which we are acquainted. There may be other rocks below the granitic series, but we have not yet found means to observe them. Therefore, as being the lowest, and consequently the most ancient rocks, included in the compass of our observation, we call them Primary. Those more horizontally deposited rocks which fill wide plains, and rest upon the subterranean slopes of the former series, composed of various alternations of calcareous, siliceous, and argillaceous substances, with local deposits of coal, and generally abounding in shells and other organic remains, are universally termed Secondary. Those rocks which rest indiscriminately on the primary or the secondary series, lie in irregular patches, and send off veins or branches into both primary and secondary, being in fact superadded to both, yet conjoined to neither, receive the name of Independent or Overlying.
PRINCIPLES OF GEOLOGY.

Freed from theoretical views, or rather under the influence of very opposite and contradictory theories, all parties confirm this relation of facts, and agree in the conclusion, that the earth exhibits everywhere the same principles of structure. It is now universally admitted, that, to as great a depth as we can ascertain, our planet is composed of various but definite rocks, possessing constant characters, whereby they may be distinguished, and that they are arranged upon one another in a constant relative order.

The mode of investigation by which this result has been obtained, appears to me satisfactory. Beginning at home, we find certain regularity of structure to prevail; extending our views, we perceive that the rocks of our district are not insulated deposits, but portions of widely-spread formations; and finally combining together observations made in distant regions, we ascend to a grand principle of universal analogy in the construction of our planet. If, then, such analogy pervades the structure of different regions, it will be necessary, in stating general laws, to call in the aid of extensive research; but particular laws for each country can only be derived from local investigation.

Possibly those who are accustomed to trace across our island the wonderful regularity of strata, or who know the strong resemblance which they exhibit in countries far removed from each other, may have expected more sweeping assertions than I have thought it correct to maintain. They might, perhaps, have been little surprised at a bold declaration, that all our secondary rocks may be discovered with their proper characters over all the continent, when the labours of foreign geologists have been as successful as our own. But this would be an unjust view of the matter; in several instances it is absolutely disproved. The utmost that can be expected, is to trace a general conformity and universal analogy of deposits. To what extent this conformity reaches, much as geologists have done, they have not yet demonstrated. It is ascertained that there are certain formations which possess a mineralogical character, and a geological position so
uniform in all parts of the world, as to allow no doubt of their cotemporary origin, and even in some of their subordinate beds an astonishing affinity prevails; but neither these beds, nor the formations themselves, are in all places, continuous in extent, nor constant in thickness, nor identical in chemical composition. Hence arise differences in the geological structure of different countries, and the more distant from each other the points of comparison, the less perfect is the agreement of the rocks. Some writers, overlooking these differences, have erroneously asserted the universality of formations; others, not understanding the simple and beautiful gradations of nature, have absurdly denied the regular construction of our planet.

The organic fossils commonly found in the earth are plants, corals, crusts of radiaria, shells of mollusca, the hard coverings of crustacea, scales and bones of fishes; reptiles, cetacea, birds, and mammiferous quadrupeds. From very early times, the wonder of mankind has been excited by those fossil shells which are inclosed in rocks, and buried in mountains, far removed from the sea. To find the cause of this phenomenon was an object of interest, long before any settled system of geological observation and induction was thought of. The study of organic fossils was prosecuted with various success by different naturalists, but it was reserved for our own times to demonstrate their high importance in elucidating the history of the earth. Undoubtedly it is possible to acquire a competent notion of fossil plants and animals, without particular reference to geology; but no one can be a geologist who disregards the natural history of fossils.

The slightest practical examination of rocks demonstrates that whilst some strata abound with these remains, others contain very few, and some are absolutely void of them. The absence of fossils was once used as a character of the primary rocks, but incorrectly; for several of the secondary, and all of the independent rocks, are as destitute of fossils as
granite and mica slate. Since, then, among the secondary rocks, some
contain, and others do not contain, organic remains, they may thus be
sometimes distinguished. But when we consider the immense variety
of organic remains, and learn that in a very limited district of England,
many hundreds of species can be collected, and in the whole kingdom
several thousands, it becomes evident that a more important branch
of the inquiry remains: viz. In what manner the different species are
distributed in the interior of the earth. Whether, for instance, they
are arranged according to geographical position, as is partly the case with
existing races, or according to the order of the different rocks, or mixed
confusedly together.

That they are not mixed confusedly together, is decisively proved
by many cases like the following: the fossils of the chalk cliffs near
Bridlington, are numerous and well known; so are those of the lias shale
in the cliffs near Whitby; and also those of the mountain limestone near
Skipton; and on comparison, it becomes evident that no one fossil of the
whole number is found in two of the strata enumerated! each of these
three strata has its own peculiar fossils distinct from those in the others.
By prosecution of such comparisons, Mr. Smith discovered that organic
fossils are distributed in the earth, not in proportion to depth from the
surface, nor even according to chemical composition, but according to
the order and succession of the rocks. He has the great merit of estab-
lishing the facts,

That different strata contain generally different fossils; but that the
same stratum over a very large extent of country, contains generally the
same fossils. Hence he deduced the important conclusion,

That strata may be discriminated and identified by their organic con-
tents.

Since, then, rocks of different antiquity contain different fossils, it is
possible to class the organic remains according to their respective periods
of existence. They may thus be successively compared with the analogous beings now living, and with one another. This comparison elicits most curious and interesting results.

First, we perceive that nearly all the immense multitude of buried beings belongs to species different from any that now exist! but in this difference between fossil and recent specimens, are several degrees; some species are allied, others are analogous, and the remainder so discrepant, as to bear hardly any mutual resemblance.

Now, it is an established fact, that the greater number of fossils which nearly resemble living objects, belongs to the most recent of all the strata, viz. those above the chalk; and that many of the extinct genera are confined to the lowest and oldest part of the series. Place together, for instance, existing species of shells, and the fossils of the least ancient of British strata, as those of Hordwell and the Isle of Wight,—the resemblance is obvious and decided; but on a similar comparison between recent specimens and the fossil productions of the mountain limestone, one of the oldest of the secondary rocks, the difference is evident and remarkable. Considered in this manner, the living and fossil tribes constitute one mighty series of organic productions, formed upon one general plan, but called successively into existence, to suit the changing conditions of the earth and the ocean. The striking contrast between the imbedded fossils of different rocks, has given rise to an opinion, that, whilst the strata were successively deposited, many races of organic bodies became extinct, and others were created to supply their place, more and still more nearly assimilated to the present productions of nature.

We must now attend to certain phenomena, in the relative positions of rocks, which demonstrate that the internal parts of our planet have been shaken by often-repeated convulsions. Rocks appear generally in planes, deviating but little from the horizontal, but sometimes they de-
cline at great angles into the earth, and in several instances are placed directly vertical. The planes of strata are usually continuous and uninterrupted over large spaces, but occasionally they are broken by faults, and divided by dykes. It has been a question whether these unusual positions have existed from the first accumulation of the rocks, or been caused by subsequent convulsions.

It is agreed among geologists that many of the primary, but at least all the secondary rocks were deposited by subsidence from water. Matter, so deposited, in some degree accommodates itself to the surface on which it drops; but it must especially tend to form horizontal layers: and it is well known that strata have generally only a moderate inclination. If the bottom be level, so will be the deposit; if gently sloping, the deposit will be inclined; but if there be a perpendicular subaqueous cliff, no sediment can fall upon it. A perpendicular layer arising from sediment is impossible. Whenever, therefore, we behold vertical strata which contain evidence of deposition, we may be quite sure that they were not deposited in that form, but have been displaced by some violent internal motions in the earth. There are some remarkable instances of contorted stratification, which require the same explanation. It is absurd to maintain that such flexures are original, assuredly they have been occasioned by operations subsequent to the accumulation of the rocks in question. But the most remarkable case of unusual position is when strata, either horizontal or inclined, are broken, and their planes interrupted, so that on one side of the line of fracture the rocks are higher than on the other: this difference of level sometimes amounts to one hundred or even two hundred yards. (For examples, consult the section of the coast at Red cliff, Scarbrough castle, and the Peak, near Robin Hood's Bay.) The succession of strata is, on each side, the same, and it seems hardly possible to doubt that they were once connected in continuous planes, and have been at a subsequent period forcibly broken and disjoined. This opinion is, and deserves to be, universal. The line of separation between the elevated and depressed portions of strata is generally nearly vertical, and distinguished by a fissure, which in faults
is filled with mixed fragments of stone; in dykes, by basalt or other rocks; but in mineral veins, with sparry and metallic minerals.

The convulsions within the earth which have thus changed the inclination, altered the position, and broken the continuity of rocks in so remarkable a manner, happened, of course, since the deposition and induration of all the strata which have been thus dislocated. But such progress has been made in inductive geology, as to render it evident that some of these irregular operations had been completed in certain strata before the next rocks were deposited upon them. For in Somersetshire, coal measures, highly inclined, lie beneath and are concealed by horizontal beds of red marl. Therefore, their highly sloping position must have been determined before the deposition of that rock; and in the same country great faults, which elevate the coal seams seventy yards, produce not one inch of displacement in the red marl which lies above. Assuredly, then, internal convulsions of the earth occurred at intervals during the deposition of rocks; and by studying their relative antiquity, we obtain plain evidence of the lapse of time between the formation of the several strata. Examples of the same kind are well known in Yorkshire, where inclined coal measures are covered (as at Garforth) by nearly horizontal magnesian limestone, which is unbroken by the vast dykes in the subjacent coal. There are good grounds for believing that the highly-inclined position of the primary strata is not original: it is extremely probable, and, indeed, generally admitted, that these stupendous ranges of mountains have been uplifted by some mighty internal agency. It is certainly true that the greatest dislocations of the secondary strata are in the vicinity of primary mountains; and, though it must not pass as a general or established rule, we may sometimes refer the disruption of secondary to the same agency which produced the elevation of primary rocks.

Having considered the internal structure of our planet, and shewn how the rocks succeed one another in a fixed order, and rise successively to the surface; how variously they are filled with the monumental re-
liquiae of organic beings which existed during the remote ages, when the secondary strata were deposited beneath the ocean; and also examined the effects of convulsions within the solid substance of the earth; it becomes necessary to turn our views to the surface.—The external features of the earth afford many interesting subjects of reflection, and are replete with memorials of mighty changes. Though it cannot be supposed that, by investigation of its present appearance, we should be able to determine completely its former condition, enough is known to assure us that after the earth was dried and made habitable, its whole surface was again submerged and overwhelmed by an irresistible flood. Of many important facts which come under the consideration of geologists, the "Deluge" is, perhaps, the most remarkable; and it is established by such clear and positive arguments, that if any one point of natural history may be considered as proved, the deluge must be admitted to have happened, because it has left full evidence in plain and characteristic effects upon the surface of the earth.

Formerly, indeed, when geology was in its infancy, a wrong method was followed, and the fossil shells and other organic remains, which were certainly deposited in the rocks before the deluge, were appealed to as evidence of that event. This mistake was natural enough in that early period of the science, but at present cannot be maintained, without a gross anachronism. Examine where we may the action of moving water, whether in little mountain rills, lakes ruffled by the wind, flowing rivers, or on the margin of the sea, we every where perceive the same effects; stones smoothed and rounded, masses crumbled and disintegrated. We may trace the old channels of rivers by the pebbles left in them, and the set of the tide by their accumulation on the shore; in a word, the action of moving water is known by its effects. As the old channel of a rapid stream is filled with pebbles that declare the force of the current, so the whole earth is covered by pebbles, the wreck of a general flood. Filling the vallies, overspreading the plains, and covering the hills, rounded stones, of all sizes and all kinds, mixed together in as much confusion as pebbles on the sea-shore, (fragments of all the
known rocks which compose the interior of the earth,) are profusely scattered on its surface.

It is impossible to account for the vast heaps of this gravel by supposing that it might be laid in its present situation by any streams such as now water the earth. For it occurs abundantly in places where streams do not run, where, indeed, they never did run; neither is it confined to such narrow paths as serve for the passage of rivers, nor is it laid in such forms, but it is casually and unequally spread over all the face of the country. The blocks of stone which have been thus rolled from their native sites, are, in some cases, of so vast a magnitude, and have been so strangely carried, even a hundred miles or more, over hill and dale, that in vain do we think to assign any other cause for the phenomena, than a great body of water moving upon the earth. With regard to the force of this water, various facts, which have fallen under my repeated examination, may give some idea. On Shap fells in Westmoreland, a reddish granite is well known, and its blocks are at once recognised by large interspersed crystals of felspar. Now, by the force of the great currents of water, blocks of this granite have been scattered over a large tract of country to the south, where masses, some tons in weight, rest on high ground near Sedbergh; and, when the Lancaster canal was made, such were found of great size in deep cutting, near the town of Lancaster. Eastward, this granite has been carried by other currents of the same water, over the deep vale of Eden, and the lofty range of hills which extend along the western border of Yorkshire and Durham, across Stainmoor forest, down the vallies of Durham, and the northern dales of Yorkshire, across the vale of York, and the hills of the eastern point of the county, to Scarborough and Flamborough head, where it rests on the summit of the cliff one hundred miles from its ancient situation. This is one of many instances. The dispersion of sienitic rocks from Carrock fell, Cumberland, of granite from Ravenglass, and of whinstone from Teesdale, is not less remarkable. Such facts cannot be seen without astonishment, nor contemplated without full conviction. As to the height of this flood in our own country, the sides of Ingleborough, on which rest fragments of rocks transported from Keswick; the brow of
PRINCIPLES OF GEOLOGY.

Stainmoor, which supports large masses of granite; and the top of Carrock fell, from which so large a quantity of sienite has been removed, demonstrate that our proudest hills were overflowed; and as to the extent, all countries acknowledge the wide-spreading visitation:—the deluge covered the whole earth.

The deluge is a great feature in the natural history of the earth, and it is highly desirable to fix the period of its occurrence: not to estimate how many centuries have passed away since it happened, nor how long it remained upon the earth; (such knowledge must be gathered from other sources;) but its relative place in the succession of phenomena which have visited the earth: for, in my mind, those geologists have been ill-advised, who, in the present state of science, affect to form a chronology of nature for comparison with the records of history. But the order and series of events may be read in the books of nature, and by inspection of them, two propositions are demonstrable.

First: That the deluge happened after the stratification of the earth was completed. The proof is easy: whoever will examine gravel-pits will be soon convinced of its truth. For in some part or other, the diluvial accumulations contain fragments of every known rock; masses of the old rocks carried many miles and dispersed over the more recent; and again, pieces of the more recent washed upon those which are more ancient. Either of these examples is sufficient, because it proves that all the strata were completed before the period of the deluge.

Secondly: The deluge happened after parts of the earth were dry, and inhabited by land animals. On this point the evidence is so plain, simple, and convincing, that he must be indeed strongly armed in scepticism who does not yield to its force. For we find in gravel accumulated by the deluge, the bones of many land animals, as the elephant, hippopotamus, horse, ox, deer, &c. Therefore, it is perfectly plain, that such animals lived before the flood.

What a noble field of inquiry does this comprehensive truth open before us! To study the remains of a multitude of creatures which have
been extinct for some thousands of years, and whose living analogues dwell only in distant and different countries. Cold as is our climate, and now utterly unfit to maintain the existence of such animals, the time has been, if we rightly understand the history of the earth, when elephants and hippopotami, tigers and hyænas, lived here together, and here together met the common doom of all the inhabitants of earth, destruction by overflowing water. And not inconsiderable was the number thus destroyed; for almost every gravel-pit and diluvial cliff, and limestone cavern, abound with their remains; some of which by their unusual proportions, indicate the gigantic size and formidable strength of antediluvian quadrupeds. By comparing them with existing species, we are enabled to conjecture the antediluvian condition of the world, with what vegetables it was clothed, and with what climate it was blessed. No scope need be given to fancy, the truth of analogy, the known conformity of nature, are sure guides to the geologist.

To discuss the interesting questions arising out of this magnificent subject, would be deviating from the elementary plan of this chapter. We must, therefore, refer to the works of Cuvier and Buckland for full illustrations of the forms and habits of antediluvian animals, and the circumstances under which they are discovered; whether in gravel-pits inland, and in cliffs by the sea; or in caves and fissures of limestone, into which they were dragged to death by their ravenous contemporaries, or fell by accident, whilst browsing among the rocks, whose open chasms the deluge has since concealed.

But it will be demanded, What changes in the surface of our planet were occasioned by these devastating waters? Was the antediluvian earth diversified by the same hills and vallies, the same precipices and cliffs as we now behold, or was all this beautiful variety of surface occasioned by that flood, or is it the result of subsequent causes? These points have been resolutely debated by different theorists, and the most furious contests happened, as usual, whilst the facts were but half understood. But the controversy has been gradually quieted; and geologists
having learned to agree upon facts, have ceased to dispute about opinions. The time is come when the observers of nature have imbibed a spirit of calm and limited induction, which leads to candid agreement or modest dissent.

No one can doubt that great alterations were occasioned in the features of the earth’s surface, at the period of the deluge, who considers the extensive tracts formed of the diluvial detritus. All the solid land of Holderness is an accumulation of this kind, from the ruins of other parts of England and Scotland, and perhaps Norway. If hills were known before the flood, their present peculiar shapes must be dated from that event; and if vallies were then in existence, they must have been deepened and widened, or possibly filled up and obliterated. But that the whole antediluvian surface of the world was even and uniform, is altogether improbable. For, to a very considerable extent, the great features of the earth’s surface are determined by peculiarities in its internal construction. Its highest ranges of mountains are composed of one set of rocks, but its widely extended plains are based on another. Obviously, therefore, these great distinctions are not only antediluvian, but aboriginal. There are, also, many lesser features of this kind, which must be carefully selected from the phenomena ascribed to the deluge. Many great natural depressions or wide vales are produced, evidently by the convergence of opposite declinations of strata; as the great vale of the Thames is occasioned by meeting dips from Hertfordshire and Surrey; and such are, doubtless, antediluvian. Many geologists believe that, from some unexplained causes operating during their deposition, some strata were originally deposited at higher elevations than others; that, for example, the lower part of the coal series was made to attain elevations not reached by the upper part of the same series; and that the new red sandstone was never in England placed at so great an altitude as some of the strata which lie above it and below it. In these instances, therefore, it has been concluded that the antediluvian features of the earth were not very different from what we now witness: and these instances admitted to their full extent, actually include the most striking variations in the surface of the earth; for it
is certainly true, that the great mountain ranges which seem to compose the skeleton of the earth; the wide oceans, plains, and level tracts, and even the remarkable lines of secondary hills and most extensive vallies, are placed in accordance to the interior structure of the earth. Hence, it follows that we must limit our inquiry, as to the changes produced on the surface of the earth by the deluge, to the vallies and hills which seem evidently to have derived their peculiar features from currents of water, since the consolidation of the strata. Even thus limited, the subject is ample, fertile, and instructive. Many vallies in a secondary country are excavated through several strata, as limestone, clay, and sandstone, which appear on the opposite sides in most exact agreement as to thickness, composition, and mode of arrangement. That such rocks were originally deposited in continued planes, and, therefore, once connected across the chasm or valley which now divides them, can hardly be doubted. The vallies themselves bear marks of their origin; their bottom is a continued plane; their sides correspond with answering sinuosities; and their every peculiarity suggests the action of decurrent water. From the time of Pythagoras to the present day, every unprejudiced observer of nature has concluded that such vallies were cut out of the planes of the consolidated strata, through one, two, or more rocks, according to the depth of the excavation, and in this or that direction, according to the facility with which the materials were abraded. These are called vallies of denudation, and they are very numerous and extensive. In western Yorkshire, the great mining vallies of Teesdale, Swaledale, Yoredale, and Wharfdale, are magnificent examples, and strongly impress the mind with the power of the currents which occasioned them. In the eastern part of the county, the vallies of the Derwent below Malton, Rievaulx and Bilsdale above Helmsley, Newton Dale above Pickering, and Hackness near Scarborough, are remarkable and beautiful instances.

There is one circumstance of common occurrence; which yields so absolute a proof that vallies were formed at periods subsequent to the deposition of the strata, and is in itself so curious, that though few will seek more satisfactory evidence than in each case each valley furnishes, it deserves to be mentioned. Some vallies cross and cut through vertical
strata, which must necessarily have been at first deposited nearly horizontal. Therefore, such vallies were not produced till after the displacement of the rocks.

No one has carried his speculations on this subject so far as Dr. Hutton, who maintained that vallies were, in all cases, scooped out by the streams which run in them.* This is a characteristic part of his system of decaying and renewing worlds, and whoever views the minute, though not imperceptible, effects of our rivers, need not cavil at the ample time he allows for their producing such effects as the denudation of vallies. But this opinion clashes so directly with plain facts, as to be wholly inadmissible. How can we apply such an hypothesis to those numerous vallies in the plains of chalk in Yorkshire, Wiltshire, and Dorsetshire, which have never carried water in the memory of ages, down which, indeed, no trace of a channel can be seen? Yet they are branched like the vallies of other districts, have all their sinuosity of course, and regular declination, but the soil and stratum are too absorbent to be moistened by the most hasty rain.

The excavation of vallies can be ascribed to no other cause than a great flood of water which overtopped the hills, from whose summits those vallies descend. Such a flood, put in violent motion, might, we may suppose, by its currents and eddies, scoop hollows which afterwards, on its retreat, would be extended in long connected vallies. From the best and most independent evidence we have shewn, that such a flood has once overflowed the earth since the consolidation of its surface; and as we have no proof of more than one such flood, and as there seems to be no contrary evidence, it is probably to the deluge we must ascribe the excavation of vallies.

But the deluge has long passed away, and other events have materially changed the face of the earth. Did not the voice of history and tradition

* Quodque fuit campus, vallem decursus aquarum
 Fecit. ————
 OVID, METAM. XV.
teach us the great antiquity of that catastrophe, we yet might assure ourselves of it by the contemplation of nature. For when we find the diluvial deposits of clay, pebbles, and bones, covered by shell-marl, silt, peat, and large uprooted trees,—accumulations which proceed so slowly in our days, as to be hardly perceived in operation,—there is reason to conclude that a long period separates us from the date of the deluge. And when, in these new accumulations, we find the bones of postdiluvian animals, which have become extinct through accident or persecution, as well as of others, whose successors still exist in the neighbourhood, we may, perhaps, think that little is wanting to complete the evidence of this portion of the physical chronology of the earth.

Werner, and most of the moderns, consider the phenomena which have been unfolded by geological research, as the effects of causes no longer in action. But Dr. Hutton believed that all the revolutions which have visited the earth, were but the result of the ordinary operations of nature, continued through very long periods of time. He was of opinion that what is now sea, was formerly dry land; and that by the action of rains and rivers, materials are accumulated on the bed of the sea, to produce the strata of new continents, which by some convulsion, like many that have happened before, will be uplifted and laid bare, whilst that part of the earth which we inhabit, will be sunk under the new ocean.* To this hypothesis it may be objected, that it ascribes to the ordinary agents of nature effects which appear much beyond their power. General changes in the relative situation of sea and land have been often supposed, but never established by evidence; for Cuvier's conclusions drawn from the alternations of marine and fresh water formations, apply only to limited districts; and since well-conducted inquiries into the natural history of antediluvian quadrupeds, have shewn satisfactorily that they lived before the flood over a very large portion of the present continents, we have proof that at the period of the deluge, the sea and land did not change their relative situations.

* Eluvie mons est deductus in æquor. OVID, METAM. XV.
PRINCIPLES OF GEOLOGY.

The natural agents now employed in altering the face of the globe, are fire and water. The former forces fluid matter from the interior, and spreads it around the volcanic mountains; the latter is incessantly occupied in lowering heights, wasting and smoothing precipices, filling up vallies, and equalizing the surface.

ACTION OF THE SEA AND TIDE RIVERS.—The records of history declare what large tracts of inhabited country have been lost in the sea, and what extensive surfaces of new land have arisen to contract the dominion of water. Observation shews on our own shores much of the reciprocal process of demolition and augmentation; and thus we are enabled to form a correct estimate of the effects of this “war of sea and land.” Every sea-coast, and especially every great estuary, furnishes examples for contemplation; and these effects are so similar in all parts of the world, that the mode of explanation which is suggested by consideration of one coast, will apply, with almost equal accuracy, to all. Sea-cliffs, composed of solid rocks like mountain limestone or basalt, are liable only to that wearing of surface which is produced on the hardest stones by the impulse of water, and may remain, perhaps for ages, without any obvious reduction. Those composed of alternating strata suffer greater waste; for the softer parts are worn away by the unremitting attacks of the sea, and the harder ones being undermined and unsupported, fall in awful ruin. But where a cliff consists of gravel, sand, or clay, the destruction proceeds with alarming rapidity. The Holderness coast is of this kind, and the records of its history shew the terrible devastations which it has endured. Almost within the memory of men now living, a church and churchyard, having some land and buildings between them and the sea, have been swallowed up in the insatiable waves. The substances which fall from the cliffs are angular stones of different sizes, gravel, sand, or clay. According to their bulk and specific gravity, they are sorted and disposed of by the tide.

* Hutton.
† et adhuc ostendere nautae
Inclinata solent cum mamibus oppida mersis. OVID, METAM. XV.
Whoever has observed the sea-shore, with attention, is aware that the sand and pebbles, which constitute the beach, undergo continual change of place. The little heaps of gravel which are sometimes ranged in lines according to the height of the tide, are at other times strewed over the sand. According as the tide sets along the shore, the pebbles are driven onward progressively, accumulated in little quiet recesses of the cliffs, and heaped together in profusion in the larger bays. The large angular stones usually remain near the spot where they fell, but the smaller ones, after being rolled about by the waves till they become pebbles, are subject to the same progressive motion as the ordinary gravel; the sand travels in the same direction, and the finer particles of clay, mixed with and suspended in the water, are transported far away, and finally deposited on the marshes; and thus by the fall of the heights materials are provided for the extension of the lower ground. The wasted cliffs of Holderness have furnished the pebbles which compose the long projecting point of Spurn, and part of the silt which enriches the marshland along the rivers Ouse, Aire, Dun, and Trent. The sea engulfs but little of what falls from the ruin of its boundaries; its effect is to abate the high, and to raise and extend the low parts of its shores. When the latter part of this process has proceeded so far that the marshes are dry at intervals, man exerts his enterprising industry, and defends the new land by a bank. If this be made too abrupt, the ocean indignantly washes it away, and reclaims his ancient domain; but a long gradual slope of pebbles and sand averts the fury of the sea, and protects, though with a moving barrier, the lands within, above which, in storms, the waves hang suspended and threatening destruction, but dash their spray and fling their foam in vain.

Action of rivers, &c.—Imperceptible as is the reduction of mountains and hills by rains and rivulets, yet the matter thus collected, by constant attrition, assumes an important character, when concentrated along the margins of rivers, and changes the appearance of the vallies. In proportion to the magnitude of the stream, the altitude of its sources, and the nature of the country through which it flows, the effects are more or less considerable. But they everywhere tend to the same
result; the raising of the level of the valley by horizontal layers of sediment. This accumulation is most rapid where rivers approach the sea, because there the current is languid, and often weakened or neutralized by the opposition of the tide. From the point where the tide ceases to the sea, the natural tendency of every land flood, and every muddy tide, is to heighten and extend the low alluvial lands, whilst, by the same process, the bed of the river is raised, and its mouth carried further into the sea. The “new land” thus produced, being but feebly consolidated, opens new channels to the rivers, which, changing at intervals their mouths, raise towns into temporary distinction, and again, if not prevented by art, take a fresh course, and carry away at once their harbours and their opulence.

Subterranean forests, &c.—Under the alluvial deposits of silt or clay, it is common to find, at various depths, great quantities of trees of several kinds, in different states of preservation. They are frequently accompanied by peat: sometimes they lie under the deposits of rivers and the tide, as along the great rivers of Yorkshire and Lincolnshire; and sometimes they are covered by the shelly sediment of ancient lakes. In many instances they are broken to fragments, and so irregularly disposed, as to make it probable they were swept together by violent land-floods; but in other cases they are stated to be regularly prostrated in a particular direction, and to vary in their kinds according to the nature of the subterranean soil on which they are placed. It is reported that oaks are found lying on clay, and firs, alder, and birch upon sand; and, as in the present condition of nature, such soils suit such trees, these circumstances have led to an opinion that the trees grew near the spots where they lie buried. If this be thought sufficiently probable, we arrive at a startling conclusion: for as these trees are often buried some yards below the usual level of the sea, and are sometimes, as on the shore of South Wales, covered thirty feet deep by the tide, it would appear that the sea has risen so much on our coasts. If the levels of Yorkshire were once covered with forests of oak, the sea must have been debarred access to them, and it would seem, therefore, that its general level has been since much raised; for those trees
are below the present height of the tide.—Alluvial sediments near the sea, on the banks of rivers, and on the site of ancient lakes, enclose shells such as now live in our fresh waters, and bones of the stag and the ox.

Volcanoes.—The alterations in the features of the globe, produced by sudden eruptions of volcanoes, are less considerable than those occasioned by the slow and continued action of water. It is along mountain chains, and among mountain groups, that the melted rocks of the interior of the earth are poured forth upon its surface. How deep is the seat of volcanic fire, what is the chemical history of its origin and support, are subjects of philosophical inquiry too extensive to be here discussed. Perhaps the simplest explanation is that suggested by Sir H. Davy's splendid discovery of the metallic bases of the alkalies and earths; for if to such metals, deep in the earth, water be supposed admissible, the combustion which would be so occasioned may be thought equal to produce the phenomena which we behold.

The most important considerations, which volcanoes suggest to geologists, relate to the substances which they emit; for some of these fused substances assume, when cold, the appearance of well-known rocks. Some "lavas" closely resemble basalt, others are like pitchstone, and others almost identical with porphyry. Now, these are among the most characteristic of the rocks called independent or overlying; and it therefore, appears probable, a priori, that such rocks are of igneous origin. On examining the circumstances which accompany them, we find that, where they are in contact with other rocks, particular phenomena appear, which strongly confirm this reasoning. Thus, where basalt passes through coal, this mineral has lost its bituminous portion, as effectually as if it had undergone distillation. Ordinary limestone, divided by basalt, exhibits a crystallized texture, such as Sir J. Hall produced in it by great heat and pressure combined. From an extensive series of such facts, it is inferred that the overlying or independent series of rocks derive their peculiar appearances, and have produced the remarkable phenomena which accompany them, from the agency of
fire; they are, therefore, said to be of igneous formation. Granite, though different in position, agrees with them so closely in its structural characters, and in the phenomena which accompany its contact with other rocks, that it is now admitted to have been in a state of igneous fusion.

Numerous facts of a different kind, generalized with equal caution, leave not a shadow of doubt that all the secondary strata, and many of the primary, were deposited from water. The shells which fill so many of the rocks, the clear traces of watery agency in others, make this absolutely certain. From the different characters of these shells, we can clearly determine, in many instances, whether they belonged to marine, fluvial, or terrestrial species; and we may thus, with great probability, conjecture the nature of the aqueous fluid which deposited so many rocks. In the application of this last method of reasoning, however, too much caution cannot be used; for, surely, fresh water shells may have been as easily swept down to the sea, and buried in its deposits, as the wood which lies in so many secondary rocks, and it would, therefore, be hazardous to conclude that a great primæval lake of fresh water existed over every spot where such fossils occur; and even where they super-abound, as in the coal districts, we must not change a prudent doubt for an insecure conclusion.

Having thus traced the outlines of a practical system of geology, I shall conclude with a very brief sketch of the series of changes which appear to have visited the earth. From chemical researches it seems highly probable that the whole crust of the earth is to be viewed as originally produced by oxidation of fluid metals and metalloids. From a careful study of the effects of heat, under different circumstances, and of the habitues of earthly compounds under its influence, it seems probable that the granitic rocks, which are the lowest of the primary series, owe their present condition and appearance to the effect of partial or general fusion. Above this granitic series we find, certainly, the effects of deep and overruling water. Many of the primary, and all of the secondary rocks, owe their present appearances and arrangements to the action of water. These strata exhibit the results both
of agitated and of tranquil waters,—mechanical aggregates,—sedimentary deposits,—and chemical precipitates, in frequent repetition. This circumstance, combined with the facts relating to organic remains, teaches us, that during a long period, the sea flowed rich in living beings over rocks which contain no relics of life. At times tranquil, at intervals tumultuous, this ocean, perhaps of elevated temperature, even in the northernmost regions, varied its deposits at different periods, yet preserved among them a general conformity of arrangement, from the oldest to the most recent, and a similarity over large regions. The aquatic animals and other remains, which are entombed in the earth, exhibit a long series of beings, whose origin dates from some of the earliest strata, and whose forms, differing according to the antiquity of the rocks, successively come nearer and nearer to the modern productions of the land and the ocean. During this process, at intervals, vegetable forests swept into estuaries, or lakes, furnished the materials of coal, and the intermitting action of submarine volcanoes frequently broke the consolidated strata, and formed basaltic and other overlying rocks. At times, too, more violent exertions, probably of the same cause, uplifted groups and ranges of mountains with great disruption and dislocation. Operations of the same kind are to this day continued, but so feebly,* that we commonly speak as if the causes which concurred to produce the crust of our planet, had ceased to exist. They appear, however, to have been gradually weakened, and when the last series of the secondary beds, partly marine, partly lacustrine, was deposited, a large portion of pre-consolidated rocks became tenanted by land animals. But again the waters returned and overflowed the inhabited world; removed rocks, excavated vallies, and destroyed the terrestrial inhabitants, from whose anatomical construction, as displayed in their remains, it may be inferred that the antediluvian face of the earth was like our own, diversified by lakes, and forests, and mountains.

This transient flood retires from the desolated continents; again the forest is clothed with foliage; birds fly in air, and animals roam the

* Absumptis per longum viribus ævum.
earth; the mountains gather clouds, rain falls, the streams flow down their new channels, the sea resumes its appointed boundary; cliffs are wasted, low shores are extended, vallies are filled up, volcanoes are in action; nature revives again, and man, by contemplation of the phenomena, reads the awful history of his birth-place, gathers ideas of the immense agency exerted in the construction of the earth, compares this planet with the other members of the solar system, and views the solar system itself as only a small part of the immeasurable works of God!
CHAPTER II.

Series of Yorkshire strata. Geological description of the eastern part of the county.

Yorkshire is one of the few counties of England, which are, for the most part, defined by natural boundaries. On the west it reaches, and in some places extends beyond, the great summit ridge of the island; it has the Tees as its natural limit on the north, the Dun for a great length on the south, and on the east is washed by the German ocean. Its area is divided into several obvious sections, distinguished alike by topographical features and geological structure. Along the middle of the county, from north to south, runs a wide level vale, filled with gravel, deposited on the upper red sandstone. From beneath, rises towards the west an elevated undulated tract, of carboniferous and calcareous rocks, which ascend to the summits of Micklefell, Ingleborough, and Pendle Hill; whilst above, on the east, appear the uniform ranges of the chalk and oolite. The hilly western tract is grouped in two portions: the district south of the Aire, in which, generally, sandstones and shales with coal abound; and the more elevated region north of that river, whose romantic dales are sunk into the mountain limestone, and whose hills are capped by the lower members of the coal series.

The eastern part of Yorkshire may be topographically considered in five divisions.—Three of these are conspicuous from their elevation; viz. the open round-fronted wolds of chalk in the south, the flat-topped ranges of oolite in the middle, and the more mountainous groups of shale, sandstone, limestone, and coal, which form the northern moorlands; two are wide, level tracts: viz. the vale of Pickering, which separates the chalk wolds from the oolitic hills, and Holderness, which
is a broad tract of alluvial marshland, undulated by hills of diluvial clay and gravel.

These five divisions of the surface reach the coast in succession, and mark it with very characteristic features. The shore of Holderness is, like the interior, low and undulated; the wolds terminate in long, lofty, and connected cliffs; a depression on the coast marks the line of the vale of Pickering; flat-topped heights characterise the oolitic formation on the shore, as well as in the interior; and the highest precipices on the coast belong to the same series of rocks as the loftiest of the inland hills. It will, therefore, be no unprofitable labour to attempt a connected sketch of the geological characters of the five districts, into which nature has divided the eastern part of this county, before we describe, in greater detail, the sections which they present against the sea. It is, however, necessary previously to exhibit a

TABULAR VIEW OF THE SERIES OF YORKSHIRE STRATA.

<table>
<thead>
<tr>
<th>Series</th>
<th>Utmost Thickness (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalk formation.</td>
<td></td>
</tr>
<tr>
<td>1 White Chalk</td>
<td>500</td>
</tr>
<tr>
<td>2 Red Chalk</td>
<td>5</td>
</tr>
<tr>
<td>3 Gault?</td>
<td></td>
</tr>
<tr>
<td>(Smith.)</td>
<td></td>
</tr>
<tr>
<td>4 Kimmeridge clay</td>
<td>150?</td>
</tr>
<tr>
<td>5 Upper calcareous grit</td>
<td>60</td>
</tr>
<tr>
<td>6 Coralline oolite</td>
<td>60</td>
</tr>
<tr>
<td>Clay vale formation.</td>
<td></td>
</tr>
<tr>
<td>7 Lower calcareous grit</td>
<td>80</td>
</tr>
<tr>
<td>Coralline oolite formation.</td>
<td></td>
</tr>
<tr>
<td>8 Oxford clay</td>
<td>150</td>
</tr>
<tr>
<td>9 Kelloways rock</td>
<td>40</td>
</tr>
</tbody>
</table>

- The Wold hills from Flamborough to Hessle.
- Speeton, Knapton.
- Kirby-Moorside, Helmsley, Settrington, Elsworth.
- Scarborough Castle, Pickering, Malton.
- Scarborough Castle, Hambleton, Malton, Leavening.
- Scarborough Castle, Saltersgate Brow, Rievaulx Abbey.
- Scarborough Castle, Hackness, Rievaulx Abbey.
STRATA OF YORKSHIRE.

Bath oolite formation.

10 Cornbrash limestone
11 Upper sandstone, shale, and coal
12 Impure limestone, (Oolite of Bath.)
13 Lower sandstone, shale, and coal
14 Ferruginous beds, (Inferior oolite of Somersetshire.)

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Thickness</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Cornbrash limestone</td>
<td>5 feet</td>
<td>Gristhorpe, Scarborough.</td>
</tr>
<tr>
<td>11 Upper sandstone, shale, and coal</td>
<td>200 feet</td>
<td>Gristhorpe, Scalby.</td>
</tr>
<tr>
<td>12 Impure limestone, (Oolite of Bath.)</td>
<td>30 feet</td>
<td>Gristhorpe, White Nab, Cloughton Wyke, Hawsker.</td>
</tr>
<tr>
<td>13 Lower sandstone, shale, and coal</td>
<td>500 feet</td>
<td>Cloughton, Peak, Burton Head, &c.</td>
</tr>
<tr>
<td>14 Ferruginous beds, (Inferior oolite of Somersetshire.)</td>
<td>60 feet</td>
<td>Peak, Whitby, Boulby, the Cleveland hills.</td>
</tr>
</tbody>
</table>

Lias formation.

15 Upper lias shale
16 Marlstone series
17 Lower lias shale

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Thickness</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Upper lias shale</td>
<td>200 feet</td>
<td>Cliffs near Whitby, Hills near Guisborough, &c.</td>
</tr>
<tr>
<td>16 Marlstone series</td>
<td>150 feet</td>
<td>Cliffs near Staiths, Head of Blisdale, Eston Nab, &c.</td>
</tr>
<tr>
<td>17 Lower lias shale</td>
<td>500 feet</td>
<td>Robin Hood's Bay, Boulby, Redcar.</td>
</tr>
</tbody>
</table>

New red sandstone formation. (Werner.)

18 Red marl and red sandstone
19 Red clay and gypsum
20 Coal measures

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Thickness</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Red marl and red sandstone</td>
<td></td>
<td>Yarm, Boroughbridge, and Ferrybridge.</td>
</tr>
<tr>
<td>19 Red clay and gypsum</td>
<td>45 feet</td>
<td>From Brotherton to Doncaster.</td>
</tr>
<tr>
<td>20 Coal measures</td>
<td>2000 feet</td>
<td>Leeds, Barnsley, Sheffield.</td>
</tr>
</tbody>
</table>

Carboniferous formation.

21 Mountain limestone series

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Thickness</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Mountain limestone series</td>
<td>2000 feet</td>
<td>Swaledale, Yoredale, and Wharfdale.</td>
</tr>
</tbody>
</table>

Slate formation.

22 Slate rocks thickness unknown.

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 Slate rocks thickness unknown.</td>
<td>Ingleton, Sedbergh.</td>
</tr>
</tbody>
</table>

Over these strata, is spread the detritus of the deluge, and, in particular places, this is covered by more recent accumulations of peat, clay, &c.

THE MOORLAND DISTRICT.

This district is remarkable for presenting, along its whole outline, a range of bold and steep escarpments. Its overhanging cliffs, which so strikingly characterise the coast between Scarborough and Redcar,
are among the loftiest in Britain; and where it turns inland from Huntcliff, by Rosebury Topping, Burton Head, Dromanby Bank, and Osmotherly moors, it maintains the same high and precipitous aspect, and looks over the plain of Cleveland and Mowbray, as the ranges of Cleeve and Broadway overlook the vales of Gloucestershire. This similarity of appearance is owing to analogy of geological structure. The wide vales of Gloucestershire are, like the vale of Cleveland, based on red marl and lias shale; and the oolitic rocks of Cleeve and Broadway are represented, though with great variations, by the rocks of the corresponding escarpments in Yorkshire.

Including that portion of the vale of Cleveland which is based on the lias formation, this division contains about five hundred and fifty square miles. On the south, it is bounded by the elevated edge of oolitic rocks, which range nearly in a straight line, from Scarborough castle to Hambleton end. (See the map.) It comprehends the whole drainage of the river Esk, and on the north of that river forms an imperfectly connected range of hills, from near Whitby to Rosebury Topping, with detached secondary elevations on the northern coast, at Rockcliff, Huntcliff, and Eston Nab. According to Col. Mudge, the heights on this range are as follow: Rosebury Topping, one thousand and twenty-two feet; Eston Nab, seven hundred and eighty-four feet; Danby Beacon, nine hundred and sixty-six feet; Easington Heights, six hundred and eighty-one feet. The Esk flows nearly along the line of a great dislocation, by which the strata on the north of the valley are much depressed. It is on the south of this river that we find the most elevated and extensive moorlands. From the cliff at the High Peak, near Robin Hood's Bay, six hundred feet, a range rises and extends westward by Stow Brow, eight hundred feet, Lilhowe Cross, one thousand feet, Egton moors, and Loose Hoe, fourteen hundred and four feet, to Burton Head, fourteen hundred and eighty-five feet. This is supposed to be the highest point of land in the eastern part of the county, but the ridges are still very lofty which pass by Wainstones, about thirteen hundred feet, and Carlton Bank, round the head of Scugdale, and by Osmotherly moors, to sink beneath the highest point.
of the next hilly district, at Hambleton end, twelve hundred and forty-six feet above the sea.

The rocks which compose this moorland district rest upon the red marl and sandstone. In the following table, they are numbered according to the general series of Yorkshire strata, pages 32, 33.

Greatest observed thickness.

<table>
<thead>
<tr>
<th>Feet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>10 Impure, sometimes oolitic limestone, full of shells. (The cornbrash of geologists.)</td>
</tr>
<tr>
<td>200</td>
<td>11 Sandstone, shale, ironstone, and coal, with carbonized wood, ferns, and other fossil plants.</td>
</tr>
<tr>
<td>30</td>
<td>12 Impure, often oolitic limestone and ironstone, with many fossil shells. (Oolite of Bath.)</td>
</tr>
<tr>
<td>500</td>
<td>13 Sandstone, shale, and coal, with carbonized fossil plants.</td>
</tr>
<tr>
<td>60</td>
<td>14 Subcalcareaous, irony sandstone, often containing shells, called dogger. (Inferior oolite of Somersetshire.)</td>
</tr>
<tr>
<td>200</td>
<td>15 Upper lias shale, or alum shale, with nodules of argillaceous limestone, ammonites, belemnites, &c. (Blue marl of Northamptonshire.)</td>
</tr>
<tr>
<td>150</td>
<td>16 Ironstone and sandstone strata, with terebratulae, pectines, cardia, aviculae, &c. (Marlstone of Northamptonshire, &c.)</td>
</tr>
<tr>
<td>500</td>
<td>17 Lower lias shale, with gryphaeae, pinnae, plagiosomae, &c. (Lias shale of Somersetshire.)</td>
</tr>
</tbody>
</table>

The Lias Formation.—The lias formation first appears on the seacoast, under the High Peak, near Robin Hood's Bay, and continues along the shore, with only one exception west of Whitby, to Saltburn and Redcar; being very generally covered, in all the higher cliffs, by the lower portions of the carboniferous formation. Its great thickness is apparent in the sides of Robin Hood's Bay, and in the precipices of Rockcliff. Inland, it follows the sinuosities of the moorlands above Guisborough, by Rosebury Topping, Burton Head, and Carlton Bank, towards Hambleton, and extends a considerable space into the low plains lying to the west of those hills. It is exposed by denudation along a great part of the valley of the Esk, and in many of its tributary branches,
as well as in the deep hollows of Bilsdale, Bransdale, Farndale, and Rosedale, and appears to be the general base of all these elevated moorlands. Its utmost thickness is not visible on the sea-coast, though in Rockcliffe, and on the sides of Robin Hood's Bay, nearly six hundred feet are exposed. At the head of Bilsdale, the upper edge of the lias is eight hundred feet above the plain below, and one thousand feet above the town of Stokesley, which is on the same formation. In Rosebury Topping, the upper edge is one thousand feet above the lower beds of it at Redcar. Where the moorlands slope beneath the second hilly district, at Hambleton, the lias descends and spreads in the low ground about Thirsk, Easingwold, and Sheriff-Hutton. It crosses the Derwent at Howsham, and proceeds by Leppington and Bugthorpe, till it comes to be almost concealed under the chalk-hills at Garraby and Bishop Wilton. Its course, however, is still continued in a narrow tract, beneath the chalk, by Millington and Londesborough to Market Weighton; after which it turns out from the wolds, and proceeds by Northcliff and North Cave, to the Humber at Brough ferry. Beyond this river, its range is uninterrupted through Lincolnshire and the midland counties, to Bath and Lyme-Regis.

The upper edge of the lias is so distinctly marked below the carboniferous sandstones which cover it, that by means of many barometrical observations, I am enabled to state, pretty distinctly, the average amount of its declination in several directions. It appears at a greater altitude along the breast of the hills south of Stokesley, than in any other part with which I am acquainted. Under Wainstones cliff it was found to be nearly twelve hundred feet above the sea. At Brandsby, which is in a line due south, and distant nineteen miles, it is about two hundred and eighty feet above the sea; the difference of level is equivalent to nearly fifty feet per mile. From the same point at Wainstones, the lias sinks in an easterly direction to the level of the sea under the High Peak, at a distance of twenty-eight miles; this is at the rate of nearly forty-three feet per mile. From the same point, the dip to the top of the lias on the south side of Whitby harbour, in a direction E. by N., is fifty-five feet per mile. The general declination of strata, in
the district S. of the Esk, is towards the S. E. On the north side of that river, the upper plane of the lias is nearly one thousand feet high in Rose-bury Topping. From hence to the Lyth alum works, distant seventeen miles and a half, in a direction almost due E., the dip is eight hundred feet, or about forty-five feet per mile: to Rockcliff, E. N. E., twelve miles, the dip is forty-six feet per mile, to Eston Nab N., four miles, eighty feet per mile. Hence it may be inferred that on the north side of the Esk river, the strata generally dip to the N. E.

The above measures were taken in directions where the results are very little affected by dislocations. But local variations of dip are very numerous. From Huntcliff and Rockcliff, the strata sink both toward the east and the west; between Whitby and Bay Town they form a basin with meeting slopes; and in Robin Hood's Bay they turn up in what is called a saddle. The most remarkable of these dislocations are under the High Peak and west of Whitby. (Consult the section at all these points.) The three members of the lias formation may be seen on the sea-coast in juxta-position at Robin Hood's Bay, and in the high cliffs of Boulby and Rockcliff. The upper and lower shales are seldom so well exposed, as to admit of being studied with advantage inland; but the middle group may be examined in Eston Nab, in Eskdale, along the front of the Cleveland hills, in Bilsdale, and in the neighbourhood of Easingwold; and in all these places its characteristic position in the shale, and the abundance and peculiarity of its imbedded fossils, eminently distinguish it, and strongly remind the geologist of the "marlstone" of Lincolnshire and Northamptonshire, to which it is certainly to be referred.

The Carboniferous and Oolitic Formation.—This formation is found resting upon the lias in all the high hills and cliffs which belong to the moorland district. As its character is, in a considerable degree, peculiar, it may be well to introduce here an epitome of its general history, for the sake of comparing it with the oolitic strata of the midland counties, and the carboniferous series of rocks at Brora, in Sutherland.
The Moorland District.

The Dogger series, (No. 14,) which immediately covers the lias, is a group of sandstone rocks very variable in appearance and composition. Where fully developed, as on the sea-coast at Blue Wick, under the High Peak, it presents a considerable thickness of subcalcareous, irony sandstone, with several layers of shells and pebbles, of which the lower part assimilates very decidedly to the lias beneath. In consequence of this assimilation, we may conclude* that both formations are here complete. In the sea cliffs farther west, the dogger series is not known to contain any shells, nor does it generally exhibit any such gradation in character to the lias beneath. Some parts of the stratum, therefore, are in such cases, wanting. Shells of the same kinds as those which fill the dogger at Blue Wick, are again found in it at the fine cascade, a few miles from Whitby, called Falling-foss; in the upper part of Goadland Dale, and at Coldmoor, and other places in the Cleveland hills.† Commonly about Whitby and Robin Hood's Bay, its lower layers contain nodular masses and fragments of ironstone, argillaceous limestone, red clay, porphyry, white felspar, vitreous quartz, and blende; but in the cliffs which range far to the west, the dogger is distinguished only by its very irony composition, and largely nodular structure. In some places, it is even but little distinguishable from common sandstone, or is deficient altogether. Its utmost thickness is about sixty feet.

In consequence of its own characters, its position upon the lias, and its evident assimilation to the upper lias shale, I think it may be concluded that the conchiferous dogger beds at Blue Wick are the representatives in Yorkshire of the inferior oolite of Somersetshire. What light the fossils contribute to this inquiry, will be seen hereafter.

The sandstones and shale, with fossil plants and coal, (No. 13,) which succeed and cover the conchiferous series just described, occupy

* See Professor Sedgwick's remarks on this subject, Ann. Phil. May, 1826.

† I take this occasion of expressing my thanks to the Rev. L. V. Vernon, for the valuable information he has afforded me on the geology of the Cleveland hills.
THE MOORLAND DISTRICT.

39

the lower and middle parts of the cliff from Cloughton Wyke to the High Peak. They appear on all the higher parts of the coast, from Robin Hood's Bay to Huntcliff; and thence, retiring inland, cap all the high Cleveland hills before mentioned. The lowest part of this series of rocks usually contains a considerable portion of shale, and some thin layers of white and yellow sandstone, with fossil plants and irregular seams of bad coal. Occasionally, this part swells out to a great thickness, and encloses two very distinct layers of fossil plants: those which lie nearest to the dogger consist of cycadiform fronds and ferns of different kinds, and are imbedded in white carbonaceous sandstone and shale, or in ironstone. The upper layer consists of only one kind of equisetiform plants, standing vertically, as if in the attitude of growth, in a bed of sandstone, which rests on shale. A considerable thickness of sandstones and shales covers these plants at High Whitby and in Stainton-dale cliffs; and further south towards Cloughton Wyke, still higher repetitions of the same kind enclose a thin seam of coal, which is there worked, as well as at Maybecks and other places on the moors. This coal seam occurs nearly at the top of the sandstone series, which has been thus shewn to enclose two distinct, though irregular, layers of coal, and at least two deposits of fossil plants, but no fossil shells.

The calcareous strata, (No. 12,) now to be noticed, which lie in the midst of the carboniferous sandstones, are of small agricultural value, but of great geological importance. For, in conjunction with the dogger series, they afford a very ample suite of organic fossils, fully demonstrating the relation of these two strata to the oolite formation of Lincoln and Bath, with which they are actually connected by intermediate points. This limestone is seen in the extensive low-water scars between Gris-thorpe and Redcliff; at the northern point of Cayton Bay, and along the shore at low-water, from White Nab to near the Spa at Scarborough. From this point it is below the level of the sea, till we approach Cloughton Wyke; beyond which it rises along the high cliffs of Haiburn and Stainton-dale, to near the Peak house. Hence it recedes inland, encircles the vallies which descend to Robin Hood's Bay, and passes by Hawsker, to Maybecks on the Sneaton moors. It occurs again in Commondale,
one of the branches of Eskdale, and after passing by an obscure course across the moors, reaches Hood hill, Coxwold, and Owlston. It now becomes decidedly oolitic in the lower part, and slaty in the upper part; and these distinct portions of the rock, separated by sandstone and a layer of blue clay, range by Brandsby, Terrington, and Crambe, to the quarries about Westow, and are continued more obscurely between Leppington and Acklam, to Kirby Underdale, where they pass under the chalk hills. The oolitic part of the group re-appears from beneath the wolds at Sancton, and ranges by Newbald, Everthorpe, Ellerker, and Elloughton, to the Humber, near Brough ferry. The Lincolnshire oolite, beyond this river, is a continuation of the same rocks increased in thickness.

On the sea-coast, and in the eastern moorlands, these calcareous strata are much debased by admixture of sand, argillaceous matter, and ironstone, so as to be very indifferent limestone, and very unlike the usual appearance of oolite. But in the western part of the same district their aspect changes; the rock becomes more united in itself, and more separated from the sandstones about it, and assumes its true character of oolite. The upper fissile portion, at Brandsby and Terrington, appears to agree remarkably in structure, composition, and organic remains, with the slaty stone of Wittering heath in Northamptonshire, and Stonsfeld near Oxford; which Professor Buckland has decided to be forest marble. This slaty stone seldom occurs in a satisfactory manner on the sea-coast, and yet is not entirely deficient: it may be examined at the northern extremity of the point called White Nab, near Scarborough.

The sandstones and shales, (No. 11,) now to be noticed, which rest upon the oolitic limestone, have a general resemblance to those which cover the dogger. The lower part consists chiefly of thick, irregular strata of sandstone, often interspersed with nodules of ironstone and layers of shale, containing small and very confined seams of coal, and local deposits of fossil plants. Above, is a thick deposit of dark and light-coloured shale, with alternations of thin sandstones.
The plants which lie in the shale and ironstone, belong to the same tribes of cycadeæ, ferns, and lycodiform plants, as those which were mentioned in the lower carboniferous sandstones; but the species are generally distinct. The sandstone is often filled with fragments of carbonized wood, like so many pebbles; and, occasionally, it contains large carbonized branches. Its surfaces are generally black, with particles of the same substance. This series may be observed upon the coast, from Gristhorpe Bay to near Scarborough, and from that town northward to Cloughton Wyke; and its lower sandstones appear along the top of some of the high cliffs between Haiburn Wyke and the Peak. Its course inland is on the north side of the tabular hills which range from Scarborough to Hambleton; but is not very easily defined across so wild a surface of heath and bog. It is probably thickest, and certainly is best known, in the vicinity of Scarborough.

The calcareous bed (No. 10) which is found at the top of this carboniferous formation, has a considerable resemblance to the calcareous layers which have been already described; but its position under the Kelloways rock, and the general character of its organic fossils, justifies Mr. Smith's opinion, that it is referrible to the "cornbrash" limestone of the southern counties. It is a thin, fissile, partially oolitic stone, remarkably filled with terebratulae, trigoniæ, unioniform shells, and small clypei. Gristhorpe Bay, and Redcliff, and the vicinity of Scarborough, are the only points where I have seen it distinctly exposed; and great difficulties must always attend the efforts to trace so thin a rock across the interior of the country. It has not yet been discovered on the western side of the moorlands.

Having thus noticed, in general terms, the characters of the carboniferous and oolitic formation, it remains to state, that of this whole series, which measures, in some places, not less than seven hundred feet in thickness, no part whatever is continued across the Humber, except the calcareous strata. Indeed, I am in doubt whether any portion of the sandstones, shales, and coal, is prolonged to the south so far as the river
Derwent. No such strata are known among the oolites, in any other part of England: very similar rocks occur, however, at Brora in Sutherland; and M. A. Brongniart has described some of their characteristic plants from Scania.

If we were to put out of consideration the shelly beds of limestone, which alternate with them, we should find in these carboniferous rocks, much resemblance to that more ancient deposit of coal, and sandstone, and shale, which has been expressly called the coal formation. But still we are furnished with the most satisfactory means of discrimination, in the plants which accompany the coal: for though, perhaps, one hundred species of fossil plants have been discovered in the west-riding coal-field, and not less than fifty in the sandstones and shales of the northeastern coast; it is not too bold an assertion to affirm, that no one species has yet been found which is common to both situations.

THE TABULAR OOLITIC HILLS.

These hills meet the sea-coast between Filey and Scarborough on the east. They rise toward the north from under the vale of Pickering, and terminate in a remarkable line of escarpments at Silpho Brow, Blakehoe Topping, Saltergate, Lestingham, Easterside, and Black Hambleton. From the vale of Pickering the ascent to them is long and gradual, but from the northern moors it is very short and abrupt. The altitude of the hills increases westward. Thus, Gristhorpe cliffs are about two hundred and seventy feet high; Oliver's mount, four hundred and ninety feet; the heights above Troutbeck, six hundred and fifty feet; above Rievaulx Abbey, eight hundred feet; and at Hambleton, twelve hundred and forty-six feet. Even at considerable distances, the plane summits and abrupt terminations of these oolitic hills are very remarkable.

From Hambleton, this range proceeds southward by Wass bank, nine hundred feet, and eastward by Ampleforth and Oswaldkirk bank, three
TABULAR HILLS.

hundred and thirty feet, to Stonegrave, beyond which place it sinks beneath the vale of Pickering. A branch of this range, separated from Oswaldkirk bank by the valley of Gilling, extends in a south-easterly direction to Malton, where it crosses the Derwent, and, after rising into the high ground of Langton wolds, turns again to the south, and passes under the chalk-hills at Acklam. Some of the strata which belong to this group of rocks, re-appear from below the chalk in the neighbourhood of South Cave, and are continued in Lincolnshire. The surface occupied by this district is about one hundred and ninety square miles: it includes the following strata:

- Summits and edges of the tabular hills.
- Slopes of the same hills.

Coralline oolite formation.

5 Upper calcareous grit, containing fossils resembling those in No. 7.
6 Coralline oolite, marked by corals, echi-ni, plagiostome, melaniae, &c.
7 Lower calcareous grit; pinne, gryphaeae, ammonites, &c.
8 Gray argillaceous earth, containing many fossils at the bottom. (Oxford clay of the south.)
9 Ferruginous or argillaceous sandstone, with remarkable gryphaeae, ammonites, &c. (Kelloways rock of the south.)

Of the strata here enumerated, possibly all may be equally extensive, but some are more easily traced than others. The Kelloways rock, often thirty feet thick, shews itself on the coast at Gristhorpe and Scarborough, and in several points inland along the northern escarpment of the tabular hills; it also appears on the eastern side of the Derwent, and in the neighbourhood of Cave. Every where, characteristic fossils accompany it, and establish the agreement between this rock, and that so named in Wiltshire, which had been already inferred from geological position. The argillaceous stratum, which separates the Kelloways rock from the lower calcareous grit, represents in Yorkshire the clunch clay, or Oxford clay of the southern counties. It continues along the breast of the great escarpment of the tabular hills from Scarborough towards Hambleton and Wass bank, and is less distinctly traceable where the same range turns eastward, by Ampleforth and Castle Howard, but has not yet been
found about Cave. The lower calcareous grit and coralline oolite are extremely well connected from Scarborough round the vale of Pickering to Acklam, but they have not been seen further south. Whether the calcareous rocks which range close under the wolds of Lincolnshire belong to this formation, I have no means of ascertaining. The upper calcareous grit covers the coralline oolite at Stonegrave, Oswaldkirk, Ampleforth, and Wass bank, and, in lower ground, at Helmsley, Kirkdale, and Sinnington*. It also occurs, as Mr. Smith informs me, in the same manner on Silpho Brow, near Scarborough.

That all the strata of the tabular hills should be included in one formation, appears to me satisfactorily demonstrated by the gradations they present between each other. Thus the Kelloways rock changes into the Oxford clay, which is still more evidently blended with the lower part of the calcareous grit. The calcareous grit and coralline oolite above, are so harmonized at their junction, that it is not easy to mark the exact line; and the similarity of character between the upper and lower beds of calcareous grit completes the evidence which warrants the combination of all these strata into one natural group.

Whoever compares this series of strata with the coralline oolite formation in Berkshire and Wiltshire, will find them extremely similar in the mode of arrangement, in mineralogical composition, and organic contents. The features which they impart to the country are much alike in both districts, and the whole evidence in favour of their affinity is complete and satisfactory. Yet the two districts lie wide asunder, and in all the intermediate tract a great portion of the series is unknown. From Acklam to the neighbourhood of Oxford, no coralline oolite or calcareous grit appears at the surface, (unless the limestone before mentioned in Lincolnshire, belongs to these rocks,) and the Kelloways rock has not yet been described between Huntingdonshire and the Humber. This should teach us not to undervalue the evidence of organic remains, for these are always useful and often necessary guides to determine the

*See Phil. Mag. and Annals of Philosophy, April, 1828.
affinities of detached portions of the strata; and, when viewed in combination with the substance and arrangement of the rocks, the results to which they lead may be confidently adopted.

THE VALE OF PICKERING.

This valley, or rather wide level, containing nearly one hundred and sixty square miles of surface, lies between the parallel ranges of chalk and oolite. Its eastern portion, contracted by the nearer approach of these high ridges, is prolonged to the edge of the sea cliffs about Filey; on the west, its waters pass, by a narrow valley of denudation, through the oolitic hills which extend from Castle Howard to Malton and Langton wold. Were this narrow passage closed, a large portion of the vale of Pickering would become a lake, discharging itself into the sea near Filey, through cliffs about seventy feet high. Professor Buckland, in his admirable work, the 'Reliquiae Diluvianæ,' seems to admit the probability of the vale of Pickering having been an antediluvian lake, which was drained when the present outlet at Malton was effected by the waters of the deluge.

The idea of its having been a lake naturally offers itself to every one who considers its wide level surface, and remarks the multitude of streams which run into it, and pass out by the single channel of the Derwent. But I do not think that the present appearances of the vale can fairly be employed to support opinions as to its condition before the flood. The vale of Pickering has a partial surface of alluvial sediment, and a general covering of diluvial clay and pebbles, upon a substratum of blue clay. How vast a load of diluvium lies on this stratum, in particular situations, is known to those who have inspected the cliffs between Speeton and Filey; and similar accumulations prevent it from appearing in all the central part of the vale. The present flat appearance of this great hollow, therefore, is owing to the effects of the deluge and subsequent causes; and affords no clue to its antediluvian
condition. The upper portion of the blue clay which is believed to underlie the whole vale of Pickering, shews itself beneath the chalk wolds at Speeton and Knapton, and at each place produces fossils much resembling those of the "gault" of Kent and Sussex. The lower blue clay appears along the north side of the vale of Pickering about Kirby-Moorside and Helmsley, as well as at Settrington and North Grimston, near Malton, and at Elloughton, near Cave; and at several of these points it yields the ostrea deltoidea, which is one of the most characteristic shells of the Kimmeridge clay.

THE CHALK WOLDS.

The wolds of Yorkshire form one of the most remarkable features in this county. High and bare of trees, yet not dreary nor sterile, they are furrowed as all other chalk-hills, by smooth, winding, ramified vallies, without any channel for a stream. Where several of these vallies meet, they produce a very pleasing combination of salient and retiring slopes, which resemble, on a grand scale, the petty concavities and projections in the actual channel of a river. No doubt these vallies were excavated by water, but not by the water of rains, or springs, or rivulets. Some greater flood, in more ancient times, has performed the work, and left the traces of its extent in the pebbles which it has deposited along its course.

From the Humber at Hessle, the high wolds range in a north-western direction to Riplingham Clump and Hunsley Beacon, five hundred and thirty-one feet; and, passing above Market-Weighton, reach their greatest elevation near Garraby Beacon, eight hundred and five feet above the sea. Hence, their edge continues by Wharram and Settrington, and, turning to the east, skirts the vale of Pickering, and fronts the sea in a long range of lofty cliffs from Speeton to Flamborough head. From this elevated line the surface slopes eastward to Cottingham, Beverley, and Driffield, and southward to Burton-Agnes and Bridling-
HOLDERNES.

HOLDERNES.

HOLDERNES, taken as a natural division, may be said to include the whole country lying between the eastern slope of the Yorkshire wolds, the German ocean, and the channel of the Humber. Its western limit passes by Bridlington, Burton-Agnes, Driffield, Beswick, Beverley, and Cottingham, to Hessle; what may have been anciently its extent towards the east and south-east, is not easily determined, because...
on these sides it is exposed to a turbulent sea, which its loose materials are ill calculated to resist. Its greatest length is somewhat less than forty miles, and its extreme breadth about sixteen. It includes about three hundred and eighty square miles of surface, of which, perhaps, seventy square miles are marshland, relinquished by the sea, according to a regular process of nature, or reclaimed by the enterprising industry of man. The remainder of the surface, though, on a general view from the wold-hills above, it appears like one extended plain, is found, on closer inspection, to be remarkably undulated; and though no land in the whole district exceeds one hundred and forty feet in height, yet, as the vallies are often sunk to the level of the sea, the hills assume a degree of importance which a stranger would by no means expect.

The long straight line of its coast, which is so remarkable a feature in the topography of Holderness, furnishes the most advantageous opportunity of examining its geological structure; for these cliffs, daily wasted by the sea, exhibit distinct sections of nearly all the materials that exist in the country. The drains which intersect the marshland, and the wells which have been found necessary in a country having few natural springs, complete the facilities for its investigation.

There is, perhaps, hardly any district in the island, which displays in so striking a light the powerful effects of the deluge as Holderness; for in this country its accumulations compose the whole mass of every hill, and form the deep foundation of every marsh. In the cliffs of the coast and in the gravel-pits of the interior, remains of antediluvian animals are frequently met with, and the interest which these discoveries cannot fail to excite, is increased by the abundance of the alluvial deposits which have happened in the same country at various subsequent periods, and contain the bones of animals of a more recent date. The remains of creatures overwhelmed by the flood, and of those which perished after it, lie here not far asunder; the circumstances attending their destruction may be deliberately examined, and the contemplative mind is presented with a physical record of the principal changes to which the surface of the earth has been exposed from the deluge to the present day.
DILUVIUM.—Wherever in Holderness the earth has been penetrated to a sufficient depth, diluvial accumulations have been found at the bottom. However deep, in some instances, are the deposits of clay and peat in the sites of ancient lakes, and of silt in places overflowed by the tide, all these deposits rest on a basis of diluvial clay or gravel. I mention this general truth thus early, because some confusion has existed concerning it, and, in consequence, a great mistake has been committed with respect to the antiquity of the deposits of peat and timber. Thus, in the Philosophical Magazine for April, 1827, Mr. R. Taylor, comparing the subterranean forest, as it is called, of the Yorkshire coast to that of East Norfolk, is led to suppose that both these accumulations of timber, with all their imbedded bones, took place before the deluge. I do not presume to say anything concerning the forest of East Norfolk, but, on what I think very sufficient evidence, I venture at once to affirm that the subterranean forests of East Yorkshire grew since the diluvian era. Of this satisfactory proofs will be adduced, when I come to describe particularly the appearances on the coast; and it may, therefore, be sufficient now to state, that in several places the timber, peat, shells, and sediment, which together make up the lacustrine deposit, are seen resting on a depressed part of the diluvial clay and gravel. For the very same reason, then, that the diluvial accumulations are admitted to be posterior to the rocks which they cover, we must allow that the subterranean peat and timber are of later date than the diluvial matter beneath them.

The lowest of all the accumulations which rest upon the chalk of the wolds is an irregular layer of fragments of chalk and flint, which, being derived from the stratum beneath, are very little water-worn. This singular deposit seems due to a less violent action of running water than the general mass of heterogeneous pebbles which covers it. It seems to indicate that the effects of the deluge were produced at different periods; as if the water had been liable to great periodical ebbing and flowing. I am not aware that any remains of land animals have occurred in this rubbly deposit, near Flamborough, or on the wolds; but at Hessle it contains the teeth, and bones of the
extremities, of horse, ox, and deer, very little worn by attrition. These bones, therefore, belonged to animals residing in the neighbourhood; and as they are now covered up by a great thickness of clay and pebbles, derived from a far greater distance, we cannot doubt their antediluvian origin. I think the rubbly layer of chalk and flint fragments is not found on the highest parts of the wold-hills, but has been drifted chiefly to the lower part of their slopes.

The thickest and most extensive of the diluvial accumulations in Holderness is a mass of clay and pebbles. In the cliffs north of Bridlington and at Hessle, it is seen to cover immediately the water-moved rubbly chalk and flint, which lie on the great stratum of chalk. It extends in a connected mass, under nearly all Holderness, forming most of the hills and "hard land," and underlying most of the accumulations of gravel and alluvial sediment. In the highest cliffs on this coast, its thickness is not less than one hundred and thirty feet. Its composition is remarkably uniform. We everywhere observe it to be a solid body of clay, containing fragments of many pre-existent rocks, which vary in magnitude, and in the degree of roundness to which they have been reduced. The fragments are, in general, not so numerous as to touch each other, but are scattered through the clay as plumbs in a pudding. However, on the top, or in the uppermost part of the deposit, they are sometimes aggregated into distinct layers of gravel, which continue for a short distance, and furnish springs of good water. The rocks from which the fragments appear to have been transported are found, some in Norway, in the highlands of Scotland, and in the mountains of Cumberland; others in the north-western and western parts of Yorkshire, and no inconsiderable portion appears to have come from the sea-coast of Durham, and the neighbourhood of Whitby. In proportion to the distance which they have travelled, is the degree of roundness which they have acquired. All the fragments of granite, porphyry, mica slate, and clay slate, which can be compared with no fixed rocks nearer than those of Cumberland and Westmoreland, are rolled to pebbles; the angles are worn away from every mass of limestone which has been drifted from the north-western hills of Yorkshire;
but those which have been brought from the nearer points of the chalk range have yielded much less to attrition. Some attention is required to the original hardness of the stones: we find solid masses of ironstone and quartz much less worn than granite; limestone less rounded than millstone grit; and flint with uninjured angles, whilst chalk and magnesian limestone have lost their original surfaces.

Few substances originally soft have been carried by the deluge to a great distance, in a solid form. The sandstones of the west and north-west part of Yorkshire, are plentiful in the gravel of the vale of York; but only the hard "galliard" of Leeds and Bradford, and the solid millstone grit of the moors, can be recognised in the clay of Holderness. This clay is itself, no doubt, an aggregate principally of the particles into which the softer strata exposed to the ravages of the flood, have been resolved. Its vast bulk need not surprise us, when we remember the numerous vallies which have been deepened by the deluge, and consider how large a portion of the mass removed was clay and disintegrated sand. We might have expected to find these finer particles at the top, and the solid fragments of rocks lying beneath, according to their individual magnitude and weight. As nothing of this kind is observable, we must suppose the flood to have moved with such extraordinary violence, that its spoils, when heaped together, were little influenced in their arrangement by the direct force of gravitation.

The ancient organic remains which lie scattered in this clay, must be considered in two very distinct groups: those which were removed by the deluge from rocks in which they had been previously deposited; and those which belonged to animals then existing on the earth, or in the sea. To the former class appertain lithophytous corals from the mountain limestone, fossil plants from the coal series, ammonites, belemnites, pectines, and many other shells from the lias; and belemnites, echini, and inocerami, from the chalk. These remains furnish very important evidence towards determining the direction of diluvial currents.
But the other class of remains, the bones of animals which were in existence on the surface of the earth at the period when the deluge was permitted to overwhelm it, and the shells which, during the agitation, were dragged up from the deep, and mixed with the general spoils of the flood, lead us to still more interesting conclusions. For when among hard stones which have been worn to pebbles, we find the tusks, teeth, and bones of antediluvian quadrupeds comparatively uninjured, retaining their characteristic shape, and often their original surface, we must surely be convinced, that such remains have not been removed far from the places where the animals lived. The only reliquiae of this kind, which I have been able to assure myself were found in this clay, are those of the mammoth, (elephas primigenus.) Teeth and tusks of this animal have been collected in many places on the sea-coast, and I once found a small fragment of a tusk at Hessle. This deposit of clay is not confined to the flat district of Holderness, but is found in some of the vallies of the wolds, thus indicating the extent of the diluvial action, and determining the antiquity of these vallies.

It was observed that, occasionally, patches of gravel and sand were found lying enclosed in the great deposit of clay. Such are seen in many places on the sea-coast, particularly near Dimlington, near Skipsea, and toward Bridlington. In several places, inland, these accumulations are much more considerable, and compose hills of a remarkable appearance, as at Brandesburton, and in the neighbourhood of Paul and Keyingham. An elephant's tusk has been found at Brandesburton, and in the neighbourhood of the latter places I have observed abundance of antediluvian marine shells, intermixed with the gravel. As this occurrence is seldom witnessed, it may be proper to give the results of a careful examination of the attendant circumstances.

Some vague reports concerning these shells induced Mr. Smith to consider them as indications of the crag formation, and he expressed this opinion on his map of Yorkshire, (1821.) In 1824, I saw specimens collected by Mr. Smith and Mr. Salmond, from a quarry which will be described; and was immediately convinced that they were not specifically
distinct from shells now existing in our own seas, and, therefore, felt unwilling to believe that they were of greater antiquity than the deluge. This opinion was proved correct by an examination of the locality in 1828. About a mile south of the house of my kind friend, Mr. Stickney of Ridgemont, near Hedon, is a large excavation, from which gravel has been obtained for the neighbouring roads. The highest point of the hill in which the excavation is made, is thirty-six feet above the adjacent marshland, which Mr. S. informs me is five feet below the level of high water at spring tide, and the pit is sunk down to the level of the marshes. Sand, pebbles, and marine shells of comparatively recent, and water-worn fossils of more ancient date, are here mixed together, in confused and irregular layers. The pebbles and fossils may be clearly identified with the chalk and flint of the wolds, the lias of the coast near Whitby, the magnesian limestone near Sunderland, the coal and limestone series of west Yorkshire, as well as the greywacke and other slate rocks, with porphyry, granite, &c. of Cumberland and Westmoreland.

Amidst this heterogeneous mass, which indicates such various and violent currents of water, it is remarkable that we find many rather delicate marine shells, in tolerable perfection. Besides the strong shells of Turbo littoreus, Purpura lapillus, and Buceinum undatum, we have Mya arenaria, Tellina solidula and tenuis, Maetra subtruncata? Cardium edule,* and a shell which appears to me to be Crassina scotica. The shells are most abundant along particular layers in the gravel. The mass descends to a great depth, and is found beneath the adjacent marshland, which consists of fine clay, lying upon peat and trees, and is part of an extended level tract, reaching from the Humber near Pattrington, almost to the sea, at Sandley mere. It seems to have been, at some former period, a channel for some vast volume of water; for it winds

* It must be owned the gravel shells are generally less truncate posteriorly, and less convex than the recent specimens; but there are variations in the form of Cardium edule, some individuals being more oblique than others: both varieties occur in this gravel-pit.
as other vallies do, and the gravel hills which bound it are abrupt on the concave side, and slope gently down on the other.

In the cliffs against the Humber at Paul, very similar phenomena are observed. The gravel and sand are here remarkably contorted, and intermixed with alternating layers of a sediment much like warp. The shells are of the same kinds as in the pit near Ridgemont, similarly arranged, and equally plentiful. The pebbles and fossils, mixed with them, are also very similar, but the masses are generally very small, and flint is more abundant, a circumstance probably depending on the proxi-

mity of the chalk wolds.

As these are the only examples of recent marine shells mixed with di-

luvial detritus which have fallen under my examination, I hardly presume to offer any conjectures as to the peculiar conditions of the waters which heaped them together. Repeated investigations of the tracts over which fragmented rocks were dispersed from their original sites, have convinced me that many local eddies and minor currents interfered with the great streams of the deluge, and often caused an accumulation in one spot, of materials brought in very different directions. Such an explanation may, I imagine, be applied to the case before us; but until analogous exam-

ples shall be adduced, and the history of the crag stratum of Norfolk and Suffolk be more adequately developed, the subject must remain in obscurity.

Alluvium.—The great alterations in the form of land, occasioned at

the deluge, will always render a contemplation of its effects very interesting; but the operation of natural causes since that period, also deserves to be maturely considered, for these have materially changed the face of the globe. The lakes, which were left on the retiring of the diluvial currents, appear to have been continually diminished in depth, and contracted in extent, by deposits of vegetable matter, decayed shells, and sediment, brought into them by land-floods. In this manner a surprising number of inland lakes have been extinguished in Holderness, and nothing re-

mains to denote their former existence, but the deposits by which they
HOLDERNESS.

have been filled. It is remarkable that the observers of this coast have bestowed very little attention on the lacustrine deposits which appear so frequently on the cliffs, and exhibit, so convincingly, the proof of long-elapsed time since the deluge. To amend, in some degree, this defect, I propose to describe them pretty minutely in my observations on the section; but it will be desirable to sketch a general outline of their characters here, and to put them in comparison with the contemporaneous marine deposits, which are so remarkable on the shores of the Humber.

All the lacustrine deposits containing peat, which I have inspected in Holderness, agree in this general fact, that the peat does not rest immediately upon the diluvial formation beneath, but is separated from it by at least one layer of sediment, which is seldom without shells. The peat is very generally confined to a single layer, and shells are seldom found above it. Supposing that all the varieties which I have witnessed in different places existed together, the section would be nearly in the following general terms:

1 Clay, generally of a blue colour, and fine texture.
2 Peat, with various roots, and plants, and in large deposits containing abundance of trees, nuts, horns of deer, bones of oxen, &c.
3 Clay, of different colours, with fresh-water lymnæae.
4 Peat, as above.
5 Clay, with fresh-water cyclades, &c. and blue phosphate of iron.
6 Shaly curled bituminous clay.
7 Sandy coarse laminated clay, filling hollows in the diluvial formation.

Of these, the most constant beds appear to be No. 1, 2, and 5, and, in general, these constitute the whole deposit. In different places, the layers exhibit much diversity of colour, consistence, and thickness. The peat varies in its thickness from five feet to less than as many inches, and its constituent parts seem not the same: in a few instances there are no shells in the lower clay, and when they do occur, they are sometimes of different kinds; cyclades and paludinae are most plentiful. Anodons occur in it at Owthorne, but I did not find them elsewhere.
The quadrupedal remains which have been found in this lacustrine formation, belong principally to deer. Bones of oxen, likewise, occur in it. Of deer, at least, three species have been discovered in the peat and clay; the great Irish elk, (C. giganteus,) the red deer, (C. elaphus,) and the fallow deer, (C. dama,) A doubtful skull, (found at Owthorne,) in the possession of the Yorkshire Philosophical Society, has some resemblance to the cranium of the chamois goat.

The extensive accumulations of peat and trees, along the shores of the Humber and its tributary rivers, happened, probably, at the same period of time as those which have contributed to fill up the ancient lakes of Holderness. This is inferred, with the highest probability of truth, from the position of the peat with respect to the diluvial clay and pebbles; for, wherever these occur together, the former is invariably uppermost. The opinion of the peat extending under the whole district of Holderness, was probably founded on the very considerable depth at which it is, in some places, buried under sediment deposited by the sea. But this silt, accumulated by the action of the tide, which composes the surface of the level land in Holderness, may be easily distinguished from the more ancient aggregations of clay, sand, and pebbles, which indicate the action of the deluge. No fresh-water shells, nor any such alternations of argillaceous marls as those which lie in the site of former lakes, accompany the peat deposit of the marshlands; but it is covered by a marine deposit of silt and clay, such as now drops from the muddy waters of the Humber. The depth of this covering is, in some instances, not less than thirty feet, and the peat lies below the low-water mark; under what circumstances it was collected together, it is not easy to conjecture. That at the time of its aggregation the sea flowed up the channel of the Humber, appears probable, because the first deposits which cover it are of the same kind as those now dropped by the tide; that its formation happened soon after the deluge, may be inferred from the fact that it rests almost immediately upon the diluvial detritus; that some remarkable general agency, probably a great land-flood, was concerned in the production of the phenomena, is evident from the extent of the vegetable accumulation.
The following statement of substances found in sinking a well at the Block-house mill, on the east side of the town of Hull, derived from two accounts communicated at different times by my friends, will shew what are the accompaniments of this remarkable layer of peat in Holderness.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Feet.</th>
<th>Manner of Occurrence</th>
<th>Feet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt sand</td>
<td>23</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Moor or peat, with large trees, &c.</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alluvial deposit.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Feet.</th>
<th>Inch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue clay</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Brown clay</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>Loamy clay</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Quicksand</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Mixed with chalk fragments, carbonized wood, &c.</td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>

Diluvial deposit.

<table>
<thead>
<tr>
<th>Substances</th>
<th>Feet.</th>
<th>Inch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalk</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Total depth 110

In Ottringham marsh the layer of peat, one yard thick, was found forty-one yards beneath the surface; thirty-six yards of various diluvial matter lay beneath, and the chalk was found at the depth of seventy-eight yards.

These accounts are interesting in another point of view, for, by means of them, we can determine correctly the dip or declination of the chalk. The nearest situations where this stratum sinks below the marshland, are at Hessle and Cottingham. The distance between Hessle and the Block-house mill, in a straight line, is between four and five miles; and as the upper plane of the chalk was found in the latter instance ninety-four feet deep, whilst at the former point it appears at the surface, the dip towards the east is twenty feet per mile. The distance from Hessle to Ottringham marsh is nearly fourteen miles, and the declination two hundred and twenty-four feet, or sixteen feet per mile. If this moderate declination be constant, the chalk rock may be reached by wells in many parts of Holderness; and thus, as in similar districts of Lincolnshire, unfailing supplies of water be obtained.
CHAPTER III.

Strata of the Yorkshire coast. Geological description of the Coast of Yorkshire, from Spurn Point to Redcar; including the heights and stratification of all the Cliffs.

Before entering on a particular description of all the cliffs on the sea-coast of Yorkshire, it seems necessary to give a general explanation of the section which is drawn to represent them: for this is not a hasty sketch, designed merely to give a rude notion of the height and stratification of the cliffs, but carefully constructed from many and repeated measurements. It was originally drawn on a much larger size than it would have been practicable to publish; but it is hoped the scale here adopted, will be found at once sufficient and convenient. A mile in length of the coast, allowing for its principal flexures, occupies in the section, one inch and a half, and four hundred feet of altitude are represented by one inch. This is quite sufficient to allow of expressing all details necessary to a proper exhibition of the strata, in their relative order and thickness. Wherever the nature of the subject requires it, enlarged drawings are added, with proper marks of reference to their place in the general section. For this purpose, the junctions of rocks have been very carefully studied and copied on the spot, and all their minuter peculiarities recorded. Upwards of fifty such detailed sections have been drawn, but it has not been deemed requisite to engrave so many. Such of them have, therefore, been selected as seemed to be most illustrative; and these, with the accompanying explanations, will, it is hoped, be found sufficient to give an accurate knowledge of the coast. With regard to the colouring, the natural prevailing hues of the strata have been generally imitated; but where two rocks could not be thus well discriminated, the difference of their tints has been necessarily exaggerated. It is a common opinion
that all geological works should be coloured upon one model; but what model shall we follow? No geological map can possibly be so filled with colours as to embrace all the minor subdivisions of rocks which, in local sections, it would be unpardonable to omit. Besides, the colours of rocks vary, and circumstances may make it desirable that sometimes a stratum should be coloured strongly to mark its importance, though at other times it would be better represented by a fainter shade. However, to increase as little as possible the confusion of colours which already exists, I have followed in the colours of the oolitic rocks the works of Mr. Smith, and have preferred, with Mr. Greenough, to leave the chalk white. Where rocks were to be thus represented for the first time, I have used such colours as have not been before appropriated.

The heights of the cliffs are represented above the level of high water at spring tide, because this is, upon the whole, the most convenient line that can be referred to; and though it is too variable to serve for the rigid determination of altitude by graduated instruments, it will be found accurate enough for geological purposes. The tides rise on this coast about fifteen or eighteen feet, and as they very generally lay up much sand at the foot of the cliffs, and as at this level we commonly find much debris accumulated, it seemed, upon the whole, better, except in a few instances, to confine the colouring to the level of high water. It remains to state that the following description is in every particular original; and was mostly executed on the spot.

SPURN POINT.

The southernmost part of the coast of Yorkshire, is a low peninsula of gravel and sand, accumulated by the sea and the wind, and laid in its peculiar forms by the united action of currents from the sea and the Humber. The materials which fall from the wasting cliffs between Bridlington and Kilnsea, are sorted by the tide according to their weight and magnitude; the pebbles are strewed upon the shore, beneath the precipice from which they fell; the sand is driven along and accumu-
lated in little bays and recesses; whilst the lighter particles of clay are transported away to the south, making muddy water, and finally enter the great estuary of the Humber, and enrich the level lands under the denomination of warp. The sand and pebbles, which were at first deposited near the place where they fell, are afterwards removed further and further south by the tide, and the cliffs are left exposed to fresh destruction. Thus the whole shore is in motion, every cliff is hastening to its fall, the parishes are contracted, the churches washed away, and not unreasonable fears are entertained that at some time the waters of the ocean and the Humber may join, and the Spurn become an island. At present, however, the isthmus stands firm, and though composed only of a heap of pebbles and sand, and exposed to two strong currents, may, perhaps, be little changed for ages to come. Such is the efficacy of long equal slopes and a pebbly sand, in repelling the rage of the sea.

Among innumerable pebbles derived from the wasted cliffs of Holderness, which are here thrown up by the sea, we observe diatella rock, and mica slate with garnets, and a great variety of sienites, green-stones, and porphyries, which have been derived from Scotland, and perhaps Norway; much granite from Shap fell, sienite from Carrock fall, breccia from Kirby Stephen, and other Cumbrian rocks; limestone and sandstone from the western part of Yorkshire, and lias fossils from the neighbourhood of Whitby.

From Spurn Point to Kilnsea, the shore is very low, and, being composed only of gravel and sand, presents little that requires remark. The ruins of Kilnsea church stand upon a low ruinous cliff, of very peculiar composition. Not a single pebble is to be seen in it, but the whole height is a mass of loam or warp, disposed in regular laminae, whose parallel surfaces are undulated like the broadest ripple-marks on a level sand. (A) is a sketch to shew the peculiar arrangement of these laminae, and it must be noticed that, in the sharper curves, the laminae are separated a little from each other. (a)
This deposit has so different an aspect from the usual appearance of diluvium, that it might rather seem the result of some uncommon operations of the sea or violent land-floods; but we shall find further opportunities of examining this question, when we come to mention similar phenomena near Bridlington.

From Kilnsea to where the road goes from the shore to Easington, the coast is an extended beach of pebbles and sand, which opposes a low barrier to the union of the sea and the Humber; but from this point cliffs arise, higher and higher, till they reach Dimlington height, which is the loftiest point in Holderness. The beacon here appears about one hundred and forty-six feet above high water, and the whole cliff is composed of clay, with pebbles scattered through it. Here the wasteful action of the sea is very conspicuous: the sand and pebbles being removed from the base of the cliffs by the southward set of the tide, vast masses are undermined, and fall in wild and ruinous heaps; these, as they gradually reach the base, are washed away, and the process of destruction is repeated.

From Dimlington height the cliffs descend to Out-Newton, where they are about thirty feet high. In this part we remark a good deal of gravel deposited in layers, chiefly above, but sometimes in the midst of the clay. The most remarkable appearance of this kind is represented in the sketch (B). Here, near the surface, is a mass of sand and small gravel, five feet thick, in irregular layers, resting upon a bed of coarse gravel, four feet thick: below this comes a layer, four feet thick, of sand and small gravel, in highly-inclined layers; still lower, a repetition of the coarse gravel, five feet thick, and a third series of obliquely-laminated sand, the whole resting upon the blue pebbly clay, the lowest diluvial deposit in Holderness. Near this place, (further north,) we may observe a quantity of gravel in irregular layers, poured, as it were, into a cavity in the pebbly clay.

Between Out-Newton and Holympton, we are surprised by the appearance of a fresh-water deposit of marly clay, on the top of the cliff, about twenty feet above high water. As many of these interesting
deposits will claim our attention, I shall be obliged to restrict my descriptions to those which exhibit the most important characters, and to barely notice those of minor interest. We shall, therefore, proceed about half-a-mile further, to about opposite Holympton, where the cliffs are lower, and a more extended lacustrine deposit appears in a hollow of the diluvium. (See enlarged section, E.) The length of this deposit is about two hundred yards, and its extreme height above the sea, about ten feet. It rests in a hollow of the pebbly clay, which abounds along the shore, and consists, under the thin brown soil, of seven distinct layers of clay, the lowest of which contains cyclades and Paludina tentaculata, and the lowest but one, roots of plants, but no peat. The layers are thus arranged:

Beyond Holympton, the cliff, though still low, rises a little toward Owthorne, and displays, in little hollows, two other deposits of laminated clay, indicating the sites of ancient lakes. Of these, the southern is twelve yards across, the other, near Withernsea, one hundred yards.

Between Withernsea and Owthorne, the pebbly clay sinks very low, even beneath low-water mark, and the shore is maintained by the broken edges of a remarkable lacustrine formation. The mere or lake, under whose waters, in ancient times, the clay beds and accumulations of peat and trees were here laid in a regular series, is still represented by a little reedy flat, partly covered by drifted sand. It has been conjectured that this little flat is a continuation of the winding level in which the Winestead drain is excavated, and that in this direction the sea once joined the Humber. But it appears to me that this ancient lake was never connected with the Winestead level, but poured its waters into the sea, under the protection of cliffs which are no longer in existence. The sea line, at low water, now crosses the middle of the ancient lake, and washes the deposits which happened within it. At the bottom, immediately upon
the pebbly diluvial clay, we find some blue lacustrine clay, containing small specimens of Anodon anatinus; above this, lies a vast quantity of peaty matter, full of hazel nuts and branches of trees; more rarely the bones of terrestrial animals occur, especially of the stag. Specimens of these interesting remains have been presented to the Museum of the Yorkshire Philosophical Society, by the Rev. C. Sykes, Mr. Salmond, and Mr. Backhouse. This deposit ends towards the north, near the little projecting cliff which is all that remains of the church-yard of Owthorne; the church having been some time washed away, and the church-yard so rapidly wasted, that all the gravestones have been removed. The buried bones of former generations, which are seen projecting from the crumbling cliff, have a singular appearance, and, combined with the falling of the cliff and the roar of the destroying waves, fill the contemplative mind with solemn and awful reflections. Between Owthorne and Sandley mere, the cliff attains an elevation of thirty-five feet, and is composed of brown and blue clay, with pebbles scattered through it. Two hundred yards south of Sandley mere, is a layer of gravel in the clay, which produces a copious spring. (F.) Wells sunk in the diluvial tracts of Holderness, seldom fail to produce water when they touch a bed of gravel.

Sandley mere, as its name implies, was formerly a lake; it is now a reedy flat, protected from the sea only by a broad beach of sand and pebbles, thrown up by the tide. Sometimes a swelling tide rushes over this unsettled barrier, enters the ancient mere, and would flow down the marshy level of the Keyingham drainage, by Rooss and Ridgemont, to the Humber, but for an artificial bank constructed under the management of the commissioners of sewers. As at Owthorne, the sea now flows over a part of the ancient bed of Sandley mere, and covers with sand much of its clay and peat. In this lacustrine formation, the bones of oxen and deer, with horns of the stag, &c. have been at different times discovered. The diluvial clay cliffs also furnish teeth of the elephant, in considerable plenty; which, being commonly picked up on the sand, are more or less worn by friction among the pebbles. It is remarkable that no other parts of the skeleton are found here.
The cliffs north of Sandley mere rise gradually, and, opposite Hilston, are about eighty feet high. Where they reach the height of sixty-nine feet, a very interesting deposit of fresh-water clay and shells appears on the top, for the length of two hundred feet. (See section G.) Its thickness is four feet eight inches; the upper two feet six inches consist of fine clay; below, are six inches of peat; then, six inches of clay perforated by roots; next, eight inches of clay, with plenty of Lymnaea stagnalis; two inches of peat, and four inches of a soft, yellowish earth. Beneath this deposit, is the blue pebbly clay, which forms the mass of the cliffs.

Beyond Hilston, as far as Grimston garth, the cliff maintains the same composition, and, with some undulations, keeps the same elevation; but towards Ringbrough it falls, and becomes still lower beyond. Here a layer of gravel appears in the midst of the clay. Opposite East Newton the cliff is, at the utmost, sixty-seven feet high, but between this and Bunker's hill it falls to forty feet, and is covered by fresh-water deposits of clay, with blue phosphate of iron, peat, and curled black shale. The peat has produced abundance of hazel nuts. Bunker's hill, which is on the north, is seventy-nine feet high; from hence the cliff preserves, by Great Cowton and Mappleton, a nearly uniform height of sixty feet, till it sinks to the wide hollow opposite Hornsea. The general base of this whole cliff is the same blue and brown diluvial pebbly clay, and the only change in its appearance which strikes the attention, is a more abundant diffusion of chalk pebbles in the northern part. It is almost invariably the case, that the blue part of this clay is at the bottom, and the brown above; but the joints of the brown variety are very often stained blue, apparently by water passing down them. At Great Cowton, a quantity of gravel lies above the brown clay; and in going along the shore, beyond Mappleton, I observed four separate fresh-water deposits on the top of the cliff, and in the middle of the clay a continued seam of gravel. Similar appearances continue to Hornsea gap.

The streams which pass by Hornsea fall into the sea through a wide depression of the cliffs, called Hornsea gap. The well-known lake called
Hornsea mere is one of the few sheets of water now remaining in Holderness, of the many which once existed there. When, if ever in future ages, the wasting action of the sea shall have extended inland so far as to reach and empty this lake, its bed, partly uncovered at low-water, will resemble the bottoms of Owthorne and Sandley meres.

The clay cliffs near Hornsea contain chalk and flint, with Belemnites mucronatus, and Listeri; ammonites and other fossils from the lias of Whitby; magnesian limestone from near Sunderland; coal, sandstone, and mountain limestone, from the west of Yorkshire; old red conglomerate, greywacke, sienite with magnetic iron ore, quartz, septariate ironstone, &c. Teeth of the antediluvian elephant likewise occur on the shore, derived from some fallen cliff.

North of Hornsea gap, where a little gully divides the cliff, which is about fifteen feet high, we observe a small lacustrine deposit, thirty yards long, consisting of the following series, beginning at the surface;

At a short distance beyond this place, (marked I. in the section,) the cliff is twenty feet high, and exhibits frequent alternations of gravel and clay, in a more regular order than is usually observed. Beginning at the surface, we have;

1 Yellow and white small gravel of chalk and flint.
2 Brown clay, with very small fragments of chalk, flint, lias, magnesian lime, porphyry, &c.
3 As No. 1.
4 Layers of irony sand.
5 As No. 3, and 1.
6 As No. 2.
7 As Nos. 5, 3, and 1.
8 The general base of the cliff is blue clay and pebbles.
Hence the cliff rises, and before we arrive at Atwick it has attained the height of forty feet. Here, a little gully divides the whole cliff and crosses a fresh-water deposit of one hundred yards in length, (K). This consists of bluish and yellowish clay above, and whiter clay with shells beneath, resting on pebbly clay. Opposite Atwick is another such deposit fifty yards in length. At this place, an elephant's tusk was found of extraordinary dimensions, and is preserved in the collection of Dr. Alderson, at Hull. The beacon on Skirlington hill, the highest point of the coast between Hornsea and Skipsea, is almost sixty feet above high water. Hence it descends gradually northward, and at a height of forty feet, we observe a fresh-water deposit ten yards in length. Further on, the pebbly clay sinks below the level of high water, and forms a wide hollow, in which is an extensive and interesting lacustrine deposit, (L). Its length is about a quarter of a mile; its extreme elevation above high water at the south extremity, is twelve feet, but in the middle only four or five feet. The series of depositions from fresh water is as follows:

Peat. Its utmost thickness is seven feet: where this happens, the lower four feet six inches are solid, and break like clay. The upper part is then fibrous. Yellowish clay, full of paludina tentaculata, cyclas cornea, and a few specimens of lymnaea stagnalis. This is seen only on the southern side of the hollow. Blue clay, full of cyclades. Here is some phosphate of iron. This rests upon gravel, under which is blue clay.

In this deposit, an old man, who was employed in collecting gravel, accidentally discovered the head and horns of the great extinct elk, whose remains abound in the bogs of Ireland, and the Isle of Man. Subsequently, the lower jaw was discovered by the researches of Arthur Strickland, Esq. The horns are a little larger than the fine specimen in the Dublin museum, described by Mr. Hart, and measure eleven feet four inches by the circuit of the horns, and six feet eight inches between their tips, and there is a peculiarity in the brow antler, which I have never seen in any other specimen. It is expanded at the end, and furnished with three short digitations. The obliteration of the sutures of the cranium indicates the maturity of the individual, though from the perfection of the teeth, it does not appear to have been aged. This is the second and largest specimen of the gigantic elk which has been found
in Yorkshire. In the Philosophical Transactions for 1746, Mr. T. Knowlson describes and figures the head and horns of this animal from Cowthorp, near North Deighton, Wetherby. The horns were each five feet one inch long, and separated six feet one inch at the tips. The peat bogs and shell marl deposits in which the remains of this noble extinct animal have been found in Ireland, Scotland, and the Isle of Man, are extremely similar to the lacustrine accumulations of Holderness; as may be seen by reference to Mr. Hart's account of the discovery of the Dublin specimen; Professor Jameson's statements respecting the Edinburgh skeleton found in the Isle of Man; and Mr. Lyell's remarks on the shell marl formations in Scotland.

Beyond Skipsea the cliff, composed as before of the pebbly clay, attains a height of thirty feet, but soon sinks again to an extremely low part, where, for half-a-mile in length, a fresh-water deposit is seen, consisting of clay, with shells at the bottom. Between this point and the Barmston drain its height does not exceed twenty feet, and is generally as little as twelve feet. Three deposits of fresh-water clay appear in this space, and (at M) a mass of clay in undulated laminae, which recalls the appearances under Kilnsea church. This undulated mass is separated from the pebbly clay by a layer of gravel. Beyond the Barmston water, (at N,) where the cliff is seven feet high, is a fresh-water deposit, of which the bottom seems almost to graduate into the laminated clay before-mentioned. The series here exhibited, is as follows:

Further on, (at O,) the washed sand, above noticed, lies upon a dark peaty earth, which rests on contorted gravel. Under all, is the usual pebbly clay. On approaching Earl's Dike, the cliff (at P) is fifteen feet high, and is composed of sand accumulated from the road banks, brownish clay and small pebbles, sand and gravel, pebbly clay. Beyond Earl's Dike, the cliff, seven feet high, is composed of clay, resting on pebbly
DESCRIPTION OF THE COAST.

clay, under a covering of gravel. At Owburne, nothing appears but the laminated clay; but beyond, this rises into the cliff, and continues between the incumbent gravel and subjacent pebbly clay, all the way to Bridlington. It is well distinguished from the pebbly clay by the undulations of its layers, and by the extremely small size of the gravel which is mixed with it. I am induced to refer its origin to the diluvial floods, because of the extensive covering of gravel which here lies upon it; and there can be no better proof than this affords of the varied condition of those waters. For, in the cliff south of Bridlington, we behold at the bottom a great mass of amorphous clay, full of pebbles, derived from distant places in different directions, evidently brought together by a wide-spreading and mighty flood; above lies a more equal deposit from more quiet waters; and over all is spread a confused mass of gravel, composed chiefly of chalk and flint, derived from the neighbouring hills. At the bottom, we see the turbulent effects of rushing floods; above the sediment of tranquillizing waters; and finally, the accumulations from a local current.

From the preceding description of the coast of Holderness, it is evident that no formations appear there which can be considered as older than the deluge. Of the diluvial accumulations, by far the most prevalent, that which is the base of the whole cliff, is blue and brown clay, containing dispersed pebbles; above this, a more local deposit of undulated laminated clay; and finally, gravel on the top, or mixed with the pebbly clay. In this formation lie the teeth and tusks of antediluvian elephants, and abundance of water-worn fossil shells, derived from neighbouring and remote districts. Resting on these diluvial beds, we find the deposits of later, more quiet, more contracted waters. Lakes, which existed in hollows of the deluge-worn surface, have been slowly filled up by clay marl, shells, and peat, subsiding from their waters, and either drained by the industry of man, or emptied by the approaches of the sea. The shells which occur in these clay beds, belong to freshwater species now living; they lie almost invariably at the bottom of
the bed of the lake, and are covered by several feet of clay and peat without shells, a circumstance which seems to warrant the supposition that the upper layers of sediment and peat were produced in some short period of time, in consequence, perhaps, of great land-floods.

In these deposits lie the skeletons of postdiluvian animals; the great extinct elk, the red deer, the fallow deer, and the ox; with trees and fruits, which grew in the forests they frequented. In more than twenty examples on the coast south of Bridlington, it may be clearly seen that the lacustrine deposits rest upon the diluvial accumulations; but are not themselves covered by any other deposit. It is a mistake, therefore, to imagine the skeletons of deer, and the peat and trees constituting the "subterranean forest of Holderness," to be of the antediluvian æra. The shells, bones, and trees, belong, with a single exception, to species now in existence in this island, the deposits which enclose them are evidently the most recent in the country; and differ in no important particulars from the peat and marl-bogs of Scotland and Ireland, whose accumulation is not yet ended.

TERTIARY BEDS.—One of the most important inquiries that presents itself to the geologist, whilst investigating the coast of Yorkshire, relates to the occurrence of any of the tertiary beds above the chalk, and Mr. Smith has stated, on his geological map of Yorkshire, that crag shells occur in the neighbourhood of Pattrington. These I have previously described, and cannot doubt that they belong to the diluvial epoch. Professor Sedgwick, who examined the spot in 1821, describes appearances on the north side of the harbour at Bridlington, which he supposed to indicate the presence of some one of the strata above the chalk. I have repeatedly searched, without success, for these beds; but in July, 1828, I found, sixty yards north of the harbour, below the level of half tide, an enormous mass of dark shaly clay, whose laminae seemed dipping to the south. It was several yards in length and breadth, was surrounded by brown pebbly clay, and contained a few fossils, amongst which were a peculiar ammonite; the columnar joints of pentac. briareus, and what I believe to be a form of avicula inæqualvis.
was at first much disposed to think this a portion of a tertiary stratum, and still am altogether at a loss to explain the appearance of so enormous a mass of perishable clay, having the appearance of lias at such a distance from the nearest cliffs of that stratum. I recommend this point for further observation. The specimens of pholas crispata washed ashore full of coherent sand, prove nothing whatever on this subject: such dead shells are particularly liable to be filled with the matter on the bed of the sea; and the only remarkable circumstance in these specimens is that the matter which they contain is unusually solidified. Excepting those imperfect indications, I have never heard of a single fact which would authorise a belief that tertiary strata exist in Yorkshire.

RISE OF THE CHALK.

No contrast can be more decided than appears between the solid, regular, continuous strata which have been formed by the repeated operations of a primeval ocean, and the mixed and irregular aggregations which mark the force and direction of subsequent diluvial currents on the surface of the earth. From Bridlington pier we look southward to a long line of cliffs which did not exist before the deluge, whilst northward rise strata of chalk which, though compared to other formations, they must be called of recent date, were certainly deposited and hardened, and, in many places covered by several other strata long before the deluge. As we proceed northward from Bridlington, the cliff, which near the town was twenty-five feet high, and consisted wholly of clay and pebbles, sinks to about ten feet, receives a covering of gravel upon the clay, and a few layers of lacustrine sediment upon the gravel. Here a small stream divides the cliff, and a chalybeate spring, issuing forth from the gravel, stains the sand with an abundant ochry deposit. Beyond, at a lime-kiln, the cliff is twenty feet high, and consists of gravel upon pebbly clay. The gravel abounds in chalk, and contains flint, quartz, porphyry, limestone, greenstone, &c. Nearly opposite the village of Sowerby, the bottom of the pebbly clay is seen resting on an irregular layer of chalk rubble, and the chalk itself rises from beneath,
and ascends to some height in the cliff, which at this place is between seventy and eighty feet high. The beds of chalk rise to the north, and as we pass along the shore, other lower and different layers come up in succession, and expose a considerable number of fossils; amongst which we may notice sponges of many kinds, commonly called alcyonia, and others referred by Mr. Mantell to his genus ventriculites, echini of the genera ananchytes, and spatangus, marsupites ornatus, and apiocrinus ellipticus. The marsupites are exceedingly abundant through a considerable thickness of the beds which appear towards the Danes' Dike; but the plates are generally scattered, owing to the decay of their connecting membranes before they were imbedded. The edges of the chalk layers are covered by a quantity of subangular chalk rubble, or gravel, mixed with a few rounded pebbles of other rocks: this is usually loose, but sometimes hardened into a conglomerate, not unlike that of Stenkrith in Westmoreland. Above all lies the usual diluvial mass of clay, pebbles, and sand; from which occasionally fall huge blocks of gneiss and basalt.

The Danish dike is an earthen rampart, running across the promontory of Flamborough from one side to the other. The southern part of this line follows the eastern side of a narrow and precipitous valley, which enters the sea between cliffs one hundred and nine feet high. At this place we obtain a clear proof of the high antiquity of vallies in the solid strata: for here the strata of chalk are deeply excavated beneath the mass of clay, and gravel, and sand, which was swept hither by the force of the deluge. It is, therefore, not to be doubted, that such hollows are at least as old as that period. What effects may have been subsequently produced by the wearing of streams, the descent of rains, the course of floods, or the bursting of lakes, the present coast furnishes no sufficient data for discussing; perhaps, too little attention has been bestowed on this subject, since Dr. Hutton's general opinions on the origin of vallies have been rejected. I think I am acquainted with several instances clearly proving that in diluvial soils, and even in solid strata, small vallies have been excavated by the streams which flow in them, or else by postdiluvian floods. But after examining the remainder of the section, and perusing the following descriptions, the
reader will find no great reason to doubt that Dr. Buckland's opinions on the diluvian date of vallies cut through stratified rocks, are generally correct.

Beyond the Danish dike, the cliff top continues at the same height to a little gully which descends from the village of Flamborough, but further on it rises greatly to the beacon, which is above one hundred and ninety feet from high water. This great augmentation of height is not owing to any sudden change of dip in the chalk, but to an uncommon abundance of the diluvial matter which covers it. Around the beacon are several large boulders of granite, greenstone, fine-grained sandstone, &c. not less than three quarters of a ton in weight. Much chalk rubble is mixed with the diluvium of these cliffs. Descending by a rapid slope to the south landing-place of the Flamborough fishing-boats, we observe here, as at Danes’ dike, the chalk strata deeply excavated beneath a thick cover of chalk rubble and diluvial clay.* The chalk rubble and other gravel here, is often agglutinated into solid blocks. Beyond the south landing-place, the cliff, gradually bending round to the west, attains in one place the height of one hundred and thirty-six feet, and is mostly composed of solid chalk. Further on, where the chalk is depressed, and the diluvial clay thickened upon it, the cliffs are wasted by the sea, in a very remarkable manner: broad and lofty arches appear in the projecting masses, caves are formed, which open upwards to the day, and romantic islets of chalk are surrounded by the full swell of the waves. These appearances continue from the first pillar, called the Matron, to Selwicks bay, beneath the light-house; and the cliffs are decidedly most broken where the chalk is least elevated. The light-house appears to stand one hundred and sixty feet above the

* Is it not probable, that such a valley was excavated by the retiring diluvial waters, (per descensum,) and that, as the force diminished, accumulations of clay and pebbles took place, and raised incessantly the bed of the current, till, all the accumulations having ceased, the stream which continued to flow reversed the operation, and cut its narrow passage deeper? This only requires an admission that the diluvial currents were of long continuance in the same directions.
sea. Beyond Selwicks bay, layers of flint become very conspicuous in the chalk, and several curious indentations break the line of the cliffs, which are from one hundred and thirty to one hundred and forty feet high, between Selwicks bay and the north landing-place, in one of which rise two island pinnacles of chalk, called the King and Queen. The north landing-place of the Flamborough fishermen is a little hollow or bay of rocks, with a channel for boats at low-water, and a gravelly beach. Here are caves in the depressed chalk, worthy of examination by the lover of scenery, and the geologist.

The origin of many inland caverns in limestone is exceedingly obscure. Though water flows through many of them, and by incessant attrition smooths their surfaces, and modifies their forms, yet, perhaps, we ought rather to believe that the cave, originally existing, directed the course of the stream, than that water excavated the cave. By the seaside it is otherwise; the destructive action of the sea is not doubtful; the cliffs crumble before its salt vapours, and waste away under its furious waves. One loosened stone beats down another, and thus the soft parts are hollowed out, whilst the harder portions jut into promontories, or stand naked in the water. If the soft parts, exposed to the waves, be enclosed in firmer matter, caves and arches are formed, which are afterwards liable only to slow alteration: but if these yielding materials extend far in a horizontal direction, the cliff undergoes rapid diminution. These observations are of general application. Projecting capes and headlands are usually composed of firmly-compacted strata, whilst bays and estuaries commonly present less resisting materials. Between the north landing-place and a more remarkable bay to the west, the prominent cliffs are one hundred and seventeen feet high, and mostly composed of chalk; but at both these bays that stratum sinks low, and is covered by a vast accumulation of diluvium. These unsolid materials fall and waste away into slopes, which often become covered with grass, and afford a dangerous pasture for cattle and sheep. But on the west side of the remarkable bay before alluded to, the diluvium is subject to such continual waste, that it appears in the form of bare pinnacles resting upon the caverned chalk.
DESCRIPTION OF THE COAST.

From the last-mentioned point the chalk cliffs rise rapidly to Danes' dike, which is two hundred and ninety-two feet above high-water, then sink again by the Summer house, to a point which displays the most remarkable contortions of the strata known on this coast. As may be seen in the section, the chalk layers are here bent in sigmoidal flexures, whilst on each side they are perfectly horizontal. On the eastern side this horizontal direction changes to a rising arch, from which on the other side the layers descend in long perpendiculars, to join the depressed arch which is connected with the horizontal layers on the western side. This remarkable confusion of declination occupies the whole height of the cliff, (two hundred and forty feet,) but its horizontal length is small. I could not determine what amount of dislocation is occasioned between the horizontal strata which enclose these contortions; nor, indeed, whether any such effect is produced. It is scarcely possible to conceive how such flexures could be produced, except when the strata were soft and yielding; and it seems reasonable to suppose that they are coeval with the deposition of the chalk. As in many other instances, the diluvial matter lies without any distinction or peculiarity, upon both the regular and the disturbed strata.

About a mile further is the highest point of the "white cliffs;" and here, at an elevation of four hundred and thirty-six feet, a beacon I believe once stood on the very brink of the precipice. A considerable part of this surpassing altitude is owing to an unusual thickness of diluvium which here covers the chalk. The views from this station are very extensive; a long line of coast divides the area into two semicircles of land and water: one half the horizon is sea, and the remainder stretches from the heights above Robin Hood's Bay across the moorlands to the oolitic hills, and then pursues the southward sweep of the wolds, till hills and plains are mingled in the distance. We then descend for about a mile to the last of the white cliffs, three hundred and eighty-two feet high. The range of chalk here quits the sea-coast, and proceeds inland by Speeton beacon, four hundred and fifty feet, above Hunmanby, and along the south side of the vale of Pickering, rising higher and higher towards the west, till it attains its extreme height near Garraby
beacon, eight hundred and five feet above the sea. From its last high precipice the chalk descends along the shore by an irregular broken escarpment covered with diluvium, and at length its lowest layers are seen. These are always characterised by an admixture of red chalk containing the very peculiar belemnites, which Dr. Lister noticed so long ago, as occurring, *semper in terrâ rubrâ ferrugină.* Serpulae, small inocerami, and terebratulae have been found in this red chalk.

To complete our description of the chalk cliffs, we may notice that the chalk rubble, which so uniformly covers the stratum on the south side of Flamborough head, is hardly ever seen on the north side. Caves abound in the northern cliff which are exposed to the full rush of the sea; but not on the southern side, where the water is more calm. Organic remains are very abundant in the upper part of the stratum between Bridlington and the south landing-place; but the lower and harder chalk contains hardly any other fossil than the inocerami. Upon the whole, the chalk of Yorkshire is comparatively poor in fossils. About forty species only have yet been found in it, whilst thrice that number have rewarded the collectors in Norfolk, Wiltshire, Sussex, and Kent.

CLIFFS OPPOSITE THE VALE OF PICKERING.

From the termination of the white cliffs the coast bends to the northward, and exhibits in succession, rising from beneath the chalk, the Speeton clay and the coralline oolite series. The Speeton clay shews itself immediately in contact with the red chalk, so that there can be no question of its being the next subjacent stratum; and therefore it will be useless to look for the greensand formation in this part of Yorkshire. The sand represented on Mr. Smith’s map of Yorkshire, as ranging on

* For want of examining the localities which he indicates, geologists have often given the name belemnites Listeri to a very different species, (Smith, "Strata indent. Brickearth," fig. 4, and 5,) and assigned Lister’s fossil to the gault and weald clay.
the south side of the vale of Pickering, is merely superficial: blue clay is found at too many points in contact with the bottom of the chalk, to leave the slightest doubt on the subject. At Speeton the clay is dark and laminated, with distant layers of nodules of argillaceous ironstone, the larger of which are fissured within, and have these fissures either empty, lined with crystals of selenite and iron pyrites, or filled up with calcareous spar. Such large nodules occasionally contain ammonites and fragments of hamites. The smaller oval nodules frequently enclose small crustaceous animals, having the general appearance of the genus astacus, but with attenuated fore-legs, and slender sub-abdominal processes. Among the most curious, are a fragment of a jaw containing four rows of (molar) teeth in situ, in the possession of its discoverer, C. Preston, Esq. of Flasby, teeth and vertebrae of saurian animals, many beautiful ammonites, hamites, and nuculae, which ornament the cabinets of Mr. Bean and Mr. Williamson. To make any tolerable collection of the beautiful fossils of Speeton requires patience and assiduity; for though they are really not scarce, yet it is only after rains have exposed a fresh surface that they can be found in plenty.

Several remarkable fossils which Mr. Mantell describes from the gault of Sussex, are found at Speeton; and generally a great analogy may be perceived between the fossils of the blue clay of Speeton and Knapton, and those which belong to the argillaceous beds which lie beneath the chalk in Kent and Sussex. But some of the Speeton fossils bear so great a resemblance to those of the Kimmeridge clay, that Professor Sedgwick has been led to refer them to that stratum. The evidence on this subject may be more completely unfolded in the chapter devoted to organic remains; but, in the mean time, I may state, that my observations lead me to refer at least the upper part of the Speeton clay to the gault of Cambridge and Sussex; and I have before said that the lower argillaceous range along the north side of the vale of Pickering, belongs to the Kimmeridge clay.
Like the chalk under which it sinks, the Speeton clay dips southward. It is exposed in the broken cliff to an elevation of two hundred feet, and I had once, (1826,) in a particular condition of the tides, an opportunity of seeing some harder beds than common, with compressed ammonites at low-water mark. Some remarkable contortions of the clay, which appear on the shore towards its northern termination, are represented in one of the detached sections. It is covered, even where highest, by a great quantity of diluvial clay and pebbles; and as we proceed northward, it sinks continually, and in less than a mile from its first appearance, is lost below the level of the sea. The cliffs which succeed as far as Filey, are much varied and broken, and consist of diluvial clay and pebbles; but blue clay, containing belemnites, shews in one or two places, as drawn in the section. On approaching Filey, we observe on the cliff top, seventy-eight feet high, a small lacustrine deposit, which occupies about one quarter of an acre. It consists of light blue clay, peaty clay, blue clay, white clay, and peat, altogether four feet thick, upon sand and gravel.

It deserves remark, that the diluvial clay north of Flamborough head, is decidedly of a redder colour than that which is found in Holderness. This circumstance is very evident in Filey bay, where the cliffs afford few other subjects of observation, till at the northern promontory the oolitic rocks emerge from the sea, and form the long reef called Filey Brig.

CLIFFS OF THE OOLITIC SERIES.

That at some former period the strata which emerge from beneath the vale of Pickering, in ridges sloping to the south, but precipitous toward the north, have had their surfaces exposed to the ravages of water, is evident by inspecting the cliff above Filey brig. For here the diluvial clay, rising to the height of one hundred and six feet, rests upon the lower beds of coralline oolite, which immediately cover the lower
calcareous grit. (See pp. 78, 79, for a statement of the complete series.) The remainder of the oolite and the upper calcareous grit above it, which occur in situ a few miles inland, had been removed before the diluvial matter was laid upon the wasted surface of the present rocks.

In the enlarged section of these appearances, it will be seen that the diluvium rests on rubbly oolite, five feet in thickness; beneath are two beds of solid oolitic limestone, (occasionally separated by two feet of a soft, yellow, calcareous grit,) which contain clypei, lutararia, trigonia costata and clavellata, pecten viminalis, pecten vagans, gryphae, melaniae, &c. This limestone which belongs to the upper oolite rests upon the calcareous grit, of which beds to the thickness of sixty feet rise from the sea, within the distance of a quarter of a mile. In the upper part of the rock, lie a few alternations of limestone; and both these and the grit beds contain most of the fossils which occur in the oolitic layers above, excepting perhaps the echinida. The surfaces of the beds of calcareous grit are singularly characterised by ramified masses of doubtful origin, which appear like dichotomous cylindrical sponges. Below twenty-five feet of this rock lie nine feet of soft, yellow, sandy stone, containing large spheroidal, highly-indurated, calcareo-siliceous balls. This band of soft sand and hard balls may be traced for a great distance, along the perpendicular rocks which rise from Filey brig, under a cover of diluvial clay and pebbles, to the summit of Gristhorpe cliff. Under them runs a considerable thickness of calc grist beds, which above are hard, rough, and cherty, but beneath become soft, gray, and argillaceous, indicating the change to the Oxford clay. About three quarters of a mile from Filey brig, the Oxford clay appears, and soon afterwards the sandy and irony Kelloways rock, and the argillo-calcareous cornbrash beds rise into the cliff. —Gristhorpe cliff, two hundred and eighty feet above high-water, presents the following section:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diluvial clay and pebbles</td>
<td>8</td>
</tr>
<tr>
<td>Lower part of the calcareous grit</td>
<td>30</td>
</tr>
<tr>
<td>Gradations between calcareous grit and Oxford clay</td>
<td>40</td>
</tr>
</tbody>
</table>
GRISTHORPE CLIFFS.

Oxford clay .. 120 feet. These will be particularly described.
Kelloways rock 25 feet. when we come to treat of the
Clay and cornbrash rock 5 feet. castle hill at Scarborough.
Carbonaceous shale and sandstone 50 feet.

Between Gristhorpe and Red cliff, the upper strata have been removed from the shore, and the wide hollow so produced partly filled by diluvium; but the Kelloways rock, and the carbonaceous shale and sandstone still rising northward, allow the oolitic limestone beneath them to appear at low-water between a remarkable rock surrounded by the sea at high-water, and Red cliff. The relative position of the several rocks may be gathered from the general section, and the particular characters of the carbonaceous sandstones and shales, and the inferior oolite, may be understood by consulting the enlarged representation of this interesting spot.

Here in the upper part, above the layer marked h, we observe towards Red cliff the same shales and thin sandstones, which were noticed at the base of Gristhorpe cliff; and below, the beds, $h, g, f; e, d$, are so many portions of the sandstones and shales which lie at the bottom of that carbonaceous series: a is the oolite.

I shall describe them in a reversed or ascending order.

a. The inferior oolite, its top level with high-water, in thick, solid, obliquely laminated, partially oolitic beds, with oxide of iron in the partings. It is full of fragmented milleporæ, crinoidea, and echinida. The upper surface is covered by a dichotomous millepora. This rock closely resembles that which occupies the projecting point called Ewe nab, north of Cayton bay.

c. Argillo-arenaceous layers, separated by carbonaceous partings, containing some ironstone nodules, and small white shells, especially in the upper part. This is excavated by the sea along the shore in a hollow course between a and d.

d. 1. Solid beds of ironstone nodules, from three feet six inches to four feet six inches thick.

2. A parting of shale, with imperfect plants.

3. Sandstone in confused beds, with laminae of shale and carbonized wood; its surfaces and partings irony.
DESCRIPTION OF THE COAST.

e. 1. Black sulphureous shale, with selenite and layers of coal, formed from wood. Here a multitude of fossil plants are found.

2. The thickest of several sandstone layers.

3. Black and white shale.

f. Sandstone laminated.

g. Very dark shale.

h. Confused sandstone and shale.

i. Alternations of thick sandstone and thicker shales.

These oolitic rocks sink below low-water before reaching Red cliff, and all the strata above it bend a little downwards, and successively form scars; but suddenly the scars are all terminated by a straight line. On tracing this line backward to the cliff, we find it connected with a very remarkable dislocation or slip of the strata, which may be understood from the representation in the general section. On the left of the line of this dislocation, the lower part of the Oxford clay is opposed to the bottom of the calcareous grit on the right; the Kelloways on the left meets the top of the Oxford clay on the right, whilst the Kelloways on the right meets the carbonaceous sandstone and shale on the left. The extent of the dislocation is about one hundred and forty feet; its direction agrees with the well-known observation of miners, that "the fault dips or underlies on the sunken side:" an observation to the truth of which I have never seen an exception.

RED CLIFF

Which is immediately beyond this fault, is two hundred and eighty-five feet above high-water, and consists of the same strata as at Gris-thorpe cliff, but the carbonaceous shale at the bottom scarcely appears. The calcareous grit beds at the top consist of the lower portions of that rock, and beneath them are the gray alternations, which so gradually change into Oxford clay, that no very distinct line can be drawn. The Kelloways rock beneath is very completely exhibited, with a thickness of near thirty feet, and the cornbrash with its characteristic fossils comes
out from beneath. All these strata are cut off, and made to terminate abruptly, by the rapid descent from Red cliff to Cayton mill; beyond which is an unexpected cliff of calcareous grit, sunk upwards of two hundred feet below its general level, and based on the Oxford clay. No doubt this is owing to some ancient subsidence or sliding of a part of the hill above. Immediately beyond, rises the lower portion of the carbonaceous series, and at the prominent point called Ewe nab ascends so far into the cliff, that the oolitic beds, which were before seen at the island on the north side of Grinsthorpe bay, appear above the level of high-water.

The oolitic beds which here present their huge blocks to the waves, are so very similar to those described near the above-mentioned island, as to need no additional description, further than to notice that the milleporae are here broken and less plentiful, and shells perhaps not so scarce; but the carbonaceous beds above them are different. (See the enlarged section.) The reversed series is as follows:

a. The oolitic limestone filled with fragments of coral, crinoidea, echinida, and shells.
b. Soft yellow sandstone with ochry balls.
c. Laminated sandstone.
d. Block sandstone.
e. Alternations of sandstone and shale.
f. Diluvium.

These beds bend down towards the north, and the whole series suddenly disappears, beyond the point of Ewe nab, with indications of a fault. Carbonaceous shale and sandstone, mixed with much diluvium, occupy the low sea cliffs of Carnelian bay, and above are irregular broken slopes of diluvium. These appearances continue to the point of rocks called White nab, where the tide flows round a little island as conspicuous as that formed of the same strata at the north point of Grinsthorpe bay.

As at the island, and at Ewe nab, so at White nab, the oolitic beds rise gradually from the south to a moderate height, and again fall gently
towards the north. The series here exhibited is drawn to scale in the enlarged section.

\(a \). Represents the rough argillo-calcareous beds, with layers of septarian ironstone, full of shells, and interspersed masses of soft large-grained oolite. The uppermost layer is soft and shaly.

\(b \). The carbonaceous sandstone series.

1. A regular bluish or yellowish bed, occasionally fissile; it then contains a few casts of bivalve shells, becomes very calcareous, and much resembles the "roadstone" of Brandsby.

2. In this layer of sandstone lie equisetiform and other plants, besides large branches of wood.

3. Mass of carbonaceous sandstone, with irregular interpolations of shale.

A complete catalogue of the fossils found at the White nab will be given in the latter part of this work. It may be now sufficient to mention that gervilliae, aviculae, and short thick belemnites are among the most common.

Proceeding along the shore, we find the calcareous and ironstone beds exposed in broad flat scars at low-water, and extending, with some interruptions, to Ramsden scar, nearly opposite the bathing machines at Scarborough. The lower part of the cliff, from White nab nearly to the Spaw, is kept by the carbonaceous grit, and above, in irregular often grassy cliffs, lie the carbonaceous shale and thin sandstones: the highest point of this inland cliff, opposite Wheatcroft farm, two hundred and seventy-eight feet high, is capped by the cornbrash and Kelloways rocks. The calcareous and irony strata have their long, straight, intersecting fissures often lined with double laminae or septa of oxide of iron, between which sometimes occurs a white, compact, soft, smooth substance which the Rev. W. V. Vernon ascertained to be a compound of alumina and silica. Exactly similar septa, and occasionally the same aluminous substance, occur in the superincumbent variable bed of sandstone; and in addition, this bed presents a number of ochraceous belts or zones parallel to the margins of its blocks, thus beautifully variegating the blue or white colour of the stone.
It is very interesting to observe, in this walk along the south sands of Scarborough, between White Nab and the spaw, the peculiar appearances of the carbonaceous sandstone. The frequent and remarkable curvatures of the beds, the unequal intermixture of shale among them, and the dispersion of carbonaceous fragments through the mass, leaves no doubt of the agitation of the water which left this curious deposit. The accumulation of diluvial matter increases continually northward, from the high point of Kelloways rock opposite Wheatcrofts, and it occupies the whole cliff from the spaw to the bridge. It is, in general, clay filled with pebbles of all kinds and magnitudes; the largest masses are either Shap fell granite, mountain limestone, or basalt. Among the most abundant are porphyries; of which some belong, I think, to the Cumberland mountains, others may, perhaps, be referred to Scotland. The agates which have been transported along with trap rocks from Scotland, or the north of Europe, are comparatively rare. In a few places the diluvial matter swept from some particular line of country, seems to be exclusively aggregated together. This is well seen behind the spaw, where the gravel consists almost entirely of fragmented lias and moorland sandstones. Here lie many ammonites, pectines, gryphææ, &c. characteristic of the lias formation.

In cutting the cliff above the terrace walk at Scarborough, a seeming dislocation in the diluvium has been exposed. If the appearances may be trusted, two layers of wet sand have been depressed several feet on the northern side. But the depression being unequal in the two layers, and the seeming dislocation not extending into the gravel beneath, are circumstances never observed in a determinate dislocation of strata. The cliff over the spaw varies from one hundred and fifty-one to one hundred and seventy-one feet in height above high-water.

That part of Scarborough emphatically called the Cliff, is from ninety to one hundred and ten feet above high-water; from hence the slope grows continually flatter to Blands cliff, and beyond this point the whole shore is occupied by streets as far as the commencement of the outer pier. Here the steeps of the castle-hill rise suddenly from the water,
and further on reach an elevation of two hundred and seventy feet; but part of the castle garth is, perhaps, fifteen feet higher. The first rock which is seen above the pier is a ferruginous sandstone with fossil shells, which is ascertained to be identical with the rock of Kelloways in Wiltshire. Above lies the gray argillaceous earth which occupies the place of the Oxford clay; this gradually passes into the calcareous grit, and some beds of the coralline oolite surmount the whole. These strata decline in the eastern face of the hill, so that the Kelloways rock sinks below the level of high-water, and at a projecting point the Oxford clay keeps the foot of the cliff; but soon rising again, where the hill fronts the north, they ascend towards the drawbridge. The fort on the northern face of the hill, is levelled on nearly the lower beds of coralline oolite; of this rock thirty feet appear on the hill above; its whole thickness here is nearly forty feet: below are about eighteen feet of solid calcareous grit beds: these rest on three layers of hard calcareo-siliceous balls, lying in soft yellow sand, twenty-eight feet thick: then succeed fifty feet of calcareous grit, hard above but graduating below to the next stratum, the Oxford clay; which, being one hundred and thirty-five feet thick, occupies the remainder of the hill to high-water mark.

These strata, rising towards the drawbridge, have been subjected to a very uncommon dislocation, the effect of which is the uplifting of the Kelloways rock to the level of the lower part of the calcareous grit. Kelloways fossils are found in this uplifted portion on the north side of the drawbridge, * two hundred feet above the sea. This uplifted portion is very narrow, as will be seen by consulting the general section. Bushel's fort is upon the lowest soft part of the calcareous grit, which can hardly be distinguished from the Oxford clay. The stratum so named is found in the upper part of the cliffs beyond; whilst below it occurs the Kelloways rock, rich in ammonites, gryphaeæ, aviculaæ, &c. The cornbrash is found beneath, full of terebratulae, unioniform shells,

* Mr. Smith discovered this singular fault, and communicated it to me: his eagerness on the occasion led him to overstrained exertion; and the consequence was a very alarming privation of muscular power in his legs; from which his friends have since rejoiced in his perfect recovery.
trigoniae, ostreae, &c.; and its blocks, strewed on the sands, afford a rich harvest to the geologist. Still lower are the shales and sandstones of the carbonaceous grit. Scarborough castle-hill, therefore, agrees in general composition with Gristhorpe and Red cliffs, but its summit is crowned with the oolite which does not occur on them. Further; since in none of the cliffs from Filey to Scarborough do we find any of the superior calcareous grit, which is found above the oolite near Kirby-Moorside and Helmsley, it is certain that on the Yorkshire coast this oolite series is imperfect, by the deficiency of its upper members. That such deficiency is aboriginal, no one will suppose, who considers the deep-cut vallies and vast heaps of diluvium in the country about Scarborough; for these bring irrefragable testimony to the wide-spreading and powerful denudations caused by the deluge. In order, therefore, to gain a complete knowledge of this oolitic formation, it is necessary to study the coast and the interior together: the cliffs against the sea must be compared with the quarries and watercourses inland, before such a table of stratification can be prepared as I have given in the previous pages of this work. Moreover, it must be observed, that nowhere on this coast do we find those lowest layers of the Kimmeridge clay, which at Kirby-Moorside and West Helmsley furnish the characteristic ostrea delta. These beds have yielded to the same diluvial impetus. But, with these exceptions, the series on the coast is complete, from the top of the chalk to nearly the base of the lias, and junctions may be examined of all the adjacent strata.

As the Oxford clay, Kelloways rock and cornbrash are nowhere on the coast better seen than at Scarborough, and as we shall have no other opportunity of noticing them, till we come to treat of their organic contents, I shall take this opportunity of adding some notice of their general character and appearance.

The chief reason for giving the name of Oxford clay to the gray argillaceous earth of Scarborough castle-hill, is its position between the well-determined strata of calcareous grit and Kelloways rock; for, independently of this circumstance, no particular affinity can be traced between
DESCRIPTION OF THE COAST.

the friable and rather sandy shale of Scarborough, and the tough blue clay of Oxford and Wiltshire; and the fossils of both situations are yet but imperfectly known. It is probable, indeed, that my enumeration of the fossils found in this stratum at Scarborough, by Messrs. Dunn, Bean, Williamson, and Smith, may be found more extensive than a similar catalogue of those belonging it in the south: and yet only a few years have elapsed since it was discovered to contain any.

The Kelloways rock agrees much better with its prototype both in substance and organic remains. It is, indeed, seldom that specimens of mixed secondary sandstones procured from neighbouring parishes, are more similar than some which may be selected from this stratum in Wiltshire and Yorkshire: and so complete is the affinity of the imbedded fossils, that it might be easy for the most practised eye to mistake the one for the other. In Yorkshire, the Kelloways rock is a mixed sandstone, containing some lime and some argillaceous particles, of a grayish yellow colour, changing to greenish gray when wet, and to brownish yellow when much impregnated with oxide of iron. The difference in its state of consolidation is singular: in some places it consists of loose unaggregated sand, containing hard, irony, and calcareous masses. At Hackness alone it is worked as a building stone: it is there very soft in the quarry, and may be chiselled and wrought with the utmost facility. It has, at the same time, the property of hardening by exposure; and, possessing both beauty and durability, is a very valuable building stone. Its durability is evinced by the condition of the stone in the ancient church at Hackness, which was probably built about the end of the thirteenth century, and its good effect in architecture may be seen to great advantage in the new Church and new Museum at Scarborough, and especially in the Museum of the Yorkshire Philosophical Society, in the construction of which blocks of great magnitude have been employed.

Its thickness is generally above thirty feet: the upper bed is usually very thick, hard, and irony, full of gryphae, belemnites, &c., so as to be unfit for building. In the quarry at Hackness, the ammonites Calloviensis, Koenigi, sublaevis, &c. which so eminently characterise the
stratum, lie on the top of the rock just below the Oxford clay. At Scarborough, they lie a little deeper in the stone. On account of its comparative hardness, the upper beds of this rock project on the hill sides beyond the slopes of the incumbent clay, and form little buttresses beneath those remarkable "nabs" by which the calcareous grit is recognised in the vicinity of Scarborough.

That stratum of the oolitic series, which, in the south of England, Mr. Smith named the "cornbrash," is well known to be a very variable rock as to its substance and thickness, but remarkably well characterised by its fossils. It is by their aid that we have traced this thin and otherwise unimportant rock, with hardly a single interruption, from Dorsetshire to Lincolnshire. It is, therefore, by organic fossils and geological position alone, that we can expect to recognise the cornbrash on the coast of Yorkshire. By these characters it may be satisfactorily identified: it usually appears as a single, thick, fissile, calcareous bed, lying almost in contact with the bottom of the Kelloways rock; but eminently distinguished from it by the nature of its substance, and the shells with which it is filled. Without close attention, so thin a layer can hardly be traced along the cliffs; and it is, therefore, not surprising that its inland course is rather assumed than proved. Below it is the carbonaceous series of shales and sandstones, whose northward extension remains to be described.

CLIFFS NORTH OF SCARBOROUGH.

From low-water mark on the shore beneath the drawbridge, the carbonaceous shale rises gradually, till at length, the cornbrash having terminated, it possesses the whole stratified portion of the cliff; but a great quantity of diluvial clay and pebbles lie upon it, thickening towards Peaseholm beck. The hill beyond, on whose slope are some entrenchments commonly termed Oliver's battery, is likewise composed of diluvium resting on shale and thin sandstones; and this character continues to the opening at Scalby beck. Here, on both sides of the stream,
is a very interesting occurrence of granular iron ore, in a solid, nodular bed, interlaminated in the sandstone. The cliffs from Scalby beck to the projecting point south of Cloughton Wyke are all less than one hundred and thirty-five feet in height, and, as will be seen by the Colouring of the section, are all composed of diluvial sand and sandstone gravel, resting upon shale and sandstone. The sandstone forms a series of low-water scars, on which it is interesting to trace the contrary courses of the beds, depending on their irregular flexures and inclinations. Before arriving at Cloughton Wyke, the lower and thicker beds of sandstone above-mentioned rise to the summit of the cliff, and leave the shore to be occupied by the argillo-calcareous and sometimes oolitic beds, full of shells, which represent the inferior oolite. The series here laid bare in the cliffs and on the shore is the following:

a. Block sandstone, on the top of the cliff, irony, and often spattered with carbonaceous fragments.

b. Shale, which wastes from under it. In the upper part principally lie the ironstone balls.

c. Nodular, rather shaly, calcareous bed, full of shells, five or six feet; the joints sparry and ochry.

d. Shale, one foot six inches.

e. Nodular bed like c, full of shells.

f. Shale, two feet six inches.

g. Soft calcareous layers full of shells.

h. Series of fissile and solid subcalcareous sandstones, ironstone, and calcareous shale beds, here and there containing fossils. Some beds waved like the tide-worn sand, others full of ramified masses very like, but smaller than those in the calcareous grit.

These beds continue rising in the cliffs which encircle the bay of Cloughton Wyke, where incrustations happen from the water falling over them, and beyond, ascend to the summit of the far loftier cliffs between Cloughton and Haiburn Wyke. That part of these cliffs where the little colliery is established is two hundred and forty feet high, and exhibits the following beds below those enumerated above:
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k.</td>
<td>Solid sandstone.</td>
<td>q. Shale.</td>
</tr>
<tr>
<td>l.</td>
<td>Black shale.</td>
<td>r. Shale.</td>
</tr>
<tr>
<td>m.</td>
<td>Sandstone.</td>
<td>s. Sandstone.</td>
</tr>
<tr>
<td>n.</td>
<td>Shale.</td>
<td>t. Shale.</td>
</tr>
<tr>
<td>o.</td>
<td>Sandstone.</td>
<td>u. Sandstone at the cliff foot.</td>
</tr>
<tr>
<td>p.</td>
<td>Coal seam, 1 ft. Black shale, 1 ft. 6 in.</td>
<td>White shalystone, 1 ft. 6 in. Shale & sandstone.</td>
</tr>
<tr>
<td>q.</td>
<td>Sandstone.</td>
<td></td>
</tr>
<tr>
<td>r.</td>
<td>Shale.</td>
<td></td>
</tr>
<tr>
<td>s.</td>
<td>Sandstone.</td>
<td></td>
</tr>
<tr>
<td>t.</td>
<td>Shale.</td>
<td></td>
</tr>
</tbody>
</table>

This coal seam, beneath the gray oolite, is pretty extensively wrought in the interior moorlands, as at Maybecks on the Sneaton estate near Whitby, and in Danby beacon. The strata which come below these cannot be well traced towards Haiburn Wyke, though the cliff is three hundred and thirty-one feet high, because of a slip or sunken portion of the precipice, much overgrown with shrubs and disguised by loose blocks. There is a dislocation, perhaps a double one, at Haiburn Wyke, and I am not certain that the sandstone beds on the opposite sides are correctly referred to their respective relative situations; but the section was drawn after three careful examinations of the place. If it be correct, there are two faults running one on each side of the little insulated cliff, and raising the strata a few yards on the south side.

The cliffs which begin on the north side of Haiburn Wyke are loftier than any which have hitherto claimed our attention. They continue rising with altitudes of two hundred and ninety-six, three hundred and eighty-seven, and four hundred and ninety-seven feet, to the High Peak which is about five hundred and eighty-five feet above the sea. In the middle of this high range, the uppermost rock is the carbonaceous gritstone so frequently mentioned, and below it a series of limestone, shale, and sandstone, corresponding to those already enumerated at Cloughton Wyke. Lower beds than those also appear at the northern and southern extremities, but are obscured in the middle by what seems to be a very extensive slip of the superior heights, forming an "undercliff."

As in a part of the Stainton cliffs the carbonaceous sandstone is seen lying upon the oolitic series, whilst at Blue Wick below the Peak the
DESCRIPTION OF THE COAST.

Lias appears, we obtain by uniting the observations the following section of nearly the whole of the moorland series of rocks.

Feet.
40 a. Carbonaceous grit, containing black shale in lumps and layers, bits of carbonized wood, and striated culms, but apparently different from those of High Whitby. This rock is quarried on the edge of the cliff.

\[\begin{align*}
\{ & b. \quad \text{Shale of a dark colour.} \\
\{ & c. \quad \text{Shelly limestone, with large short belemnites.} \\
\{ & d. \quad \text{Shale.} \\
\{ & e. \quad \text{Nodular shelly beds, like c.} \\
\{ & f. \quad \text{Shale,} \\
\{ & h. \quad \text{Sandstone,} \\
\{ & i. \quad \text{Shale,} \\
\{ & k. \quad \text{Sandstone,} \\
\{ & l. \quad \text{Shale,} \\
\{ & m. \quad \text{Sandstone,} \\
\{ & n. \quad \text{Shale,} \\
\{ & o. \quad \text{Sandstone,} \\
\{ & p. \quad \text{Shale,} \\
\{ & q, r, s. \quad \text{Mostly sandstone beds, forming a rock about sixty feet thick, which may be traced without interruption from Haiburn Wyke to the summit of the cliff at the Peak; and from that point it appears on many of the cliffs to the northward, and constitutes what is called the “cap rock” of the alum shale.}
\end{align*}\]

The series below, to the lias, varies much in the arrangement of the beds of sandstone and shale, and still more in their aggregate thickness.

Feet.
200 A series of shales and sandstones in very frequent alternations, the former predominating so as to cause the cliff to waste, and generally to slope from the cap rock above to the sandstone series beneath: in a part of this series at Haiburn Wyke lie fossil plants resembling cycadæ, ferns, equiseta, &c.
LIAS CLIFFS.

60 Grit rocks and thin shales in irregular succession, and of various thicknesses. They generally appear thus:

- 20 feet of grit of a white colour.
- 6 to 10 feet of shale.
- 20 feet of grit, at its bottom is ironstone, containing various plants, as cycadiform fronds and ferns.
- 10 feet of irony and carbonaceous shale.

Conchiferous (dogger) series, analagous to the inferior oolite of Bath. This is best exposed at Blue Wick, and contains the following beds, in the same downward order. (See the enlarged section.)

Feet.

30 Fine-grained, yellow, micaceous, irony sandstone, in large blocks variously bedded and jointed; containing several layers of pebbles and shells: (represented in the enlarged section by dotted lines:) the upper one very ochraceous and full of many shells, as turritella muricata, and t. cingenda, actaeon, trigonia, astarte, &c. The top is very irony, but without shells. A parting of shale, ironstone, &c.

20 Fine-grained, yellow, micaceous sandstone in blocks of various forms, with nests or irony masses of serpulæ, lingulaæ, &c. represented by dotted lines.

20 Gray, micaceous, soft, argillaceous sandstone, mostly fissile, but not regularly plated like the alum shale, to which it gradually changes in the lower beds: divided like the lias by long joints, and filled with subramose masses of the same substance, not unlike the beds at Cloughton. These beds form the scars which stretch from Blue Wick, a short distance southward. On their surfaces lie irony nests of serpulæ, belemnites, aviculaæ, pinnaæ, &c.

Below are the rough, sandy, upper beds of lias shale, which lower down become regularly fissile, and are full of ammonites, belemnites, unioniform shells, &c.

LIAS CLIFFS.

From Blue Wick, where it first appears, the lias formation is seen along the whole shore by Whitby, Runswick, Staithes, Boulby, and N 2.
Saltburn, and is everywhere washed by the sea, except in the space between Whitby and Sandsend where it is depressed by extensive dislocations. In consequence, the cliffs assume a different appearance from those already described, and present different phenomena. Stupendously abrupt and separated by a very narrow space from deep water, it is often hazardous, and sometimes impracticable, to examine them from beneath. They vary in altitude, according to the character of the inland country, and the pile of strata in the cliff. The great height of the Peak is owing to the truncation of the high ridge of Stow brow; and the superior elevation of Boulby is accompanied by an accumulation of the sandstone rocks at the top. There is no example from the Peak to Saltburn, where any sandstone higher than the cap rock appears in the cliff. Some of these strata do, indeed, appear at a short distance inland, as the inferior oolitic limestone near Hawsker bottoms, but they never reach the sea-shore; and in our future descriptions we shall, therefore, notice only the subdivisions of the lias, and the variations in its sandstone covering.

Proceeding northward from Blue Wick, we find the lias rising with extreme regularity to some distance beyond the Peak house, where it attains an elevation of two hundred and seventy feet above high-water. A sunken portion of the precipices here forms an undercliff, and leaves only the upper part of the lias exposed below the conchiferous and plant-producing beds before described. But immediately beyond, the scene changes, a great dislocation has happened, and the lias beds are uplifted on the northern side of it, to such a degree that some conchiferous beds, which are usually four hundred feet deep in the lias, appear considerably higher than the top of that formation on the south. This will be readily understood by referring to the section.

The uppermost of the beds thus exposed on the north side of this great dislocation, belong to a thick series of sandy and irony conchiferous strata, which divide the lias clay or shale into two principal parts, henceforward to be termed upper and lower lias shale. The upper one, as being peculiarly appropriated to the production of alum, is termed the alum
shale. These interposed strata are identical in geological characters with the marlstone of Lincolnshire, Rutland, and the midland counties. In all these counties the marlstone is wonderfully prolific in fossils: and we shall find in the sequel that it is equally productive in the Yorkshire cliffs. At the Peak, about forty feet of this series appear, and yield abundance of terebratulæ, dentalia, aviculae, &c. Below these sandy beds is an immense escarpment of more than three hundred feet, composed of the deeper lias shale, with many layers of ironstone, resting upon more solid floors of the same strata. In these solid beds, the lowest probably which are exposed on the whole coast, we find the gryphæa incurva, which so generally accompanies the inferior beds of lias in the south of England.

Henceforward to the town of Robin Hood's Bay, the cliffs are composed of the deeper lias shale, in nearly level layers, surmounted by a variable covering of diluvial clay and pebbles. At low-water, the ranges of the strata are seen in grand curves sweeping across the whole extent of the bay. Beyond Baytown, the cliffs increase in altitude, and a rapid declination of the strata towards the north is observed for the space of three miles. In consequence of this the deep shale sinks into the sea at little more than a mile from Baytown; the marlstone beds have all disappeared in about two miles, and from thence to Whitby the shore is kept by the upper lias shale. So great is the depression, that between Hawsker bottoms and the place called High Whitby the carbonaceous sandstones above the lias stoop very nearly to the water. The solid beds of sub-ealcærous sandstone and ironstone (which constitute the marlstone series) form prominent scars, where they sink into the sea, and their blocks, which are scattered at the foot of the cliffs, may be advantageously examined for fossils. The highest point of the coast between Baytown and High Whitby, (two hundred and seventy-five feet,) is marked by the termination of the dogger series. This irony sandstone, though at Blue Wick on the south of Robin Hood's Bay it is so rich in fossils, does not here contain a single shell, and is very thin; but the sandstones which succeed above contain the same plants as at the Peak. To
DESCRIPTION OF THE COAST.

convey an accurate idea of the succession of strata above the lias, and beneath the cap sandstone, the following details, at points marked in the section, will be found sufficient.

At the point where a road leads down the cliff from Hawsker bottoms, we find the lias shale covered by fifty feet of sandstone, coal, shale, and dogger, arranged in the following order:

At a point nearer High Whitby, the series of sandstones and shales is much more complicated; the following account was very carefully written on the spot.

<table>
<thead>
<tr>
<th>Description</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loose blocks, sandstone, ironstone, shale, &c.</td>
<td>20 0</td>
</tr>
<tr>
<td>Coal</td>
<td>0 8</td>
</tr>
<tr>
<td>Grit, with vertical carbonaceous marks (coal pipes)</td>
<td>4 0</td>
</tr>
<tr>
<td>Irregular sandstone</td>
<td>5 0</td>
</tr>
<tr>
<td>Shale and ironstone</td>
<td>12 0</td>
</tr>
<tr>
<td>Sandstone</td>
<td>3 0</td>
</tr>
<tr>
<td>Alternating shale and white sandstone bands</td>
<td>9 0</td>
</tr>
<tr>
<td>Sandstone</td>
<td>6 0</td>
</tr>
<tr>
<td>Shale and thin sandstones</td>
<td>8 0</td>
</tr>
<tr>
<td>Sandstone, slaty</td>
<td>2 6</td>
</tr>
<tr>
<td>Coal and irony knots with shale</td>
<td>10 0</td>
</tr>
<tr>
<td>White sandstone</td>
<td>2 0</td>
</tr>
<tr>
<td>Shale</td>
<td>6 0</td>
</tr>
<tr>
<td>Wedge-shaped grit rocks, from 20 to 30 feet.</td>
<td></td>
</tr>
<tr>
<td>White sandstone and coal, with vertical pipe marks, from 5 to 20 feet.</td>
<td></td>
</tr>
<tr>
<td>Shale</td>
<td>4 0</td>
</tr>
<tr>
<td>White sandstone</td>
<td>2 0</td>
</tr>
<tr>
<td>Shale</td>
<td>4 0</td>
</tr>
<tr>
<td>Layers of sandstone</td>
<td>3 0</td>
</tr>
<tr>
<td>Shale</td>
<td>12 0</td>
</tr>
</tbody>
</table>
Here a coal adit enters into the face of the cliff.

White sandstone and plants	2	0
Irony or dogger bed	2	0
Alum shale	30	0

At a point called High Whitby, two hundred and eighty-five feet above high-water, the cap rock is upon the top, and ten or more alternations of shale and sandstones may be observed between it and the lias. A sandstone bed, seventy-four feet below the summit of the cliff, is remarkable for containing a great number of cylindrical fossil plants, jointed across like canes, or rather like equiseta, and furnished with a denticulated striated fringe or sheath at every joint. They are called by Mr. Koenig, Oncylogonatum. They are situated vertically in the beds of sandstone, are broken off or imperfect above, and seldom reach to the upper surface of the bed; they are also broken off below, but commonly pass to the lower surface, and some of the lower joints nearest the roots are found in the subjacent bed of shale. These appearances have led some persons to conjecture that the plants are preserved in the place of their growth; that the shale served them for soil, and that they were buried by an influx of sand and water. A more probable hypothesis, perhaps, will suggest itself to those who have seen plants transported by great floods, floating down the streams in a perpendicular position, in consequence of the superior specific gravity of their roots.

Proceeding from High Whitby, the cliffs fall gradually toward the north, and at the same time the lias rises to the height of one hundred feet above the sea. It however sinks again near the harbour at Whitby, where a great dislocation depresses it suddenly on the north, and prevents its distinct re-appearance as far as Sandsend. From High Whitby to this dislocation, though the sandstones and shales vary much in thickness and colours, we may notice that the thin coal seams are always most decisively marked, and most alluring to the adventurer, in the neighbourhood of the fossil plants which lie above the irony dogger bed. These plants consist wholly of what are believed to be monocotyledonous tribes, like the zamiae, or cycadeæ, and ferns of many genera. They lie
in uneven, thin, white sandstones, alternating with black micaceous shale, and in ironstone, which is traversed by a white aluminous earth of the same nature as that previously noticed at White Nab, near Scarborough. A particular account of all these plants will be found in the latter part of this work. The dogger bed beneath them is a very singular layer of inconstant appearance, and varying substance. Sometimes, and indeed generally, it is a very irony nodular sandstone; but in other places, and particularly towards Whitby, it contains small pebbles of limestone, glassy quartz, blende, small red ironstone, white felspar, porphyry enclosing glassy quartz, scoriform greenstone, red oxide of iron, &c. Towards the bottom, I have, in some places, seen it full of limestone pebbles, (lias?) and under these a layer of large and small ironstone balls.

The upper lias shale may be well examined in the cliffs and on the scars, at low-water. Many remarkable and characteristic fossils may be here collected, especially the belemnites tubularis of Young, ammonites Mulgravius, &c., nucula ovum of Sowerby.

The great dislocation before mentioned, which depresses the strata on the north side of Whitby, extends a considerable distance up the valley of the Esk. Its effects are very remarkable at the sea side. On the south side of Whitby harbour, a part of the cliff is composed of the upper alum shale, and this rock extends far into the sea, making broad level scars at low-water; but on the north side of the water is a cliff of sand-stone, and a beach of sand. The exact amount of the depression occasioned by this fault cannot, perhaps, be determined; but I estimate it to be not less than one hundred and fifty feet.

Between the cliff which supports Whitby Abbey, one hundred and fifty feet above high-water, and that where the Lyth alum works are established, one hundred and ninety feet, the strata are depressed by the before-mentioned fault, so that the lias shale is almost wholly below the level of high-water, and the cliffs are composed of sandstone and shale, covered by a very abundant deposit of diluvial clay and pebbles. The
highest point between Upgang and Whitby, is about as high as the abbey, but generally the altitude is less than one hundred feet.

At Sandsend, the upper lias shale appears again in full character, about one hundred and fifty feet thick, under a covering of sandstone and shale beds, in the following order:

<table>
<thead>
<tr>
<th></th>
<th>feet thick.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irony sandstone rock</td>
<td>... 30</td>
</tr>
<tr>
<td>Shale</td>
<td>... 20</td>
</tr>
<tr>
<td>Dogger beds, consisting of irony sandstone in blocks</td>
<td>... 2</td>
</tr>
<tr>
<td>Parting of balls, or modules of ironstone</td>
<td>... 2</td>
</tr>
<tr>
<td>Rounded irony blocks</td>
<td>... 2</td>
</tr>
</tbody>
</table>

Where a small valley divides the cliff beyond the Lyth alum works, we observe rising from the water a portion of the shale, apparently more compact than the rest, and bearing much better the action of the sea. It is consequently much scooped into caves and fantastic shapes, which are never seen in the softer shale above and below. On the cliff top, the sandstone cap ranges uninterruptedly to Kettleness alum works; and in the highest point is not less than three hundred and seventy-one feet above high-water. Here the sandstone, shale, and dogger, above the lias, are together one hundred feet thick.

At Kettleness, from the sandstone rock just above the alum works to the lias scars beneath, we have the following section:

```
<table>
<thead>
<tr>
<th>Carboniferous series.</th>
<th>feet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap sandstone nearly</td>
<td>50</td>
</tr>
<tr>
<td>Sandstone traversed by ochry veins</td>
<td></td>
</tr>
<tr>
<td>Shale</td>
<td>4</td>
</tr>
<tr>
<td>Irony stone, in nodular masses and beds</td>
<td></td>
</tr>
<tr>
<td>Upper lias shale or mine</td>
<td>150</td>
</tr>
<tr>
<td>Hard shale, with layers of calcareous nodules</td>
<td>30</td>
</tr>
<tr>
<td>Soft alum shale</td>
<td>20</td>
</tr>
<tr>
<td>Alternations of ironstone beds and alum shale, forming projecting scars</td>
<td>20</td>
</tr>
</tbody>
</table>
```
These ranges are seen on the other side of the point, dipping partly along the shore, so that in the extremity of Runswick bay the hard shale descends to the level of high-water mark, and forms the well-known arched rocks. Here the soft shale is almost deficient, so that the ironstone courses appear almost immediately in contact with the hard shale. From the arched rocks to the village of Runswick, the low and broken cliffs are wholly composed of diluvial clay and pebbles.

Above the romantically placed village of Runswick, the cliff is about two hundred and fifty feet high, and the sandstone cap is seen upon the upper lias shale. The little valley or gulley which is here scooped in the steep descent, exhibits imperfect, but, I think, satisfactory traces of a fault or dislocation, the strata being higher on the north side by about forty feet. From hence to a higher situation, called, I believe, the Old nab, marked by two tumuli, the range of the sandstone is unbroken, but it is variously divided by interposed shale. At nearly a mile beyond Runswick there is a projecting point, and beyond it a wide bay. This point I think is three hundred feet high, and it exhibits, below a slight covering of diluvial matter, more than one hundred feet of sandstones, shales, and irony dogger above the upper lias shale, which is about one hundred and fifty feet thick, besides the hard rocky beds which are exposed to the attacks of the sea. The bay beyond is overhung by a broken slipped cliff, whose extreme height is about three hundred and twenty feet. The hard beds of shale continue to guard the shore. The tumuli beyond this bay appear to be three hundred and twenty-one feet, above high-water, whilst the cliff itself is three hundred and one feet and the thickness of the sandstone series above the lias seventy-three feet. The upper lias shale seems to be one hundred and ninety feet thick, and the hard shale below about forty feet thick.

From this place the sandstone rocks pass inland; and the other strata rise successively toward Staithes. The hard shale forsakes the base, and ascends to the summit of the cliff at the signal post, whilst from beneath it, first the soft shale appears, and afterwards the ironstone courses, in the same order as at Kettleness. A little bay not far from
STAITHES.

the tumuli exhibits a very pleasing scene at low-water. For then the ironstone courses, which there spread out from the cliff, are visible over a wide extent, in a series of elegant flexures corresponding to slight variations of their declination. They contain multitudes of terebratulae, pectines, belemnites, wood, &c. Beyond, they rise into the cliff, and may be traced towards Staithes, till their regularity is suddenly broken by an oblique dislocation, which causes a depression, on the north side, of fifteen feet. The section here exhibited consists, under the diluvial covering, of hard shale, soft shale, and ironstone beds, and the extent of the dislocation may be accurately determined.

On arriving at Staithes, a much greater dislocation demands our attention. The cliffs on the opposite sides of this harbour display fine sections of strata; and it is with surprise we perceive that they are quite dissimilar. The signal cliff on the east has a diluvial covering, and beneath it hard shale, irony, and rugged, with great balls of ironstone; soft shale, with a remarkable sulphureous line in it; and the ironstone series, consisting of layers of ironstone nodules and beds, alternating with shale. But in Colborn nab, on the west side, we find a diluvial covering, and beneath it a series of alternations of shaly and sandy beds, in some of which are an indescribable profusion of fossils, especially cardium truncatum, pectines, and dentalia; and at the bottom the deeper lias shale, with a few layers of ironstone nodules. The extent of this dislocation is obviously something greater than the whole height of Colborn nab; for all the strata which it exhibits are naturally placed below the lowest of those in the signal cliff: they are therefore elevated about one hundred and fifty feet higher on the west than on the east side of the harbour.

This being a place where the ironstone and marlstone series are seen to great advantage, I have drawn an enlarged section of the opposite cliffs, which should be connected with the following reference:

a. Diluvial clay and pebbles lying on the top of the cliffs, on both sides of the harbour.
DESCRIPTION OF THE COAST.

In the cliff on the east side occur the following beds:

a. Hard shale, irony and rugged, with great balls of ironstone.
b. Soft shale, with a remarkable sulphureous line in it.
c. Ironstone series; consisting of layers of ironstone nodules alternating with shale. Pectines, terebratulæ, belemnites, and wood, are abundant in this group.

colborn nab cliff on the west side of the harbour contains strata which in other places on the coast are seen to lie beneath a, b, c, though in consequence of the great dislocation they here front them on a level.

d. Alternations of shale, and thin, soft, sandy beds.
e. Alternations, mostly consisting of sandstone.
f. Sandstone and shale, with numerous fossils.
g. The lower alum shale, with layers of ironstone.

The dislocation at Staithes is the last which I shall have occasion to notice. For though the declinations of the strata in the lofty cliffs beyond is variable and subject to flexures, there is no fault or break whatever. Another general fact is, that the deeper shale, which shewed itself at the foot of colborn nab, is uniformly found in the lowest parts of the cliff, from that point to Saltburn. It rises from colborn nab towards the precipices of Boulby, and there attains an elevation of about one hundred feet. It encloses nodules of ironstone in rather distant layers, and many fossils, as belemnites, plicatulæ, pectines, gryphææ, wood, &c.: from this height it sinks down to almost the level of the sea, at the Lofthouse boiling-houses, and so continues across the bay at Skinninggrave, but further on it ascends, and in the loftiest point of Huntcliff seems to be one hundred and eighty feet above high-water. It falls again towards Saltburn, and terminates against the diluvial cliffs there at an altitude of about fifty feet. It appears, then, that nowhere on this part of the coast is the lower shale disclosed in greater thickness than two hundred feet, whereas, in consequence of the great fault at the Peak, three hundred feet are there seen in the cliff. Toward Staithes the low-water scars of this shale are rendered interesting by the singular appearance of the sandstone and ironstone masses, which look like mushrooms
on little pedicles of shale. They have evidently protected the shale beneath them from wasting.

The sandy conchiferous marlstone beds, which in Colborn nab cover the lower lias shale, are seen rising with it, and contributing to swell the altitude of Boulby and Rockcliff. The lower part of this series is generally the most solid, and projects in broad compact floors above the lias. On the surfaces of such beds lie innumerable multitudes of oysters, dentalia, pectens, cardium truncatum, avicula inaequivalvis, and, more rarely, about Staithes, * beautiful fossil star-fishes of the genus ophiura. The marlstone may be well examined on the shore from the boiling-houses of the Rockcliff works to Skinninggrave, for there the beds come near to the level of the sea. But along the whole coast fallen masses of this rock abound, and will richly reward the researches of the industrious collector. Above lie the ironstone courses which were noticed on the side of Staithes harbour. These range uninterruptedly across the front of Boulby and Rockcliff, and again shew themselves in the highest part of Huntcliff. Still higher in Boulby and Rockcliff, we trace the soft shales and hard shales with limestone nodules, which were observed at Kettleness and near Staithes; on these lies the great bed of aluminous shale, which is so extensively worked, and the whole is surmounted by the sandstone cap rock.

In Boulby cliffs, then, we have the whole series of lias beds exposed, and are thus enabled to group the minuter parts of the formation into convenient natural divisions, and to apply these to complete other less perfect sections.

The statement in the following page, referring by figures and letters to the general and enlarged section, presents a summary view of the whole lias formation visible in the northern cliffs.

* Mr. Miller, of Bristol, informs me that fossil specimens of ophiura have been found in the lias at Fretherne, in Gloucestershire.
15. Upper lias shale in three divisions:

a. Alum shale, mostly of a dark colour, and smooth equal texture, fissile into thin laminae, very sulphureous, and rich in ammonites, belemnites, nuculæ, amphidesmæ, unioniform shells, &c. It is exclusively employed for the manufacture of alum, and varies in thickness from one hundred and forty to one hundred and eighty feet.

b. Hard lias shale, much less fissile than the above, containing nodules and lenticular masses of argillaceous limestone, sometimes coated by pyrites. This is occasionally very irony, and, in consequence, much discoloured: twenty to thirty feet. It projects like a solid rock along the breast of the cliff, and is excavated into caverns at their base.

c. Softer layers of alum shale similar to 15 a, with a few courses of ironstone balls, and a remarkable line of sulphureous shale in the middle: twenty to forty feet.

16. Ironstone and marlstone series, consisting of

a. The ironstone bands, which are numerous layers of firmly-connected nodules of ironstone, often septiarate, and enclosing dicotyledonous wood, pectines, aviculae, terebratulae, &c.: twenty to forty feet.

b. The marlstone series, consisting of alternations of sandy lias shale, and sandstones, which are frequently calcareous, and generally full of shells. The lower beds are usually most solid, and project from the cliffs in broad floors, covered with pectines, cardia, dentalia, aviculae, gryphaæ, &c. Thickness variable from forty to one hundred and twenty feet.

17. Lower lias shale, more solid, less fissile, and generally of coarser and more sandy texture than 15, with a different suite of organic remains, amongst which plicatulae, gryphaæ, and pinnæ are, perhaps, most characteristic. Thickness exposed in Huntcliff less than two hundred feet, at the Peak three hundred feet, but the bottom is nowhere seen.

Huntcliff has the advantage of shewing a greater thickness of the lower shale than Rockcliff, but its series is very incomplete above; the upper shale having retired inland beneath the beacon. There is hardly any diluvial matter observable on the high summits of Rockcliff, but it occupies a large portion of the lower cliffs near Skinningrave; is in considerable quantity on Huntcliff; and gradually thickens toward Saltburn,
till at length the lias formation is abruptly truncated, and the whole cliff is diluvial. Henceforward to the Tees no regular stratum appears in any cliff beneath the diluvium, but at low-water, opposite Redcar, the lower shale with characteristic fossils stands up in bare hard rocks.

HAVING thus brought to a close the descriptions of the strata of the Yorkshire coast, it remains to add a few remarks on the composition of the diluvial accumulation which is visible on so many of the cliffs between Bridlington and the mouth of the Tees. These remarks, if introduced in detached portions amongst the descriptions of the solid strata, would have been much less intelligible, than when brought into one point of view.

As in Holderness and at Flamborough, so in the more northern cliffs, the most abundant of the diluvial accumulations is a mass of clay unequally filled with a variety of pebbles, and occasionally divided by partial deposits of sand and gravel. These are the materials heaped in such profusion along the shores of Filey bay, Cayton bay, Carnelian bay, and the south and north cliffs of Scarborough, as well as in the retiring cliffs of Robin Hood's bay, Upgang, Runswick bay, Skinninggrave bay, and the long range of coast west of Saltburn. Nor, though most plentiful in the hollows of the coast, is it unknown in the heights, for it occupies the very highest precipice of chalk, four hundred and thirty feet above the sea, lies in abundance on Gristhorpe, and covers the summit of Huntcliff.

To give a complete catalogue of all the varieties of pebbles which lie in this clay, would be a work of great labour and little interest. Such comparisons are important only in proportion to the light they throw on the probable direction in which the waters moved, that transported them to their present localities; and this object is better attained by selecting
a few well-defined rocks, than by gathering loads of ordinary specimens. We find mixed up in this diluvial clay, fragments of rocks belonging to the granitic and slate series, as well as to the independent and secondary formations: and it is often possible to determine the districts, and even the particular hills from which they have been drifted. Thus we trace back to Shap fell its porphyritic granite; to Carrock fell its sienite and greenstone; to the Grasmere mountains their amygdaloidal graywacke; to Kirby Stephen its calcareous breccia; to Teesdale its greenstone; and to Western Yorkshire its limestone, sandstone, and coal. But it is from Durham that we have derived the concretionary limestone of Building hill, and we must seek in Scotland, and perhaps Norway, for the original sites of our garnet slate, porphyries, amygdaloids, hornblende, diallage, and hypersthene, and a still greater distance has been travelled over by the fragments of Labrador felspar. Generally speaking, we may say the waters which brought together the heterogeneous mass of diluvium which loads the coast of Yorkshire, flowed from various points of the compass between N. and W.

Besides these effects of diluvial streams flowing from great distances, we trace the results of less extensive currents. The wasted cliffs of Robin Hood's Bay have probably furnished the numerous lias and marlstone fossils which abound near the spaw at Scarborough, and in the cliffs of Holderness; sandstones from the neighbouring moors lie on the cliffs between Scalby and Cloughton Wyke; and the chalk rocks of Flamborough have been scattered in fragments through the clay cliffs from Bridlington to Hornsea. The remarks on page 50, as to the comparative degree of attrition of the boulders, are applicable to the whole coast of Yorkshire. The largest masses are always observed to be granite, mica slate, greenstone, or mountain limestone. Of these rocks, large fragments, which have fallen from the ruined cliffs, may be seen at intervals near the low-water mark, opposite Dimlington height, under the Danish dyke, and on the summit of the beacon cliff at Flamborough, on the shores of Filey, Scarborough, Robin Hood's Bay, Skinningrave, and Saltburn. It is not even uncommon to see many such boulders together, each weighing perhaps a ton.
REMARKS ON THE DILUVIUM.

It is difficult to assign the native repositories of the beautiful agates, heliotropes, and jaspers, which are found on the shores of Holderness, Speeton, and Scarborough, after the wintry storms have caused the fall of some portions of the diluvial cliffs. They are probably all productions of trap rocks, possibly derived from the hill of Kinnoul and other amygdaloidal basalts of Scotland. The question as to the nature of the beautiful dendrizations in moss agate remains unsettled; for Dr. M'Culloch's ingenious experiments leave doubts on their vegetable origin, which botanical investigation has not removed. Jet, another interesting product of this diluvium, may be traced to the neighbourhood of Lyth, where considerable masses of it have been obtained from the cliffs of alum shale. It also occurs in other parts of the lias series, rather frequently in the lower shale near Skinninggrave, generally in connexion with fossil wood, of which it forms the external layers. Seams of it also divide sandstone blocks in Hawsker bottoms. Magnetic sand (oxydulated titaniferous iron) occurs in great plenty on the shore where diluvial cliffs are exposed to rapid waste, or their disintegrated materials are retained in some sheltered bay. It is particularly abundant at Scarborough and near Hilston in Holderness.

Teeth and tusks of the mammoth are almost the only remains of quadrupeds, which I remember to have been found in the diluvium of this coast, and these have been obtained at several points near Hornsea, Bridlington, Scarborough, and Robin Hood's Bay. Remains of the same kind, with or without bones and teeth of oxen, deer, and horses, have been found in gravel pits at Bransburton, Hessle, and in the vale of York. Upon the whole, therefore, the diluvium in the eastern part of Yorkshire possesses the general characters of that deposit, and agrees, in a particular manner, with the accumulations of the same era which have been so long known and so well examined in the eastern part of Norfolk.
CHAPTER IV.

Organic Remains of the Eastern Part of Yorkshire.

That vegetable and animal remains should be enclosed in hard rocks, in prodigious abundance and of exquisite beauty, has been a subject of admiration from very early periods. The difficulty of conceiving how the rocks could be so softened and dissolved by the deluge, (to which all geological phenomena were attributed in the 17th century,) as to admit shells and plants into their substance, induced Plot and Llwyd, and even Ray and Lister, to deny that these fossil bodies had ever been living beings. This absurdity gradually yielded to the talent and industry of Woodward; and is remembered only to be ridiculed. It is now universally admitted by naturalists that fossils are the reliquæ of beings once endowed with life; and that all the difference in appearance between them and analogous recent objects, has been caused by circumstances attendant on their long sepulture in the earth.

The earth contains reliques of perhaps the most ancient plants and animals which existed on this globe, and they lie enclosed in rocks of different chemical composition, at various depths and of unequal antiquity. According to their original qualities, and the circumstances in which they were placed, fossils have undergone different changes of substance.

Few organic bodies are preserved in the earth, except such as were originally of a durable constitution. Remains of plants are common in coal districts, wood is found in many limestone rocks, nuts and hard fruits have been obtained from the Isle of Sheppey: zoophytes of many kinds fill our limestone and sandstone rocks; thus the horny substance of spongiae, and the calcareous mass of corals is accurately preserved: the columns of crinoidal animals, and the hard crusts of echini are very
plentiful: shells are innumerable: the crusts of lobsters and crabs, and
the scales of fishes are scarce, but teeth and vertebrae of the latter are
more abundant: aquatic reptiles have left us their bones. Now all these
were originally durable; they are all capable of conservation in our
cabinets; but the softer animal substances once connected to them,
have entirely disappeared. Even the ligament which is placed at the
hinge of bivalves to open the shell, is most rarely preserved in a
fossil condition. Considerations of this nature render it extremely pro-
bable, that the process of mineralization, or (as it is commonly called)
petrifaction, was slow and gradual.

Another general remark must be made to present misconception. Fos-
sils are at some places found perfect, at other places in fragments. Now
they must have been enveloped in these conditions respectively. From
carefully observing these appearances, we may form pretty clear notions
as to the tranquillity or agitation of the fluid in which they were de-
posited. In general, substances originally bound together by perishable
ligaments are found in detached pieces, owing to the decay of those
parts previous to their being enclosed in the rocks. Thus the shells of
crabs and lobsters are commonly disintegrated, bivalves are often sepa-
rated, and vertebrae and teeth of fishes scattered far asunder in the
rock. Such instances as these occur daily in our streams and on the sea-
coast, and, therefore, in former periods may have happened without any
particular agitation of the waters.

Some beds of shells, as the forest marble of the neighbourhood of
Bath, appear to have been accumulated with violence and confusion:
but generally the sharpness of their angles and perfection of their orna-
ments lead to the conclusion that they were quietly entombed near the
spots where they lived.* The vegetable fossils are, however, a remark-
able exception to this, and, being almost always in fragments, seem to

* Consult the Preface of Mr. Smith’s works, Strata identified by Organized Fossils, and Stra-
tigraphical System of Organized Fossils; and Cuvier’s Theory of the Earth, for illustrations on this
point.
point out a general turbulence in the waters at the period of their de-
position. I must not go further into the cause of this exception, than
to state, that if, as is believed, nearly all these vegetables grew on land,
and were thence transported to the sea, they would naturally be broken
to pieces by that operation.

The chemical changes which fossil plants have undergone are
various, and seem partly to depend on peculiarities in their original
structure, and partly on the nature of the strata which enclose them.
Thus the fibrous wood of dicotyledonous plants found in the limestone
of Malton, appears as a brown carbonaceous mass, much traversed by
calcareous spar: that which lies in the calcareous gritstone beneath, is
sometimes impregnated with siliceous matter; but in the aluminous
shale of Whitby, such wood is partly converted to jet, and partly filled
with pyrites, or calcareous spar. The ferns and other monocotyle-
donous plants which lie in the sandstones and shales of our coal districts,
are very differently preserved. Whatever be the kind of plant which
is found in shale or fine-grained gritstone, all that remains of its sub-
stance is coal, often of the purest and most inflammable quality. In this
case we may suppose the decomposition of the vegetable matter to have
been slow and gradual; and being operated under a close covering of
shale or gritstone, the resulting chemical substances were prevented
from escaping, and made to combine into a new inorganic compound,—
coal. The same plants lying in coarse sandstone retain very little of
their original substance, perhaps on account of the porosity of the rock,
which might both favour the decomposition of the plant, and hasten the
escape of the resulting gases, and soluble matter.

After investigating the changes which have happened to fossil plants,
no reasonable doubt can be entertained as to the vegetable origin of all
our beds of coal. Perhaps the different qualities of coal may be in a
great degree owing to the nature of their constituent plants.

The hard parts of invertebral animals, which are preserved in the
earth, are closely allied to each other in chemical composition. In all
of them, glutinous or gelatinous matter forms the base, and is more or less hardened by admixture with carbonate of lime. Soft corallines, echini, and the coverings of crustaceous animals, contain likewise some phosphate of lime, but generally in small quantity. Four principal states of preservation may be distinctly observed among these fossils.

First, when the coralline or shell retains not only its external figure and appearance, but even its internal texture and almost all its original substance. Such specimens look as if obtained from the sea in a dead state, with no other loss than that of colour and brilliancy. This perfect state of preservation is well exemplified in the beautiful fossils which lie in the comparatively recent strata near London and Paris. The fossil shells of Speeton on the Yorkshire coast are very little altered except by the loss of their gelatinous matter, which causes them to be of a chalky or friable consistence.

In the second condition of fossil shells and corallines, the figure and general appearance is little or not at all altered, but the composition is completely changed by the insinuation of extraneous matter: thus the calcareous substance of shells and corals, and the horny fibres of sponge, are become flint. In such cases the new substance appears to have been introduced gradually, so as to fill the pores of the perishing original body. The same explanation probably applies to the petrifaction of wood.

The third condition is exemplified by those stony masses frequently found in limestone quarries, which have the general figure of shells, but not their structure nor texture. These are casts or moulds in the cavities of shells, which have been dissolved and carried away from the places they once occupied in the rock. In consequence, the cavity left retains the exact impression of the outside of the shell, and encloses a stony mass which was moulded within it. The same explanation applies to the flint moulds in the cavities of echini, and to the screw-stones which are casts in the central hollow of crinoidal columns.
The fourth condition of fossil shells, &c. is produced by a process in addition to that just described. The cavity left by the removal of the shell is, in this instance, filled again by crystals of carbonate of lime, introduced by water filtrating through the stone. When this process is but partially executed, the cavity is imperfectly lined with crystals, but when it is completed, the new substance takes exactly the form of the original shell, but displays no trace whatever of its internal structure. In the Yorkshire oolites, the thick shells of trigonia and gervillia exhibit this metamorphosis in a very striking manner.

That the peculiarities in the fossil shells and analogous reliquiae, depend much on the original nature of the bodies, is evident from the following well-known facts; the shells and spines of echini, and the columns of erimoidea are almost invariably converted to a peculiar kind of calcareous spar, in whatever strata they may be found; so the belemnite is always known by its radiated structure, and the gryphite has retained its original laminae. But the nature of the imbedding substance is also of great consequence in the inquiry. Shells which lie in the green sand are generally converted to flint; those which lie in oolite are often changed to calcareous spar; but those which lie buried in clay seldom exhibit either of these characters.

The interesting subject of the conservation of fossils might be extended to great length; but as these explanations were introduced chiefly to facilitate the understanding of terms which will afterwards be employed, there is room only for another observation on the bones and teeth of vertebral animals, which are principally composed of phosphate of lime, united by a cartilaginous substance. Remains of this kind being much fewer than those of the preceding tribes, do not afford so great a variety of mineral appearances. On the contrary, their state of preservation is remarkably uniform, under whatever circumstances they are found. Fish teeth, for example, are always recognised by a peculiar polish and hardness, and are commonly of a black colour (except in chalk.) They retain the whole of their phosphate of lime, but part of the animal substance is generally replaced by an additional quantity of carbonate of
lime, which accounts for their high specific gravity. Bones of fishes and aquatic reptiles retain their cariose texture, and frequently their original composition.

DISTRIBUTION OF FOSSILS.

Modern naturalists have discovered in the earth the remains of several hundred different plants, and several thousand kinds of animals. The peculiarities of form and structure among fossils are as constant and defined as among the living productions of nature, and the species are often as well distinguished. Upon comparing them with existing races, it is discovered that they are generally quite distinct; so that the fossil tribes, in some degree, appear like a separate creation, and have been elegantly termed “organic remains of a former world.” But though different in detail, the ancient and existing races of organic nature are alike in generalities, and analogous in essential points of structure; and forcibly urge us to conclude that they were destined for similar modes of life. In the present economy of nature, plants of particular structure are appointed to exist under particular circumstances; shells of certain forms are peculiar to water, and others live habitually on land; and, generally, so constant is the agreement in the structure and functions of organic beings, that from the one we may infer the other. Who, that views the striking general resemblance of fossil and recent bodies, and considers the similar accidents to which both have been exposed, can hesitate for a moment to admit that conclusions drawn from examination of the structure of fossils, are as valid as those which are inferred from recent examples. The principle of investigation is in both cases the same, viz. the inevitable accordance between the construction of the creature, and the uses for which it was created.

From examinations conducted on this principle, it is inferred that the secondary strata contains remains of marine, lacustrine, and terrestrial
plants; of marine and fresh-water shells, crustacea, and fishes; and of aquatic and terrestrial reptiles, mammalia, and birds. This simple statement furnishes ground for most interesting deductions respecting the ancient condition of the globe. We cannot, indeed, determine what was the comparative extent of its seas, lakes, and dry land, but we may form very reasonable opinions concerning its temperature, and a tolerable history of its inhabitants at different periods. For as the order of successive position among the rocks is likewise that of their relative antiquity, the fossils collected from these rocks may be arranged in chronological order.

The fossils of Britain thus arranged, (according to the example of Mr. W. Smith,) present us with many curious and important results. The following instances are selected rather to shew the richness and beauty of the subject, than to include all that is known respecting it.

The organic reliquiae of animals are more ancient than those of plants, for they lie in the slate rocks of Cornwall and North Wales, whilst no plants have yet been found in any rock older than the lower red sandstone. The most abundant fossil remains of plants belong to terrestrial tribes; but the animal reliquiae are mostly of aquatic origin; and very few examples are known of any bones of terrestrial animals occurring in strata more ancient than those above the chalk.

The most ancient animal remains are those of bivalve shells, (spiriferæ,) such as are not known to exist at present. The most ancient fossil plants which appear in the lower carboniferous rocks, almost wholly belong to terrestrial genera of the natural monocotyledonous orders, filices, lycopodiaceæ, and equisetaceæ, and, by their analogy to existing tropical tribes, seem to demonstrate that the climate of these northern regions was then warmer than it is at present.

The fossil plants of the middle æra, which accompany the lias and oolitic rocks in Yorkshire and Sutherland, belong chiefly to the natural
monocotyledonous orders, filices, lycopodiaceæ, equisetaceæ, and cycadææ, but fragments of dicotyledonous plants also occur with them.

The least ancient group of fossil plants, which are enclosed in strata above the chalk, are a mingled suite of monocotyledonous and dicotyledonous tribes, both terrestrial and lacustrine, bearing considerable analogy to plants now in existence. The greater number of fossil shells are certainly marine, but those which lie in layers amidst the monocotyledonous plants of the carboniferous formation, belong almost wholly to fresh-water genera, now in existence. Other local aggregations of fresh-water shells occur in the upper part of the oolitic series of rocks; but a general deposit of this kind occurs among the most recent, and contains species very similar to those that now exist.

The greater portion of the most ancient fossil shells, &c. belong to genera now extinct, as the productæ, spirifera, pentameri, orthoceratites, trilobites, and many genera of crinoidea; and on the other hand, the least ancient of the fossils, though specifically distinct from existing races, are mostly included in the same genera.

But the most important results to geology, arising from the contemplation of organic remains, are founded on a minute scrutiny of their specific characters, and a careful register of their localities in the strata. It is not enough for the rigid accuracy of modern inquiry, to say that a given rock contains corals, shells, and bones of fishes; but we must know the particular species, and determine all the circumstances of their occurrence. The more exact and extended our researches on this subject become, the more clear will be our statements on the succession of created beings, the more certain our applications of zoological principles to determine the relative antiquity of rocks, and the more satisfactory our views of the formation of the strata. Works which, like the present, profess to describe the rocks and fossils of a particular district, lose a large portion of their utility if they are composed without reference to general principles. It is in such local catalogues that the
man of enlarged views in geology ought to find the best evidence of important truths, and the means of correcting serious errors. For these important ends, it is necessary that every known locality in the strata should be recorded of every fossil. For want of this precaution, fossils have been often stated to be characteristic of a particular rock, when in truth they occur in several others; and thus a crowd of errors have been introduced, which have obscured the truths taught by Mr. Smith, and given occasion for denying that a comparison of their imbedded fossils is useful in identifying and discriminating the strata. Deeply impressed with the interest and importance of this subject, I have sought the means of placing it in a clear and correct light; and am not without hopes, that whether my views be received or rejected, my statements will be found unprejudiced, and, though incomplete, correct.

I shall now endeavour to investigate some of the general laws, respecting the relation of fossils to the strata, which are either already recognised and admitted among geologists, or unfolded in the following pages. The inquiry naturally divides itself into two parts, according as the strata are considered, with respect to their chemical and mineralogical composition, or their relative antiquity. Considering rocks as definite chemical compounds, (an assumption sufficiently exact in a limited district,) we may inquire if fossils of the same kind belong to strata of the same character.

A decisive answer in the affirmative will suggest itself to him who observes the agreement in this respect, between the transition limestone and the mountain limestone, in their bivalve shells and trilobites, between this latter rock and the oolites in their astreæ, turbinolææ, and milleporæ; and between the oolites and the chalk, in some of their echini and terebratulae. But this analogy vanishes altogether when we attempt to extend it to a considerable series of fossils; no other strata than the limestones exhibit it in a striking degree, and few tribes of organic remains can be quoted in illustration, except the radiaria. On the contrary, the shells of the mountain limestone, oolite, and chalk, are all
entirely distinct from one another, and immediately suggest the second inquiry, to which we now proceed. What is the relation between the species of fossils, and the antiquity of their enveloping strata? That such a connexion between the age of a rock and its organic contents does certainly exist, and may plainly be recognised, will appear from a few facts which any one may verify by examining a good collection of Yorkshire fossils, or a sufficient suite of specimens from the same strata in other parts of England. The mountain limestone of the north-western dales of Yorkshire, abounds with crinoidea, productae, spiriferae, and bellerophontes, of which no single individual has ever been found in the strata of the eastern part of the county, which on the other hand, contain echini, trigoniae, cucullæae, rostellariae, and ammonites, to which there is nothing similar in the west. The partition between these groups of strata and their fossils is made by the red sandstone stratum, which, in Yorkshire at least, has never yielded one single organic fossil. The same observation has been made in other parts of England. Again, in the eastern part of Yorkshire itself, a complete partition of the same kind is made by the blue clays of the vale of Pickering, between the chalk on the south and the oolitic rocks on the north; both full of fossils, and those entirely different.

I am sure that these assertions will not be disputed by any person at all acquainted with geological phenomena, or accustomed to distinguish the characters of fossils. The consequence flowing from them is of the highest importance and interest; for since it thus appears, that a few shells brought from a quarry, are data sufficient to determine the geological relations of the rock, we are entitled to conclude, that in a given district the age and position of certain strata, or groups of strata, are infallibly indicated by their organic contents. These researches, commenced by Mr. Smith in England, have been extended with the same results over all parts of Europe, and a large portion of America, and therefore it is concluded that strata, or groups of strata, are to be discriminated in local regions, and identified in distant countries, by their imbedded organic remains.
Having thus obtained the general principle, let us endeavour to ascertain the extent of its applicability, and the precautions necessary to ensure accurate results.

So unequally are the different species of fossils distributed in the earth, that, whilst some are dispersed through several neighbouring strata, as clypeus clunicularis among the oolitic rocks, others are confined to one stratum, as ammonites calloviensis to the Kelloways rock, and some to a particular bed of stone, as the astræ which characterise the coralline oolite.

It is, therefore, possible, by collecting numerous specimens procured from a limited district, to assign to each formation of strata, single stratum, or even characteristic bed of stone, all the fossils which have ever been discovered in it. Such catalogues being compared, formations, strata, and beds, may be found to differ from one another by the presence or absence of particular species. A given formation may possess species never found in any of those above, and it may be deficient in others which do occur above, and in like manner it may differ from those below. Hence it may be concluded,

1. That a formation or stratum may differ from all those above it, by the presence or absence of certain species, and from all those below it, by the presence or absence of other species:

2. That it may contain some particular species, unknown either above or below. We may add, that formations and strata may differ by the relative abundance or paucity of their imbedded fossils.

EXAMPLES.
1. The coralline oolite formation, as defined p. 32, appears to me to differ from all the formations above, by the presence of ammonites per-armatus, mya literata, and clypeus clunicularis, and by the absence of ostrea delta, hamites, and ananchytes; and from all those below, by the
THEIR DISTRIBUTION.

presence of spatangus ovalis, and ammonites perarmatus, and the absence of productae, axini, ammonites Walcottii, nerita costata, astarte minima, and terebratula digona.

2. Again, the Kelloways rock differs from all the strata above it and below it, by the presence of ammonites calloviensis, and gryphaea dilatata: no stratum in Yorkshire but the Kimmeridge clay contains ostrea delta; nor is gryphaea incurva found except in lias beds or lias boulders.

3. It is in the lower part of the coralline oolite that clypeus dimidiatus, and c. clunicularis abound, but melania striata belongs to the upper layers of that rock.

These are the principles of investigation which it is proposed to apply to the strata and fossils of the eastern part of Yorkshire, and to illustrate by the aid of the arranged catalogues which follow, and their accompanying plates.

I shall first present complete lists for each stratum, of all the fossils found in it, distinguishing those which are repeated in other strata, and referring to figures contained in this work; Mr. Sowerby's Mineral Conchology; Mr. Smith's Works; Mantell's Geology of Sussex; Young and Bird's Survey of the Yorkshire Coast; Parkinson's Organic Remains, &c.

After thus unfolding the evidence which I have collected on the subject, I shall venture to propose some inferences concerning the distribution of organic remains in the rocks of the country which I have undertaken to describe, and likewise endeavour to trace the extent of the agreement in this respect, between the strata of Yorkshire and those of Scotland, the southern counties of England, and several parts of the continent.

Lastly, I propose to combine the whole into one synoptic list of the organic remains mentioned in this work, arranged in the ascending order
of their natural affinities; accompanied by references to their place in the scale of stratification. As a considerable portion of the fossils herein mentioned have not been previously described or figured, it has become necessary to assign names to them. In the execution of this duty, manuscript names, when attainable, have been generally adopted, and, instead of specific characters, a figure, of the natural size, or in the proportion expressed by the contiguous fractions, is given to illustrate every new species. New figures have sometimes been added of fossils but little known, highly important, or not before represented with proper fidelity; but this has been seldom judged necessary with respect to common species, for which a reference will be found to some generally known and accessible work on the subject.

FOSSILS OF THE WHITE CHALK.

ZOOPHYTA.

Spongia...(Alcyonium of authors. Ventriculites, &c. Mantell)

fungiform species.

1. *plana* Pl. I. fig. 1. Dane’s Dike, Bridlington.
2. *capitata* fig. 2. ... Ditto.
3. (like 2, but with a rounded edge) fig. 3. ... Ditto.
4. *osculifera* fig. 4. ... Ditto.
5. *Bennettiae* (Ventriculites, Mantell) Ditto.
6. (a species with large internal verrucae) Ditto.
7. *convoluta* fig. 6. ... Ditto.
8. *marginata* fig. 5. ... Ditto.

funnel-shaped species.

9. *radiciformis* fig. 9. ... Ditto.
10. *terebrata* fig. 10. ... Ditto, &c.

ramose species.

11. *porosa* (or a variety of *S. alcyonoides?) fig. 8. ... Ditto.
12. *laevis,* the surface without reticulated meshes Ditto.
13. *aleyonoïdes* (Smith, fig. 1.) } Ditto & Brantingham.
14. *cribrosa* fig. 7. ... Dane’s Dike.

ramose species.

15. *ramosa?* (Mantell, Pl. XV. fig. 11.) Ditto.
FOSSILS OF THE WHITE CHALK.

Lunulites urceolata, Lam. ... Pl. I. fig. 11. Dane's Dike.
Millepora ? globularis ... fig. 12. Ditto.
Caryophyllia centralis (Mantell) ... fig. 13. Ditto.
A species of cellepora Knapton.

Radiaria.

Apiocrinus ellipticus (Miller's Crinoidea) Dane's Dike.
Marsupites ornatus (Miller) ... Pl. I. fig. 14. Ditto.
Cidaris (with its spines attached) Ditto.
Galerites.—1. albogalerus (Org.R.Pl.II.f.10.) ... Hessle.
 2. subtrotundus (Mant.xvii.fig.15.) ... Dane's Dike.

Ananchytes.—1. ovatus (Smith, Strat. ident. fig. 10.) ... Dane's Dike, &c.
 2. hemisphaericus (Cuv. et Brong.v.fig.8.) Dane's Dike.
 3. intumescens (with five swellings round the vent) ... Ditto.

Spatangus.—1. cor anguvinum (Cuv. et Brongn.iv.fig.11.) Dane's Dike, &c.
 2. planus, (Mantell) ... Pl. I. fig. 15. Dane's Dike.
 3. hemisphaericus ... Pl. I. fig. 16. Knapton and Danes' Dike.

Mollusca.

Inoceramus.—1. Cuvieri (Min.Conch.tab.cce xli.) ... Hunmanby, Etton, Hessle, Cottingham, &c.
 2. Brongniarti ? (Min.Conch.tab.cce xli.) Hunmanby.
 3. cranium, a large smooth species ... Ditto.

Terebratula.—1. subundata (Min.Conch.tab.15.) ... Dane's Dike.
 2. semiglobosa (Min.Conch.tab.15.) Ditto.
 3. pentagonalis ... Pl. I. fig. 17. Ditto.
 4. subplicata (Mantell,xxvi.5,6.) ... Dane's Dike, Etton.

Dianchora striata (Min.Conch.tab.lxxx.) Dane's Dike.
Belemnites.—1. mucronatus (Cuv. et Brong.iii.fig.1.) ... Ditto.
 2. a slenderer species Ditto.
FOSSILS OF THE RED CHALK.

Spongia? ramose subcylindrical masses Goodmanham.
Inoceramus Cuvieri, jun. Speeton Cliff.
Terebratula subglobosa, jun. Ditto.
Belemnites Listeri Pl. I. fig. 18. ... Speeton, Goodmanham, &c.
Serpula Pl. I. fig. 17. ... Speeton Cliff.

The fossils of the Yorkshire chalk, enumerated in the preceding catalogues, are all which have fallen under my inspection; and they have been obtained almost exclusively from a particular part of the stratum, and indeed chiefly from one very favourable locality. Considerable additions to their number may, therefore, be reasonably expected, when the lower beds are more accurately examined; but it appears to be the truth that the chalk-pits inland are as unproductive as a part of the sea-cliffs is rich in organic remains.

At present the deficiencies in the Yorkshire series when compared with the chalk formation generally, are most observable in the molluscan and crustaceous tribes of animals, and in the reliquiae of fishes and reptiles. With regard to the latter groups, geologists know that these fossils are not spread, like shells, over a vast extent of country, but often confined to limited localities. The zeal and industry of Mantell have discovered them abundantly in Sussex, but few other parts of the chalk range in England, or on the continent, can be quoted for comparison. The species of fossil shells are not in any district very numerous in the chalk, but in Yorkshire some remarkable kinds are yet undiscovered; as plagiostoma spinosum, ostrea vesicularis of Lamarck, (gryphae globosa of Sowerby,) terebratula carnea, and t. plicatilis, of France and England, and the cirri and trochi of Wiltshire and Sussex.

The fossils, however, which are known to occur in the chalk of Yorkshire, are precisely those which have been always noticed by geologists.
as of most extensive occurrence in that stratum. The ananchytes, spatangi, inocerami, and belemnites, are precisely the shells which have been long since pointed out by Smith, Webster, Parkinson, and Mantell, as characteristic of the English chalk; and the same species have been recognised by Brongniart in the same stratum, not only over the wide surfaces which it occupies in France, but in the Netherlands, along the shores of the Baltic, and in Poland. It deserves attention that the interesting remains of spongiae are nowhere so well developed as in England, and perhaps nowhere in England so well as in Yorkshire. On the shore near Bridlington, they lie exposed in the cliffs and scars, and being seldom enclosed in flint, allow their organization to be studied with the greatest advantage.

FOSSILS OF THE SPEETON CLAY.

REMAINS OF PLANTS.

Wood, having the structure of dicotyledonous plants ... Knapton, Speeton.

ZOOPHYTA.

Caryophyllia conulus ... Pl. II. fig. 1. ... Speeton, also in blue marl, Cambridgeshire.

BADIABIA.

Spatangus argillaceus fig. 4. ... Speeton, also Wiltshire and Sussex? in blue marl.

Cidaris, plate and spines ... fig. 2, 3, 5. Speeton.

Pentacrinus caput Medusae (Miller’s Crinoidea.)

A round crinoidal column Ditto, also in green sand, Wiltshire.

MOLLUSCA.

Mya depressa (Min. Conch.) ... fig. 8. ... Speeton, also in Kimmeridge clay, Dorsetshire.

Mya phaseolina fig. 13. ... Speeton.

Pholas? constricta fig. 17. ... Ditto.
ORGANIC REMAINS.

Pholadomya decussata, (Mantell) ... Pl. II. fig. 9. Speeton, also in gray marl, Sussex.

Lutraria? fig. 14. Speeton.
Corbula punctum fig. 6. Ditto.
Tellina fig. 7. Ditto.
Isocardia angulata fig. 20, 21. Ditto.
Crassina laevis fig. 18, 19. Ditto.
Nucula ovata (Mantell) fig. 10. Speeton, also in blue marl, Sussex.

Nucula subrecurva fig. 11. Speeton.
Cucullæa fig. 16. Ditto.
Lucina sculpta fig. 15. Ditto.
Pinna gracilis fig. 22. Ditto.
Gryphæa sinuata (Min. Conch.) fig. 23. Speeton, also in Kent.
Pecten (a smooth species) Speeton.

Terebratula.—1. inconstans (Min. Conch.) Pl. II. fig. 24. Speeton, Knapton, also in Kimmeridge clay, Wilts, and Dorset.

2. tetraëdra (Min. Conch. tab. lxxiii. fig. 4.) ... Speeton. (Mr. Williamson.)
3. striatula (Mantell.) fig. 28. Ditto.
4. subundata (Min. Conch.) fig. 25. Knapton, Speeton, also in chalk.

5. lineolata fig. 27. Speeton, Knapton.
Oribcula, smooth oval species Speeton.
Turbo pulcherrimus (Bean MS.) fig. 35. Ditto.
Delphinula fig. 32. Ditto.
Turritella? fig. 38. Ditto.
Melania? fig. 39. Ditto.
Trochus reticulatus? (Min. Conch.) fig. 37. Ditto, too imperfect to identify the species which occurs in Kimmeridge clay, Wilts.

Solarium tabulatum fig. 36. Speeton.
Auricula obsoleta fig. 40. Speeton, resembles A. incrassata, Mantell, from the gray marl.

Rostellaria composita (Min. Conch.) fig. 33, 34. Speeton, also in gray marl, Sussex.
SPEETON CLAY.

Ammonites.—1. Lamberti? (Min. Conch.) ...
 Speeton, also in Kimmeridge clay, Wilts, and Dorset.
2. venustus ... fig. 48.
 Speeton.
3. concinnus ... fig. 47.
 Speeton, also in Kimmeridge clay, Wilts. (Smith.)
4. rotula (Min. Conch.)
 Speeton.
5. trisulcosus ...
 Ditto. Differs from A. rotula, by having only three constrictions on the whorls; grows to a large size.
6. marginatus ... fig. 41.
 young of ditto? ... fig. 43.
7. resembling a. parvus (Min. Conch.) fig. 46.
 Allied to A. Mantelli, of which it may prove to be one of the many varieties which in Sussex lie in gray marl.
8. hystrix fig. 44.
 Knapton, also in blue marl, Sussex.
9. fissicostatus ... fig. 49.
10. curvinodus ... fig. 50.
11. planus? (Mantell) ... fig. 42.
 Knapton, also in blue marl, Sussex.
 ... fig. 46.

Indeterminate fragments, which probably ...
belong to other species, occur at ...
Nautilus, a fragment Pl. III. fig. 1.

Belemnites.—1. (Smith, Strat. ident, &c.) ...
 Speeton.
2. a large species ...
 Ditto.
 Speeton, also in blue marl, Bedfordshire, and Kent.
 Speeton, also in Kimmeridge clay at Brantingham?
 Speeton, Knapton.

Hamites.—1. maximus (Min. Conch.) ... Pl. 1. fig. 20, 21.
 Speeton, also in blue marl, Sussex.
2. intermedius? (Min. Conch.)
 Speeton.
3. raricostatus fig. 23.
 Ditto, also in blue marl, Kent.
4. rotundus (Min. Conch.)
 Speeton.
5. attenuatus (Mantell) ... fig. 25.
 Speeton, also in blue and gray marl, Sussex.
ORGANIC REMAINS.

Hamites.—6. alternatus (Mantell) ... fig. 26, 27. Speeton, also in gray marl, Sussex.

7. Beanii (Young and Bird) fig. 28. Speeton.

8. plicatilis? (Mantell) ... fig. 29. Ditto, also in gray marl, Sussex. It grows to a large size.

9. Phillipsii (Bean MS.) ... fig. 30. Speeton.

ANNULOSA.

Serpula Pl. II. fig. 30. Speeton.

Vermicularia Sowerbii (Mantell) fig. 29. Ditto, also in gray marl, Sussex. Its whorls are either dextral or sinistral.

CRUSTACEA.

Astacus.—1. ornatus Pl. III. fig. 2. Speeton. Each individual lies in an oval nodule. The legs appear to have been very slender, but are not well understood.

2. claw of a large species fig. 3. Speeton.

REMAINS OF FISHES AND REPTILES.

Teeth and vertebrae of fishes Pl. II. fig. 51, 53. Speeton.

Teeth and vertebrae of saurian animals Pl. II. fig. 52, 54. Ditto.

Jaw-bone and teeth of a reptile fig. 55. Ditto.

Of seventy-one species contained in the above catalogue of Speeton and Knapton fossils, one (a belemnite) appears to be also found in the lower range of blue clay, which in Yorkshire corresponds to the Kimmeridge clay; four others occur in that stratum in Wiltshire and Dorsetshire; one (gryphaea sinuata) in the lower green sand range of Kent; twelve, or perhaps thirteen, belong to the blue and gray marls of Kent and Sussex; and one (terebratula subundata) is also found in the chalk. The conclusion to be drawn from this statement is, obviously, that the blue clay of
KIMMERIDGE CLAY.

Speeton in Yorkshire is especially to be referred to the gault or blue and gray marls of Cambridgeshire, Kent, and Sussex; but that it also contains some characteristic indications of the Kimmeridge clay, and therefore we should expect that in Yorkshire these two strata are not separated as in the South of England. This agrees exactly with all that can be observed of their geological position; for there is no evidence that any other stratum divides them, but on the contrary, much probability that they are in contact. Had ostrea delta been found at Speeton, there could remain no doubt on the subject; but as that fossil is known to lie near the bottom of the Kimmeridge clay, its presence at Speeton was not to be expected, because there the lower portion of the clay is not exposed. Lastly, though no layers of green sand occur in a distinct form in Yorkshire, chloritic sand accompanies most of the fossils at Knapton, and many of those at Speeton.

FOSSILS OF THE KIMMERIDGE CLAY.

Wood, agreeing in structure with dicotyledonous plants ... Elloughton.
Ostrea deltoidea (Min. Conch. and Smith, Strat. ident.) ... Kirby-Moorside, near Helmsley, Elloughton dale, Welton, also Wilts, Berkshire, and Dorset.
Belemnites Brantingham.
Ammonites plicomphalus? Kirby-Moorside.
Fragments of ammonites From Settrington & North Grimston.

The fossils of the Kimmeridge clay in Yorkshire, owing to the rarity of its exposure, are yet very imperfectly known. Ostrea deltoidea is believed to be characteristic of the lower part. It occurs at Elloughton, within a few feet of the red chalk; proving the great unconformity of strata beneath the Yorkshire wolds. (See Section No. 9.)
ORGANIC REMAINS.

FOSSILS OF THE UPPER CALCAREOUS GRIT.

These are not numerous, nor has the stratum itself much attracted the notice of geologists. (See Philosophical Magazine for April, 1828.) The few ammonites and pectines which I have seen in it, are also found in greater abundance and perfection in the lower calcareous grit.

FOSSILS OF THE CORALLINE OOLITE.

REMAINS OF PLANTS.

Dicotyledonous wood, in a carbonaceous powdery state.

Fruit of ? (Young and Bird, Pl. I. fig. 5.) Neighbourhood of Malton.

ZOOPHYTA.

Spongia.—1. floriceps Pl. III. fig. 8. Hackness, North Grimston.
2. A smooth species Malton, &c.

Turbinolia dispar. It varies in form, and }

is occasionally sub-proliferous fig. 4. Malton, &c.

Caryophyllia.—1. cylindrica fig. 5. Malton, Seamer, &c. &c. A similar species occurs in coralline oolite, Wiltshire.

Smith, fig. 3.

2. like C. flexuosa (Sol. and Ellis, Pl. xxxii. fig. 1.) Malton.

3. like C. cespitosa (Sol. and Ellis, Pl. xxxi. fig. 5.) Hackness, Malton, &c. and in Oxfordshire, &c.

Astraea.—1. favosioïdes (Smith, fig. 1.) fig. 7. Malton, Hackness, &c. and in Wilts and Oxon.

2. inæqualis, the cellules very unequal Hackness, Ebberston, &c. and in several of the oolites of the South of England.

3. microastron, the cellules small, equal Malton and Wilts.

5. cells circumscribed Malton.

6. tubulifera fig. 6. Malton, also Wiltshire.

Meandrina Malton and Wilts.
CORALLINE OOLITE.

RADIARIA.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentacrinus caput Medusæ (Miller)</td>
<td>...</td>
<td>Scarborough, Langton Wold, Wilts.</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>Filey Brig, Scarborough.</td>
</tr>
<tr>
<td>A round smooth crinoidal column</td>
<td>...</td>
<td>Malton, Scarborough, also in calcareous grit.</td>
</tr>
<tr>
<td>A subpentagonal muricated crinoidal column</td>
<td>fig. 9, 10</td>
<td>Malton, &c. also Calne in Wiltshire, (but never in chalk.)</td>
</tr>
<tr>
<td>Cidaris.—1. florigemma</td>
<td>...</td>
<td>Malton, Scarborough, &c. also in calcareous grit.</td>
</tr>
<tr>
<td></td>
<td>fig. 12</td>
<td></td>
</tr>
<tr>
<td>2. intermedia (Flem. Org. Rem. iii. Pl. IV. fig. 20.)</td>
<td>...</td>
<td>Malton, Slingsby, &c. also Wilts.</td>
</tr>
<tr>
<td>3. monilipora (Young and Bird, Pl. VI. fig. 3.)</td>
<td>...</td>
<td>Malton, also Wilts.</td>
</tr>
<tr>
<td>Echinus germinans</td>
<td>...</td>
<td>Malton, Scarborough, &c. also in calcareous grit.</td>
</tr>
<tr>
<td></td>
<td>Pl. III. fig. 15</td>
<td></td>
</tr>
<tr>
<td>Clypeus * with striated petaloidal ambulacra.</td>
<td>...</td>
<td>Malton? (Specimen in the Hull Museum;) also in inferior oolite.</td>
</tr>
<tr>
<td>1. sinuatus (Park. ii. fig. 1.)</td>
<td>...</td>
<td>Malton, Scarborough.</td>
</tr>
<tr>
<td>2. emarginatus</td>
<td>...</td>
<td>Malton, Scarborough, &c. also Oxon, and in several other strata.</td>
</tr>
<tr>
<td>* * with biporous straight ambulacra.</td>
<td>...</td>
<td>Malton, Filey, &c. also Oxon, Wilts, towards the bottom of the rock.</td>
</tr>
<tr>
<td>3. clunicularis (Smith, fig. 6.)</td>
<td>...</td>
<td>Malton, Scarborough, also Wilts.</td>
</tr>
<tr>
<td>4. dimidiatus</td>
<td>...</td>
<td>Oswaldford, Malton, also in calcareous grit, and Kelloways rock.</td>
</tr>
<tr>
<td>5. semisulcatus</td>
<td>...</td>
<td>Malton, also in calcareous grit, and cornbrash.</td>
</tr>
<tr>
<td>Spatangus ovalis (Park.)</td>
<td>...</td>
<td>Malton, Scarborough.</td>
</tr>
<tr>
<td></td>
<td>Pl. IV., fig. 23</td>
<td></td>
</tr>
<tr>
<td>Galerites depressus</td>
<td>...</td>
<td>Malton, &c. also in Wilts and Oxon.</td>
</tr>
<tr>
<td></td>
<td>Pl. VII. fig. 4</td>
<td></td>
</tr>
</tbody>
</table>

MOLLUSCA.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pholas recondita</td>
<td>...</td>
<td>Malton, Scarborough.</td>
</tr>
<tr>
<td>Modiola? inclusa (in coralline bodies)</td>
<td>...</td>
<td>Malton, &c. also in Wilts and Oxon.</td>
</tr>
<tr>
<td>Mya literata (Min. Conch. tab. 294.)</td>
<td>Pl. VII. fig. 5</td>
<td>Malton, also in cornbrash, &c.</td>
</tr>
</tbody>
</table>
ORGANIC REMAINS.

Pholadomya, resembling P. Murchisoni (Min. Conch.) ... Malton.
Amphidesma ? recurva Pl. V. fig. 25. Malton, also in Kelloways rock.
Psammobia lævigata Pl. IV. fig. 5. Scarborough, &c.
Tellina ampliata Pl. III. fig. 24. Malton, Wass Bank, &c.
Corbis lævis ? (Min. Conch. tab. 580.) Malton, also Oxon, in calcareous grit.

Crassina.—1. ovata (Smith) ... fig. 25. Malton, also Wilts & Oxon.
2. elegans (Min. Conch. tab. 137.) Malton, Scarborough, also in inferior oolite.
3. aliena fig. 22. Malton, Pickering.
4. extensa fig. 21. Malton.

Venus, a small cordate species ... Ditto.
Cytherea Pl. X. fig. 12. Ditto.
Corbula curtansata fig. 27. Malton, also in the Kelloways rock?

Cardium lobatum Pl. IV. fig. 3. Malton.
Isocardia.—1. rhomboidalis Pl. III. fig. 23. Ditto.
2. another smooth species Ditto.
Cardita similis (Min. Conch.) Pl. III. fig. 23. Malton, Scarborough, also Wilts, and in other strata.

Trigonia.—1. costata (Min. Conch. tab. lxxxv.) Malton, Pickering towards the top of the rock, also in other strata.
2. clavellata (Min. Conch. tab. lxxxvii.) Malton, &c. also in other strata.

Hippopodium ponderosum (Min. Conch. tab. ccl.) Malton, also in the lias.
Nucula, cast of the inside Pl. IV. fig. 4. Malton.
Cucullæa.—1. oblonga (Min. Conch.) Pl. III. fig. 34. Malton, also in the inferior oolite of Somerset, and calcareous grit of Oxon.

2. contracta fig. 30. Ditto.
3. triangularis fig. 31. Ditto.
4. pectinata fig. 32. Ditto.
5. elongata ? (Min. Conch.) ... fig. 33. Ditto, also in inferior oolite.

Arca.—1. quadrisulcata (Min. Conch. tab. cccclxxii.) Malton, (rare.)
2. amula Pl. III. fig. 29. Malton, also in other strata.

Modiola.—1. imbricata ? (Min. Conch. tab. cxxii.) Pl. V. fig. 28. Malton, &c.
2. unguulata (Young and Bird, tab. vii. fig. 10.) Malton, (rare.)
Pinna lanceolata Pl. IV. fig. 33. Malton; also in calcareous grit.

Perna quadrata (Lister, tab. cccclxxvii. and Min. Conch. tab. cccxci.) two varieties of it Pl. IX. fig. 21. Malton, &c. also in middle oolite.

Gervillia.—1. aviculoides (Min. Conch. tab. Ixvi.) Filey, Scarborough, Malton, towards the bottom of the rock; also in calcareous grit, Oxon.

2. another very large species Malton.

Avicula.—1. expansa Pl. III. fig. 35. Malton? also in the middle oolite?

2. ovalis, the upper valve is flat fig. 36. Malton, Scarborough; also in calcareous grit.

3. elegantissima (Bean) ... Pl. IV. fig. 2. Malton.

4. tonsipluma (Young and Bird, Pl. VII. fig. 15.) Ditto.

Plagiostoma.—1. leviusculum (Min. Conch. tab. cccclxxii.) Malton, Castle Howard, &c. also Oxon, and in the calcareous grit, Oxon.

(three distinct varieties.) Malton, &c. also Oxon.

2. rigidum (Min. Conch. tab. cxiv. fig. 1.) Malton, &c. also in calcareous grit, Oxon.

3. rusticum (Min. Conch. tab. ccclxxxii.) Malton, &c.

4. duplicatum (Min. C. t, dlix.) Pl. VI. fig. 2. Malton and Oxon; also in the calcareous grit and middle oolite.

Pecten.—1. abjectus Pl. IX. fig. 37. Malton; also in calcareous grit, Oxon.

2. ineâquitostatus ... Pl. IV. fig. 10. Malton, a large species; also Sutherland.?

3. cancellatus (Bean, Ms.) Malton, &c. and in middle oolite, &c.

(closely allied to P. cinctus (Min. Conch.) Malton, &c. also in several of the lower strata.

4. demissus ... Pl. VI. fig. 5. Malton, Pickering, &c. also Oxon and Wilts.

5. lens (lens et arcuatus, Min. Conch. tab. cvv.) Malton; also Oxon, and in calcareous grit.

6. viminalis (Min. Conch. tab. dxliii. fig. 1, 2.) Malton, and in calcareous grit.

7. vagans (Min. Conch. tab. dxliii. fig. 3, 4, 5.)
ORGANIC REMAINS.

Ostrea.—1. gregarea (Smith, fig. 4.)

2. solitaria (Min. Conch. tab. eccelxviii. fig. 1.)

3. duriuscula (W. Bean, MS.) Pl. IV. fig. 1. Malton, Seamer, Wilts, &c. upper part of the rock.

Chama, or gryphaeà? mima
(impresed by turritella?)

Gryphaeà bullata?

Terebratula.—1. intermedia (Min. Conch. tab. xv. fig. 8.)

2. globata? (Min. Conch. tab. cccccxxvi.)

3. ornithocephala ...

4. ovata? (Min. Conch. tab. xv. fig. 3.)

5. obsoleta? (Min. Conch. tab. lxxxiii. fig. 7.)

Oribcula? radiata ...

Delphinula, spire calcarated, a large species

Natica.—1. arguta (Smith, fig. 2.) ...

2. nodulata (Young and Bird, tab. xi. fig. 3.)

3. cincta ...

2. funiculatus ...

Trochus.—1. granulatus (Min. Conch. tab. cccxx. fig. 2.)

2. ? tornatus ...

Turritella.—1. muricata (Min. Conch.) Pl. IV. fig. 8.

2. cingenda? (Min. Conch. tab. cccxxcix.)

Terebra.—1. melanoïdes ...

2. ? granulata ...

Melania.—1. Heddingtonensis (Min. Conch. tab. xxxix.) (several varieties.)

Malton, Oxon, and Wilts; also in cornbrash.
Melania.—2. striata (Min. Conch. tab. xlvi.) ... Brompton, Hackness, Malton, towards the top of the rock.

Bulla elongata Pl. IV. fig. 7. Scarborough, Seamer, in the lower beds of the rock.

Murex Haccanensis Pl. IV. fig. 18. Hackness.

Ammonites.—1. perarmatus (Min. Conch. tab. ccliii.) Malton and Oxon, but more frequent in calcareous grit.

2. triplicatus (Min. Conch. tab. ccxci.) Malton; also in calcareous grit.

3. plicatilis (Min. Conch. tab. clxvi.) Malton, Oswaldkirk, Oxon, &c.

4. Williamsoni Pl. IV. fig. 19. Ayton, Mr. Williamson.

5. Lamberti? ? Malton, but more frequent in balls in the calcareous grit, where it attains a very large size.

7. sublaevis (Min. Conch.) Pl. VI. fig. 22. Malton; also in Kelloways rock.

8. lenticularis? Pl. VI. fig. 25. Malton, Oxon, &c. also common in calcareous grit.

9. vertebralis et cordatus } Pl. IV. fig. 34.
\{ (Min. Conch.) Malton, Hambleton, &c. also in calcareous grit.

Belemnites.—1. sulcatus? (Miller) Malton.

(a a quadrangular variety, Y. & B. t. xv. f. 2.) Malton, Oxon, &c. also common in calcareous grit.

2. fusiformis? (Miller, Geol. Trans. Vol. I. Part I. Pl. VIII.) ... Malton. (a very slender variety)

ANNULOSA.

Vermicularia compressa (Young and Bird) Pl. IV. fig. 17. Scarborough.

Serpula squamosa (Bean MS.) Pl. IV. fig. 15. Ditto.

CRUSTACEA.

Astacus rostratus Pl. IV. fig. 20. Malton and Scarborough; also in calcareous grit and Kelloways rock.
REMAINS OF FISHES AND REPTILES.

A fine specimen of the palatal teeth of some fish, in five rows, was found in Slingsby quarry, and sent by the Earl of Carlisle to the Museum of the Yorkshire Philosophical Society. Two of the teeth are shewn, Plate IV. fig. 22.

Remains of ichthyosaurus occur in the oolite of Malton, especially vertebrae and teeth. A fine specimen of the lower jaw of a genuine crocodile, very like one found at Caen, and in Northamptonshire, is in the valuable collection of Malton fossils belonging to the Yorkshire Philosophical Society.

ON REVIEWING the preceding list of more than one hundred and twenty species of fossils from the coralline oolite of Yorkshire, some general results present themselves, which deserve the attention of geologists. First, it is remarkable that though many of the species are repeated in the oolitic strata below, none are found in the Speeton clay above: a result which harmonizes exactly with the observations made on the same strata, in the south of England. If the fossils of the Kimmeridge clay could be collected in sufficient variety, possibly we might find in Yorkshire, as in the vicinity of Weymouth, some species which are also found in the oolite; but this must only be expected at the base of the clay in stony layers, almost in contact with the rock.—(See Smith's account of the Kimmeridge (Oaktree) clay in strata identified, p. 18.)

Secondly, it is interesting to observe how large a proportion of the remains of mollusca are common to both the calcareous grit and the coralline oolite in Yorkshire and Oxfordshire. This result is also perfectly in unison with the conclusion which suggests itself, in considering the other geological relations of these rocks: for the frequent alternation of calcareous grit and limestone beds at the bottom of the oolite, (see the account of Filey Brig, page 78,) and the recurrence of calcareous grit above the oolite, leave no doubt of the propriety of uniting these rocks
into one group or subformation. The principal differences between the two rocks arise from the prevalence of remains of the classes zoophyta and radiaria, and the presence of melaniæ, turbines, and turritellæ in the upper beds of the coralline oolite.* Besides a considerable number of species which are so rare, that we cannot pronounce whether they are peculiar to the stratum, or to the quarry that furnished them, as, trigonellites antiquatus, avicula elegantissima and a. tonsipluma, there are several common to this rock, but not yet found in the calcareous grit, as the corallophagous shells, pholas recondita, and modiola? inclusa; tellina ampliata; several crassina, cucullææ, ostrea, and terebratula; and generally the shells of cephalous mollusca.

Thirdly, a great number of the shells in this stratum occur again, with only slight variations, in several of the conchiferous strata below; as, turritella muricata and t. cingenda in the inferior oolite; perna quadrata in the middle oolite; mya literata, clypeus clunicularis, and galerites depressus in the cornbrash; corbula curtansata, pecten demissus, spatangus ovalis, ammonites perarmatus, and astacus rostratus in the Kelloways rock.

Here again we find that agreement between the conclusion obtained by considering rocks in relation to their position and quality on the one hand, and their organic contents on the other, which is the most satisfactory proof of the accuracy of each mode of investigation. For either of these methods of inquiry will convince us of the propriety of grouping together all the strata, from the coralline oolite downwards to the inferior oolite, in one great family of rocks, naturally divided into two formations, as expressed in the general table of Yorkshire strata, pages 32, 33.

* A striking proof of the accuracy of this generalization is afforded by Mr. Murchison's excellent account of the carboniferous and calcareous rocks in Sutherland; for among the fossils which he enumerates from the calcareous grit of Braambury, none of these are mentioned.
FOSSILS OF THE LOWER CALCAREOUS GRIT.

REMAINS OF PLANTS.
Wood of a dicotyledonous plant ... Leavening, Scarbro', &c.

ZOOPHYTA AND BADIARIA.
Spongia (a confused mass) ... Scarborough Ditto.
Round smooth crinoidal column ... Pl. III. fig. 9.
Muricatcd ditto ... Ditto.
Echinus germinans ... Pl. III. fig. 15.
Cidaris vagans ... Pl. VII. fig. 1.
Spatangus ovalis, Leske ... Pl. IV. fig. 23. Ditto.
Clypeaster pentagonalis ... Pl. IV. fig. 24. Ditto.
Galerites depressus ... Pl. VII. fig. 4. Ditto.
Scarborough; also in the coralline oolite and Kello-
ways rock.

MOLLUSCA.
Pholadomya.—1. simplex ... Pl. IV. fig. 31. Grishorpe (rare.)
2. deltoide? (Min. Conch. tab. cxcvii.) Malton, and in other lower strata.
Sanguinolaria undulata (Min. Conch.) Pl. V. fig. 1. Malton, and in lower strata.
Mya literata (Min. Conch.) ... Pl. VII. fig. 5. Malton, Scarborough, and in other strata.
Isocardia tumida ... Pl. IV. fig. 25. Grishorpe and Cayton.
Crassina carinata? ... Pl. V. fig. 3. ? Scarborough, and in Oxford clay.
Venus ... Pl. IV. fig. 26.
Lucina crassa (Min. Conch. tab. clxvii.) Deepdale head, Scarbro',
and in Sutherland; also in other lower strata.
Modiola bipartita (Min. Conch.) ... Pl. IV. fig. 30. Grishorpe, Malton, Suther-
land.
Avicula ovalis ... Pl. III. fig. 36. Scarborough (rare in this rock.)
LOWER CALCAREOUS GRIT.

Lima rudis (Min. Conch. tab. ccxiv.) Malton, Wilts, Sutherland.

Gryphaea.—1. bullata (Min. Conch.) Pl. IV. fig. 36. Malton, Filey, Birdsall, Wilts, and Sutherland.

2. chamæformis (beaks laterally involute) Abundant at Hackness, Gristhorpe, and also in Sutherland.?

3. inæherens, a species? which differs from bullata, by the large attachment of its beak Birdsall.

Ostrea gregarea (Min. Conch. tab. exi.) Scarborough (rare in this rock.)

Terebratula socialis Pl. VI. fig. 8. Scarborough, Hackness, &c. in groups.

Cirrus cingulatus Pl. IV. fig. 28. Scarborough, (rare, in Mr. Bean’s cabinet.)

Actæon retusus Pl. IV. fig. 27. Scarborough, (rare, in Mr. Williamson’s cabinet.)

Turritella muricata (Min. Conch.) Pl. IV. fig. 8. Ditto, rare in this rock.

Rostellaria bispinosa ? Pl. VI. fig. 13. Scarborough. Gristhorpe.

Trochus.—1. granulatus (Min. Conch. tab. ccc.) Malton and Hambleton.

2. bicarinatus (Min. Conch. tab. cccxi. fig. 2.) In calcareo-siliceous nodules at Gristhorpe; also Sutherland?

Belemnites sulcatus (Miller, G. Trans. vol. II. Pl. 8. fig. 5.) Scarborough, Filey Brig, Sutherland, and Oxon; also in the Kelloways rock.

Ammonites.—1. Sutherlandiae? (Min. Conch. tab. dlxiii.) (a gigantic species)

2. perarmatus (Min. Conch. tab. ccxi.) Gristhorpe, Pickering, &c.

3. instabilis. Discoid, whorls all apparent radiated; radii acute, bold, on the inner whorls bifurcated, on the outer ones entire and subtuberculated. Aperture ovato-orbicular entire. Six inches diameter Gristhorpe, Pickering, &c.

4. solaris Pl. IV. fig. 29. Scarborough, (Williamson.)

5. vertebralis (Min. Conch.) Pl. IV. fig. 34. Acklam, Birdsall, Pickering, Troutsdale, Hackness, Scarborough, &c.; also Oxon and Sutherland.
A considerable proportion of these fossils belong to the upper solid beds which are in contact, and sometimes alternate, with the base of the coralline oolite. It has been remarked above, that the Zoological characters of those two rocks are much in unison, and there are very few species of frequent occurrence in the calcareous grit, which are not also discovered in the limestone above. A few fossils, which are not among the most common in the calcareous grit, as galérites depressus, mya literata, and turritella muricata, are repeated in the cornbrash and oolites below it; others, as spatangus ovalis, terebratula socialis, belemnites sulcatus, and ammonites perarmatus, are found as low as the Kelloways rock; and sanguinolaria undulata and crassina carinata? have been met with in the Oxford clay; but a considerable number remain, which are so constantly associated with this rock, that they may be employed to identify it in a case otherwise doubtful. Such are the crinoidal columns, isocardia tumida, modiola bipartita, pinna lanceolata, pecten vagans, lima rudis, gryphæa bullata, and ammonites vertebralis; not to mention several rarer species, of which the value in characterizing the rock remains to be ascertained.

Mr. Murchison's paper, to which I have already referred, on the geology of Brora, affords an opportunity of applying these results, to determine the geological relation of the rubbly limestone and sandstone of Braambury hill, the uppermost stratum of that district. In its position with respect to other conchiferous beds there, it agrees with the calcareous grit of Yorkshire, and amongst the fossils which Mr. Murchison has there collected, we find gryphæa bullata,? modiola bipartita, pecten vagans, and ammonites vertebralis. Of these I have had the opportunity of consulting specimens, which the liberality of their discoverer has placed in the museum of the Yorkshire Philosophical
OXFORD CLAY.

Society, and others presented to me by my friend Mr. Marshall. The same museum contains a suite of fossils from the calcareous grit of Oxfordshire, presented by Dr. Buckland, amongst which we recognise ammonites vertebrales and pinna lanceolata. Ammonites vertebrales was obtained by Mr. Smith from this rock at Derry-hill, Wilts, and pinna lanceolata by Professor Sedgewick at Weymouth. In these instances the zoological characters of a rock are shewn to be constant from one end of the island to the other, though its thickness and mineralogical appearance are subject to great variations, and in one example the deposit is insulated and distant four hundred miles from its kindred strata. The coralline oolite, (and calcareous grit?) with pecten viminalis, ammonites plicatilis, &c. form the upper part of the Jura limestone of Switzerland, and have been observed at several places on the north coast of France.

FOSSILS OF THE OXFORD CLAY.

MOLLUSCA.

Mya.—1. literata Pl. VII. fig. 5. Scarborough, Ebberston, and in other strata.

2. resembling mya depressa (Min. Conch. t. cccxxvii.) Scarborough.

Sanguinolaria undulata (Min. Conch.) Pl. V. fig. 1. Ditto, also in other strata.

Crassina.—1. lurida (Min. Conch. tab. cxxxvii.) fig. 2. Scarborough.

2. carinata fig. 3. Ditto, also in calcareous grit, and Kelloways rock.

Pholadomya obsoleta Pl. V. fig. 24. Scarborough, also in the Kelloways rock.

Modiola cuneata (Min. Conch. tab. cxxi.) (a large variety) Pl. V. fig. 28. Scarborough, also in other strata.

Nucula.—1. elliptica Pl. V. fig. 6. Scarborough.

2. (an inside cast) Pl. V. fig. 4. Ditto.

3. nuda (Young and Bird) Pl. V. fig. 5. Ditto (an inside cast.)

Cucullaea concinna Pl. V. fig. 7. Ditto.

Pinna mitis Pl. V. fig. 9. Ditto.

Trigonellites politus Pl. V. fig. 8. Ditto.

Plagiostoma.—1. with very fine striae Pl. V. fig. 10. Ditto.

2. duplicatum Pl. VI. fig. 2. Ditto, also in other strata.
ORGANIC REMAINS.

Avicula expansa? Pl. III. fig. 35. ? Scarborough.

Pecten.—1. with concentric furrows ... Pl. V. fig. 11. Ditto.
 2. another species ... Ditto.

Perna Ditto.

Ostrea.—1. an upper valve ... Pl. V. fig. 12. Ditto.
 2. inaequalis Pl. V. fig. 13. Ditto.

Unknown Pl. V. fig. 18. Ditto.

Rostellaria trifida (Bean, MS.) Pl. V. fig. 14. Ditto.

Patella latissima (Min. Conch. tab. cxxxix.) ... Ditto, and Ebberston; also in Lincolnshire.

Belemnites.—1. sulcatus (Miller, G. Trans. ii. Pl. 8. fig. 5.) Scarborough.
 2. gracilis Pl. V. fig. 15. Ditto.

Ammonites.—1. vertebralis? (Min. Conch.) Pl. IV. fig. 34.? Ditto.
 2. oculatus Pl. V. fig. 16. Ditto.
 3. probably a young specimen Pl. V. fig. 17. Ditto.
 4. Vernoni (Bean) Pl. V. fig. 19. Ditto, and Ebberston.
 5. athleta Pl. VI. fig. 19. Scarborough.
 6. a large imperfect species Ditto.

ANNULOSA, CRUSTACEA, AND FISHES.

Serpula.—1. intestinalis Pl. V. fig. 21. Scarborough, and in the cornbrash.
 2. a tapering unattached hook-formed species, ... Scarbrough, (my collection.)
 with four longitudinal furrows, having some analogy to Smith's figs. 5, 6.

Astacus (a didactyle claw) Pl. V. fig. 20. Scarborough.

Tooth of squalus Pl. V. fig. 22. Ditto.

The gray shale of Scarborough castle-hill, which represents the Oxford clay of the south of England, belongs to the same great formation as the calcareous grit and the Kelloways rock, and, being situated between them, contains several fossils which are also found in one or other of those rocks. It appears to me that mya literata, sanguinolaria undulata, and crassina carinata, are found in all those strata, and perhaps in some others. I am not positive that the shell named ammonites vertebralis is really identical with that in the calcareous grit; but there can be no doubt that a. athleta is repeated in the Kelloways rock. A con-
siderable number of fossils remain, which have not yet been discovered in any other stratum: but as these have, for the most part, been found in only one locality at the bottom of the stratum, we must wait, I think, for further discoveries, before pronouncing how far they are to be considered characteristic. Judging from very limited experience, I am disposed to think ammonites Vernonii, belemnites gracilis, and patella latisima, most likely to be useful in this respect. This clay is so intimately connected with the subjacent Kelloways rock in Yorkshire, as well as in the south of England, that we might almost adopt the language of Mr. Smith, who says, (Strata identified, page 22,) "In several instances where the bottom of the clay contains the same fossils as the rock which it covers, it is difficult to say to which stratum they belong." At Dunrobin in Sutherland, Mr. Murchison collected fossils which, from their agreement with those contained in the above catalogue, seem fully to justify his opinion that the stratum there occurring, (see Geol. Trans. Vol. II. pages 302, 319, 361, &c.) is a detached part of the Oxford clay and Kelloways rock. Amongst them, his descriptions lead me to recognise ammonites Vernonii, modiola pulchra, (Pl. V. fig. 26,) belemnites gracilis, belemnites sulcatus, astarte lurida, &c. &c.

FOSSILS OF THE KELLOWAYS ROCK.

<table>
<thead>
<tr>
<th>Fossil</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood of a dicotyledonous plant</td>
<td>...</td>
</tr>
<tr>
<td>Spatangus ovalis</td>
<td>Pl. IV. fig. 23.</td>
</tr>
<tr>
<td>Mya.—1. a cast of the inside</td>
<td>Pl. V. fig. 23.</td>
</tr>
<tr>
<td>2. literata (Min. Conch.)</td>
<td>Pl. VII. fig. 5.</td>
</tr>
<tr>
<td>3. calceiformis (a large transverse shell)</td>
<td>...</td>
</tr>
<tr>
<td>Pholadomya obsoleta</td>
<td>Pl. V. fig. 24.</td>
</tr>
<tr>
<td>Corbis?—1. ovalis</td>
<td>Pl. V. fig. 29.</td>
</tr>
<tr>
<td>2. laevis? (Min. Conch.)</td>
<td>fig. 32.</td>
</tr>
</tbody>
</table>

Scarborough.

Hackness, (in Mr. C. Preston’s collection,) also in calcareous grit. Scarborough.

Ditto, Scalby, and South Cave, and in other strata.

South Cave, Hackness, also in the Oxford clay.

South Cave, and in coral-line oolite.

<table>
<thead>
<tr>
<th>Fossil</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood of a dicotyledonous plant</td>
<td>...</td>
</tr>
<tr>
<td>Spatangus ovalis</td>
<td>Pl. IV. fig. 23.</td>
</tr>
<tr>
<td>Mya.—1. a cast of the inside</td>
<td>Pl. V. fig. 23.</td>
</tr>
<tr>
<td>2. literata (Min. Conch.)</td>
<td>Pl. VII. fig. 5.</td>
</tr>
<tr>
<td>3. calceiformis (a large transverse shell)</td>
<td>...</td>
</tr>
<tr>
<td>Pholadomya obsoleta</td>
<td>Pl. V. fig. 24.</td>
</tr>
<tr>
<td>Corbis?—1. ovalis</td>
<td>Pl. V. fig. 29.</td>
</tr>
<tr>
<td>2. laevis? (Min. Conch.)</td>
<td>fig. 32.</td>
</tr>
</tbody>
</table>

Scarborough.

Hackness, (in Mr. C. Preston’s collection,) also in calcareous grit. Scarborough.

Ditto, Scalby, and South Cave, and in other strata.

South Cave, Hackness, also in the Oxford clay.

South Cave, and in coral-line oolite.
<table>
<thead>
<tr>
<th>Species</th>
<th>Plate</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corbula curtansata</td>
<td>Pl. III, fig. 27</td>
<td>South Cave, and in coraline oolite.</td>
</tr>
<tr>
<td>Amphidesma recurvum</td>
<td>Pl. V, fig. 25</td>
<td>Scarborough, and in coraline oolite.</td>
</tr>
<tr>
<td>Lucina lirata</td>
<td>Pl. VI, fig. 11</td>
<td>Scarborough.</td>
</tr>
<tr>
<td>Crassina. — 1. carinata</td>
<td>Pl. V, fig. 3</td>
<td>South Cave, and in Oxford clay.</td>
</tr>
<tr>
<td>Cardium dissimile? (Murchison)</td>
<td>Pl. V, fig. 30</td>
<td>South Cave, and Newbald.</td>
</tr>
<tr>
<td>Trigonia clavellata (Min. Conch. tab. lxxxvii.)</td>
<td>Pl. V, fig. 27</td>
<td>Scarborough, and South Cave (a cast.)</td>
</tr>
<tr>
<td>Modiola. — 1. pulchra</td>
<td>Pl. V, fig. 26</td>
<td>Scarborough, also in Sutherland.</td>
</tr>
<tr>
<td>2. cuneata? (Min. Conch. tab. ccxi.) (it is a large shell)</td>
<td>fig. 28</td>
<td>South Cave, Scarborough, and in other strata.</td>
</tr>
<tr>
<td>Cucullaea concinna? (of Oxford clay)</td>
<td>fig. 31</td>
<td>South Cave (a cast.) Scarborough.</td>
</tr>
<tr>
<td>Pinna mitis?</td>
<td>Pl. V, fig. 7</td>
<td>Scarborough, Hackness &c. also in Sutherland.</td>
</tr>
<tr>
<td>Avicula. — 1. Braamburiensis (Min. Conch.)</td>
<td>Pl. VI, fig. 6</td>
<td>South Cave, and in coraline oolite.</td>
</tr>
<tr>
<td>2. expansa</td>
<td>Pl. III, fig. 35</td>
<td>Scarborough, and in calcareous grit.</td>
</tr>
<tr>
<td>Lima rudis (Min. Conch. tab. ccxiv.)</td>
<td>...</td>
<td>Scarborough, Hackness.</td>
</tr>
<tr>
<td>Plagiostoma duplicatum (Min. Conch.) (large cast of the inside)</td>
<td>Pl. VI, fig. 2</td>
<td>Scarborough, Hackness.</td>
</tr>
<tr>
<td>Pecten. — 1. fibrosus (Min. Conch.)</td>
<td>Pl. VI, fig. 3</td>
<td>Scarborough, Hackness (a large variety). South Cave, &c. and in other strata.</td>
</tr>
<tr>
<td>2. lens (Min. Conch. tab. ccv.)</td>
<td>...</td>
<td>Scarborough, and in cornbrash.</td>
</tr>
<tr>
<td>3. demissus</td>
<td>Pl. VI, fig. 5</td>
<td>Scarborough, and in cornbrash.</td>
</tr>
<tr>
<td>Ostrea. — 1. undosa (Bean MS.)</td>
<td>Pl. VI, fig. 4</td>
<td>Scarborough.</td>
</tr>
<tr>
<td>2. archetypa (o. deltoidea Murchison)</td>
<td>Pl. VI, fig. 9</td>
<td>Scarborough, and Wheatcrofts.</td>
</tr>
<tr>
<td>3. Marshii (Min. Conch. tab. xlvi.)</td>
<td>...</td>
<td>Wheatcrofts cliffs, and in cornbrash.</td>
</tr>
<tr>
<td>Gryphaea dilatata (Min. Conch.)</td>
<td>Pl. VI, fig. 1</td>
<td>Scarborough, Hackness.</td>
</tr>
</tbody>
</table>
KELLOWAYS ROCK.

Perna quadrata (Min. Conch. tab. 492.) Pl. IX. fig. 21. South Cave, (cast,) and in other strata.

Terebratula.—1. ornithocephala (Min. Conch.) Pl. VI. fig. 7. Scarborough, Hackness, and in other strata.

2. socialis fig. 8. Scarborough, Hackness, and in calcareous grit.

Turbo sulcostomus (three or four sharp spiral costae, the right lip grooved within; (not well expressed in the figure)) Pl. VI. fig. 10. Hackness, South Cave, (casts.)

Cirrus depressus Pl. VI. fig. 12. Hackness, Scarborough.

Trochus guttatus Pl. VI. fig. 14. Scarborough.

Turritella muricata (Min. Conch.) Pl. IV. fig. 8. South Cave, and in other strata.

Rostellaria bispinosa Pl. VI. fig. 13. Scarborough, Wilts, &c.

Belemnites.—1. sulcatus (Miller, Geol. Trans. Vol. II. Pl. 8. fig. 5.) Scarborough, Hackness.

2. an elongated species, or variety of 1? Mr. Bean’s collection.

Nautilus hexagonus? (Min. Conch. tab. dxxix.) In Mr. Williamson’s collection.

Ammonites.—1. plicatilis (Min. Conch. tab. clxvi.) Hackness, South Cave.

2. Koenigi (Min. Conch.) Pl. VI. fig. 24. Hackness, (in the author’s collection.)

3. bifrons Pl. VI. fig. 26. Hackness, Scarborough.

4. Gowerianus (Min. Conch. tab. dxxix.) a variety of the same ... Pl. VI. fig. 21. Ditto.

5. perarmatus (Min. Conch. tab. ccclii.) Scarborough, also in calcareous grit.

6. athleta Pl. VI. fig. 19. Hackness, (in the author’s collection.)

7. Calloviensis (Min. Conch.) Pl. VI. fig. 15. Hackness, Scarborough, South Cave, and Wilts.

9. gemmatus fig. 17. Scarborough.

10. sublaevis (Min. Conch.) fig. 22. Hackness, no perfect specimens have been found; also Wilts.
ORGANIC REMAINS.

Ammonites.—11. a species resembling Herveyi? Scarborough.
 (Min. Conch. tab. cxcv.)
12. flexicostatus ... Pl. VI. fig. 20. Hackness.
13. funiferus. It nearly re-
 sembles a. excavatus } Pl. VI. fig. 23.
 (Min. Conch. tab. cv.)
14. lenticularis ... fig. 25. Scarborough.
15. a very peculiar subcarinated species,
 with a short spiral sulcus near the
 aperture, and sigmoidal biform ribs
 prominent on the inner part of the
 volition ...
16. an imperfect sub-carinated species Scarborough.

CRUSTACEA, REPTILES, &c,

Astacus rostratus Pl. IV fig. 20. Hackness.
Coracoid bone? of a saurian animal ... Scarborough.

THE Kelloways rock, seldom exposed in a satisfactory manner in the south of England, and either deficient or concealed beneath the Oxford clay from Wiltshire northward to the Humber, would perhaps never have been recognised in Yorkshire, without attention to its highly characteristic fossils. In the winters of 1820 and 1821, Mr. Smith collected some specimens of ammonites calloviensis, and a. Koenigi, from the north cliff of Scarborough; which, the moment I saw them, convinced me that he had discovered the Kelloways rock in Yorkshire. Subsequent investigation, by proving that the rock which had furnished these “silent witnesses,” occupied, relatively to other strata above and below it, exactly the place of the Kelloways stone, removed all doubt from Mr. Smith's mind, and enabled him to demonstrate that, amidst the acknowledged anomalies of the lower oolitic series on this coast, the lines of geological agreement may be securely drawn, to unite them with their type in the midland and southern counties. His inferences on the subject, like many other of his valuable observations, have now
FOSSILS OF THE CORNBRASH.

FOSSILS OF THE CORNBRASH.

become the common property of geologists, without the intervention of any publication by himself, which might remind those who profit by his labours of the praise that is due to the disinterested liberality of his communications.

Of sixty species enumerated above, one-half the number occur likewise in other strata on the coast of Yorkshire; twenty-six of these have been seen in the superior strata of the coralline oolite formation; twelve exist in inferior rocks which belong the Bath oolitic series, and at least eight are diffused alike through the strata above and below it. These are dicotyledonous wood, mya literata, mya calceiformis, trigonia claviellata, modiola, pecten lens, perna quadrata, turritella muricata. Of the thirty species which remain, future researches may prove a considerable portion to be characteristic of this remarkable rock, but at present I shall content myself with pointing out those which my own experience in Yorkshire has taught me to confide in, and which, therefore, it may be hoped, will not mislead others. These are the ammonites generally, but ammonites calloviensis, and a. Koénigi, especially, (for that which Mr. Sowerby figures from the lias in connexion with the Kelloways fossil, appears to me quite distinct,) and the small variety of gryphaea dilatata. These are the very fossils which Mr. Smith so long ago pointed out as proper to identify this rock in Wiltshire, and it is worth remarking, that every species figured on his plate as characteristic of the stratum in the southern counties, may, with suitable precaution, be employed for the like purpose in Yorkshire. This rock seems unknown beyond the British islands, and its fossils are not, I believe, described by any foreign geologist.

ZOOPHYTA AND RADIARIA.

Cellaria Smithii ...
It seems to belong to the genus hippothoa, Lamx. cardium citrinoidesem.

see his Expos. Meth. t. lxxx. fig. 16.
ORGANIC REMAINS.

Millepora straminea Pl. IX. fig. 1. Scarborough (very rare in this stratum.)
Cidaris vagans Pl. VII. fig. 1. Scarborough, and in other strata.
Clypeus.—1. cunicularia Llwyd ... fig. 2. Ditto.
2. orbicularis ... fig. 3. Scarborough.
Galerites depressus ... fig. 4. Ditto, and in other strata.
Pentacrinus caput medusæ (Miller’s Crinoidea)

... Ditto.

MOLLUSCA.

Mya literata (Min. Conch.) ... Pl. VII. fig. 5. Scarborough, and in other strata.
Sanguinolaria undulata (Min. Conch.) ... Pl. V. fig. 1. Ditto.
Pholadomya.—1. Murchisoni (Min. Conch.) Pl. VII. fig. 9. Scarborough, Gristhorpe, and Wiltshire.
2. ovalis (Min. Conch. tab. cxxvii.) Ditto.
Amphidesma.—1. decurtatum ... Pl. VII. fig. 11. Ditto.
2. securiforme ... fig. 10. Scarborough and Wiltshire.
Unio peregrinus (Pullestra Murchison) ... fig. 12. Ditto.
Isocardia minima (Min. Conch. tab. cxxv.) ... fig. 6. Ditto.
Cardium citrinoides fig. 7. Ditto.
Trigonia clavellata (Min. Conch. tab. lxxxvii.) Ditto, Gristhorpe, and in other strata.
Modiola cuneata (Min. Conch. tab. cxxvii.) Pl. V. fig. 28. Scarborough, Lincolnshire, Wiltshire, &c.
(a large variety)
Pinna cuneata (Bean, MS.) Pl. IX. fig. 17. Scarborough, and in the middle oolite.
Plagiostoma.—1. rigidulum ... Pl. VII. fig. 13. Scarborough. It seems to be distinct from P. rigidum, and is invariably smaller.
2. interstinctum. (It has fewer ribs than plagiostoma duplicatum (Min. Conch.)) fig. 14. Scarborough. This is the usual size of the species in cornbrash.
Pecten.—1. fibrosus (Min. Conch.) Pl. VI. fig. 3. Scarborough, Wilts.
2. demissus ... Pl. VI. fig. 5. Scarborough, Gristhorpe, and in other rocks.
3. a species like viminalis, but with more numerous ribs ... Scarborough.
FOSSILS OF THE CORNBRASH.

Ostrea.—1. Marshii (Min. Conch. tab. xlviii.) ... Scarborough, Gristhorpe, Bedfordshire, &c.

2. a small oval species ... Scarborough.

Terebratula.—1. ovoides? (Min. Conch. tab. c.) ... Ditto, Gristhorpe.

also Young and Bird, tab. viii. fig. 10.)

2. digona (Min. Conch. tab. xevi.) ... Scarborough, (rare,) also Wilts and Dorset.

Terebratula. ovoides? (Min. Conch. tab. c.) ... Ditto. (Mr. Williamson.)

Ditto, Gristhorpe. Scarborough, (rare,) also Wilts and Dorset.

Terebra? granulata Pl. VII. fig. 16. Ditto. (Mr. Williamson.)

Melania.—1. Heddingtonensis (Min. Conch. tab. xxxix.) ... Scarborough, Gristhorpe, Lincolnsh. and in other strata.

2. vittata fig. 15. Scarborough, Gristhorpe. (One specimen inclosed a mass of crystallized blende.)

Bulla? or Actæon? (which I have not seen; it is in the collection of Mr. Preston)

Ammonites.—1. Herveyi (Min. Conch. tab. excv.) ... Ditto, and several places in Lincolnshire.

2. terebratus, similar but more globular species, with a very acute, narrow umbilicus ... Ditto. (Mr. Williamson.)

(No belemnites have been found in the cornbrash of Yorkshire.)

Vermicularia nodus Pl. IX. fig. 34. Ditto, and in the middle oolite.

Serpula intestinalis Pl. V. fig. 21. Scarborough, common.

It is not so much by the presence of particular species of fossils which are found in no other stratum, that the cornbrash can be accurately identified from Somersetshire to Lincolnshire, as by the occurrence together in it of some fossils which are repeated in rocks above, and several others which are found in those beneath. For, in the preceding list of thirty-seven species obtained from this stratum in Yorkshire, nearly two-thirds are certainly known to be repeated in other rocks, and possibly this proportion may be increased by more scrupulous researches. But this circumstance, whilst it confirms the inferences, derived from other considerations, of the general analogy among all the members of the oolitic formations on this coast, does not prevent the employment of zoological characters, to discriminate the cornbrash from its associated rocks, though
it certainly demands a caution in their application, which is not always observed.

Several fossils not peculiar to the cornbrash, as, millepora straminea, pinna cuneata, amphidesma securiforme, and a. decurtatum, unio peregrinus, vermicularia nodus, and ostrea Marshii, seem to be repeated only in the lower oolitic formation, and the large variety of modiola cuneata, melania vittata, and perhaps pecten denissus, have yet been found only in the upper oolite formation; whilst the remains of echinida and pentacerinus, mya literata, sanguinolaria undulata, trigonia clavellata, pecten fibrosus, trochus granulatus, terebra granulata, and melania Heddingtonensis, are common to both these formations, either in Yorkshire or in other parts of England. The cornbrash is the only conchiferous stratum in the eastern part of Yorkshire from which belemnites are excluded, and it seems at present to be the only repository of clypeus orbicularis, isocardia minima, cardium citrinoideum, plagiostoma rigidulum, terebratula ovoides, and t. digona, ammonites Herveyi, and a. terebratus. But though these shells should eventually be discovered in other strata, the cornbrash may still be discriminated in any local district, and satisfactorily identified in distant countries. By its clypei, galerites, and cidarites, geologists will at once refer it to the strata which intervene between the Kimmeridge clay and the lias; the abundance of amphidesma securiforme, isocardia minima, pinna cuneata, and ostrea Marshii, and the absence of gryphaea dilatata, ammonites perarmatus, and spatangus ovalis, will connect it with the Bath oolite formation generally, whilst a faithful comparison of its whole suite of organic remains, with those of the Stonesfield slate and forest marble, and upper and lower oolites of Bath respectively, will always be sufficient to discriminate these rocks, even where no aid can be derived from observations of its geological position. The specimens which I have had the opportunity of consulting, are insufficient to demonstrate the existence of cornbrash in a distinct character above the coal of Brora.
FOSSILS OF THE UPPER SANDSTONE AND SHALE.

These consist entirely of the remains of plants, of the natural families, equisetaceae, lycopodineae, filices, cycadeae, and palmeae, (Sternberg,) and of fibrous and ramified wood. Only one locality, a bed of shale with nodular ironstone, at the island between Red cliff and Gris-thorpe cliff, has produced the more delicate species; but this is rather owing to their more fortunate exposure in that situation, by the extension of the shale along the shore, than to their absolute deficiency at other places in the same range. Traces of equisetiform and cycadiform plants may, with attention, be perceived at the White Nab; a beautiful sphænopteris has been found by Mr. Beau at Scalby; and dicotyledonous wood, in fragments and branches, occurs generally in the sandstone rocks above the gray limestone, or Bath oolite. The following catalogue includes the species which appear to me to be certainly distinct, grouped chiefly after Brongniart's method, according to the arrangement and neuration of their leaves. I have ventured to assign names to the new species, subject to the correction of more experienced botanists, for whom I have endeavoured faithfully to copy the characteristic structure of the plants.

MONOCOTYLEDONOUS PLANTS.

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Location</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equisetum (traces of)</td>
<td>At the White Nab.</td>
<td>Pl. VIII. fig. 3.</td>
</tr>
<tr>
<td>Lycodites uncisfolius</td>
<td>Also in the lower sandstone.</td>
<td>Pl. VIII. fig. 3. 3 a.</td>
</tr>
<tr>
<td>magnified leaf of ditto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thuites expansus?</td>
<td>Also Stonesfield, and in lower sandstone.</td>
<td>Pl. X. fig. 11.</td>
</tr>
<tr>
<td>Sternberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scolopendrium solitarium</td>
<td>Also Stonesfield, and in the lower sandstone and shale.</td>
<td>Pl. VIII. fig. 5.</td>
</tr>
<tr>
<td>(Sternberg, tab. xxxvii. fig. 2.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspleniopteris Nilsoni ?</td>
<td>The nervures stronger than in Sternberg's specimen from Hör.</td>
<td>Pl. VIII. fig. 4.</td>
</tr>
<tr>
<td>(Sternberg, tab. xviii. figs. 3, 4, 5?)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphænopteris.—1. digitata</td>
<td>Compare Sph. laxa, Sternberg.</td>
<td>Pl. VIII. fig. 6.</td>
</tr>
<tr>
<td>2. stipata</td>
<td>Also in the lower sandstone,</td>
<td>Pl. VIII. fig. 4.</td>
</tr>
<tr>
<td></td>
<td>u 2</td>
<td></td>
</tr>
</tbody>
</table>
ORGANIC REMAINS.

Sphænopteris.—3. latifolia ... Pl. VII. fig. 18. From Scalby. (Mr. Bean.) Rare.
4. longifolia ... fig. 17. Uncommon (Mr. C. Preston.)
Neuropteris lobifolia ... Pl. X. fig. 13. Also in the lower sandstone.
Pectopteris.—1. ligata ... Pl. VIII. fig. 14. Leaves never seen attached.
2. paucifolia ... fig. 8. Leaves very crowded.
3. hastata ... fig. 17. Resembles osmunda gigan-tea (neuropteris flexuosa) of the west-riding col-
4. recentior ... fig. 15. leries.

5. curtata, the leafits longer than usual, and granulated fig. 12. Upper surface. Is this ap-
6. exilis fig. 16. pearance accidental? the seed vessels appear to run along the secondary
Cycadites.—1. comptus ... Pl. VII. fig. 20. nervures.
2. tenuicaulis ... fig. 19. Rare.
3. sulcicaulis ... fig. 21. Enlarged capsules at 11 a.
4. pecten ... fig. 22. Dr. Murray’s specimen.
Supposed small strobilus ... Pl. VIII. fig. 1. Also in the lower sandstone.
Supposed winged seed ... fig. 2. Dr. Murray’s specimen.
Flabellaria? viminea ... Pl. X. fig. 12. Also in the lower sandstone.
Unknown leaves.—1. Pl. VIII. fig. 24. Never united to a stem.
2. fig. 23. Often in groups.
3. fig. 25.

DICOTYLEDONOUS PLANTS.

Phyllites nervulosus, Sternberg ... Pl. VIII. fig. 9. Also Hör, in Scania.
Wood carbonized, in branches and fragments.

The rich repository of these plants under Gristhorpe cliff, was dis-
covered in the autumn of 1827; and Messrs. Bean and Williamson have
presented duplicates to many of the public museums in the north of England. Some have been since transmitted by the Yorkshire Philosophical Society to M. A. Brongniart, in whose great work on fossil vegetables their natural affinities will no doubt be effectually displayed. Almost all the species are new; but two of them have been described from Höör, in Scania, and two others from Stonesfield in Oxfordshire. Some remarks on their geological relations will be found appended to the account of the analogous, and partly identical, reliquiae of the lower carbonaceous sandstone and shale.

FOSSILS OF THE GRAY LIMESTONE, OR, BATH OOLITE.

REMAINS OF PLANTS.

Fragments of carbonized wood occur in this limestone near Scarborough, and in Sutherland; and I once found a species of cycadites mixed with its shells in Stainton dale cliff.

ZOOPHYTA AND RADIARIA.

Millepora straminea Pl. IX. fig. 1. Gristhorpe, Cloughton, Owlston, Crambe, Westow, Ellerker.

Retepora? Pl. IX. fig. 2. Westow.

Tubipora, or eunomia (Lamx. Pl. lxxxi. fig. 10-) Terrington and near Bath.

Pentacrinus caput Medusæ (Miller) ... Gristhorpe, Hood hill, &c.

Cidaris.—1. vagans Pl. VII. fig. 1. Near Scarborough.

2. single plates Pl. IX. fig. 3. Ewe Nab and Gristhorpe.

Spines of cidaris.—1. smooth Pl. IX. fig. 4. Ewe Nab, Hood hill, &c.

2. muricated Pl. IX. fig. 5. Gristhorpe, Ewe Nab, &c.

3. tuberculated Pl. IX. fig. 6. Gristhorpe and Cloughton.

Echinus germinans Pl. III. fig. 15. Whitwell.

MOLLUSCA.

Mya calceiformis Pl. XI. fig. 3. Cloughton and other strata.

Lutraria gibbosa? (Min. Conch.) Pl. IX. fig. 6. Near Scarborough and Bath.

Psammobia lavigata Pl. IV. fig. 5. Brandsby, Cloughton, and in coralline oolite.

Amphidesma decurtatum Pl. VII. fig. 11. White Nab, &c.
Pholadomya 1. acuticostata (Min. Conch. tab. dxlvi.) ... Brandsby, in slaty stone.
2. nana Pl. IX. fig. 7. White Nab.
3. producta? (Min. Conch. tab. excvii.) Newborough Park, (near Coxwold.)
4. obliquata ... Pl. XIII. fig. 15. Sancton, Cloughton, Lincolnshire, &c. (common in the marlstone.)

Corbula depressa Pl. IX. fig. 16. Cloughton Wyke.
Isocardia.—1. nitida? (or variety of) ... Ditto.
2. minima? } PL IX. fig. 10. Crambe Bridge, and near Cave; Lincolnshire and inferior oolite.

3. angulata? Pl. IX. fig. 9. Near Scarborough and Speeton?

Cardium.—1. cognatum (allied to citri-noideum) Pl. IX. fig. 14. Cloughton Wyke.
2. acutangulum Pl. XI. fig. 6. Brandsby and inferior oolite.
3. semiglabrum Pl. IX. fig. 15. Cloughton Wyke.

Cárdita similis (Min. Conch. tab. cexxxii.) Ditto.
Cytherea dolabra Pl. IX. fig. 12. Ditto.
Pullastra recondita Pl. IX. fig. 13. Ditto.
Crassina minima Pl. IX. fig. 23. Brandsby, Cloughton Wyke, and Commondale.

Lucina despecta Pl. IX. fig. 8. Cloughton and inferior oolite.

Trigonia.—1. costata (Min. Conch. tab. lxxv.)
BATH OOLITE.

Indications of another species at Sancton.
Nucula.—1. variabilis (Min. Conch.) Pl. IX. fig. 11. Cloughton Wyke and inferior oolite.

2. lachryma (Min. Conch.) Pl. IX. fig. 25. Ditto.
Perna quadrata (Min. Conch.) ... Pl. IX. fig. 21, 22. Cloughton Wyke, White Nab, Commondale.

Gervillia acuta (Min. Conch. tab. dx.) Pl. IX. fig. 36. Brandsby, White Nab, Cloughton, and Northamptonshire.
(shell thin, hinge pits obscure)

Avicula Braamburiensis (Min. Conch.) Pl. VI. fig. 6. White Nab, Cloughton, Commondale, and in other strata.

Plagiostoma.—1. like P. cardiiforme (Min. Con. t. cxiii.) Ellerker, near Cave.
2. a smooth species ... Westow, near Malton.
3. interstinctum ... Pl. VII. fig. 14. Whitwell, Owlston, Cloughton, &c.

Pecten.—1. lens (Min. Conch. tab. ccv.) Commondale, Brandsby, and near Cave, &c.

2. demissus Pl. VI. fig. 5. Commondale, Brandsby, Cloughton, White Nab, &c.

3. abjectus Pl. IX. fig. 37. Whitwell and coralline oolite.

Lima rudis (Min. Conch. tab. ccxiv.) White Nab and near Cave.

Ostrea.—1. Marshii (Min. Conch. tab. xlviii.) White Nab, Commondale, and in other strata.

3. sulcifera Pl. IX. fig. 35. Westow.
4. a small smooth species ...

Gryphaea.—1. bullata? or gigantea? (Min. Conch.) Cloughton Wyke.

2. a young specimen ... Pl. IX. fig. 26. White Nab, (Museum of the Yorkshire Philosophical Society.)

Terebratula.—1. spinosa (Townshend & Smith) Pl. IX. f. 18. Cloughton Wyke.
2. globata (Min. Conch. tab. cccxxxxv.) Near Cave and Bath.
3. intermedia (Min. Conch. tab. xv.) Westow, Whitwell, &c.
4. large variety of ditto ... Ditto.

Cloughton, Swainby bank.
ORGANIC REMAINS.

Natica adducta Pl. IX. fig. 30. White Nab, Cloughton, &c.

Turbo muricatus? (Min. Conch.) ... Pl. IV. fig. 14. Also in coralline oolite.

Trochus monilitectus Pl. IX. fig. 33. Cloughton Wyke.

Delphinula? or variety of the following ... Pl. IX. fig. 32. Ditto.

Phasianella cincta Pl. IX. fig. 29. Cloughton and Brandsby.

Turritella cingenda (Min. Conch.) ... Pl. XI. fig. 28. Common in inferior oolite.

Melania.—1. Heddingtonensis (Min. Conch. tab. xxxix.) ... White Nab and other strata.

2. striata? (Min. Conch. tab. xlvii.) ... White Nab. (Mr. Bean.)

Terebra vetusta Pl. IX. fig. 27. Cloughton Wyke.

Actaeon glaber (Bean, MS.) ... Pl. IX. fig. 31. Cloughton and Brandsby.

Rostellaria composita? (Min. Conch.) Pl. IX. fig. 28. Cloughton, Brandsby, and Sutherland, and near Bath.

Nautilus (imperfect?) Brandsby, (a large speci-

Belemnites abbreviatus (Miller) ... Pl. IX. fig. 33. White Nab, &c.

Ammonites Blagdeni (Min. Conch. tab. cci.) White Nab and Dorsetshire.

ANNULOSA.

Vermicularia nodus Pl. IX. fig. 34. Westow, Whitwell, &c.

Serpula.—1. lacerata Pl. IV. fig. 35. Near Scarborough.

2. a quadrate species

FISHES AND REPTILES.

An imperfect plesiosaurus? was found between the spaw at Scarborough and White Nab, by Mr. Williamson, in 1825.

In the neighbourhood of Brandsby, this rock appears in two separated portions, which have different suites of organic remains. The upper fissile stone strongly assimilates itself to the slaty variety of Forest marble which is quarried on Wittering Heath and at Collyweston, in Northamptonshire, and at Stonesfield, in Oxfordshire, both in respect of its position and its imbedded fossils. This important distinction is less observable in other places, though even where the rock presents but one series of similar layers, those fossils are found on the top which lie in the
slaty stone at Brandsby. The most characteristic of these are gervillia acuta, crassina minima, androstellaria composita. On the contrary, belemnites abbreviatus seems to belong to the lower portion of the rock. It appears to me that the slaty stone, in the Yorkshire district, is of limited and uncertain occurrence, and, from some former investigations in Lincolnshire and Northamptonshire, I suppose it is generally the case. I must defer my remarks on the distribution of the fossils which belong to this rock, till after the catalogue of those in the inferior oolite or dogger.

FOSSILS OF THE LOWER CARBONACEOUS SANDSTONE AND SHALE.

These consist wholly of the remains of plants belonging to the monocotyledonous families, lycopodineæ, equisetaceæ, filices, cycadeæ, and palmæ, (Sternberg.)

Equisetum.—1. columnare (Brongniart) ... (Young and Bird, Pl. III. fig. 4, 5, 6.)

High Whitby, Stainton cliffs, Haiburn Wyke, Cleveland hills, Brora in Sutherland.

Brong. Veg. fossiles, Pl. XIII.

2. laterale ... Pl. X. fig. 13. Saltwick.
Lycopodites uncifolius ... Pl. VIII. fig. 3. Saltwick & Haiburn Wyke, and in the upper carbonaceous shale.

Thuites expansus? (Sternberg) ... Pl. X. fig. 11. Ditto.
Scolopendrium solitarium ... Pl. VIII. fig. 5. Saltwick, and in the upper carbonaceous shale.

Sphænopteris.—1. muscoideæ ... Pl. X. fig. 10. Saltwick.
2. stipata ... fig. 8. Egton Moors, Saltwick, Haiburn Wyke, and in the upper carbonaceous shale.

? 3. lanceolata ... fig. 6. Saltwick.
? 4. undulata (Young and Bird, Pl. I. fig. 3.) Ditto. ?
Neuropteris.—1. laevigata ... Pl. X. fig. 9. Egton Moors, Haiburn Wyke.

Pecopteris.—1. ligata ... Pl. VIII. fig. 14. Also in the upper carbonaceous shale.

2. curtata ... Pl. X. fig. 7. Egton Moors, and in the upper carbonaceous shale.

Cycadites.—1. latifolius ... Pl. X. fig. 1. Saltwick. Its nervures are very delicate.

2. graminens ... fig. 2. Saltwick.

3. lanceolatus ... fig. 3.

4. pectenoides (Sternberg) fig. 4. Saltwick, Haiburn Wyke, Cleveland hills; also at Stonesfield, Oxfordshire.

Flabellaria? viminea ... Pl. X. fig. 12. Saltwick, and in the upper carbonaceous shale.

Seed of a cycadites? ... fig. 5. Haiburn Wyke.

Seed vessel.—1. (Young & Bird Pl. I. fig. 1. on the left) Saltwick.

2. (Young and Bird, Pl. I. fig. 7.) Ditto.

3. (Young and Bird, Pl. I. fig. 2.) Hawsker, in sandstone.

Of the last three specimens, which are in the museum of the Whitby Literary and Philosophical Society, I transmitted drawings to M. A. Brongniart, along with several other representations of species contained in the above list, which were not in the museum of the Yorkshire Philosophical Society, when he examined its contents in 1825.

The above catalogue contains about twenty species of monocotyledonous plants, of which seven appear to me to be identical with as many which have been previously mentioned as occurring above the Bath oolite. One has been found in the slaty stone at Stonesfield; one at Brora, in Sutherland; and in several rocks probably of about the same antiquity on the continent; but none in the more ancient coal measures associated with the mountain limestone, nor in the more recent lignites which belong to strata above the chalk. The result of all accurate inquiries into the nature and distribution of fossil plants, is, that they consist of three great distinct groups of species, which occupy as many peculiar
repositories in the series of secondary strata: one group lies above the chalk; another is included between the chalk and the lias; and a third occupies the coal measures and mountain limestone. A cursory observer may, perhaps, be led to confound together the ferns and calamites of the coal district with the ferns and equiseta of the oolitic rocks; though to a botanical eye their difference is very apparent: but who can mistake the lepidodendra of the former, the cycadiform fronds of the middle period, and the dicotyledonous leaves and fruits which abound above the chalk? Many interesting inquiries connected with this subject, as the temperature and condition of the earth, when these plants flourished upon its surface, their inhumation beneath vast deposits of marine shells, and their subsequent conversion to coal of different chemical properties, must here be left unexplored; but I cannot avoid calling the attention of geologists to the perfect harmony between the distribution of fossil plants and fossil shells. The three great divisions of secondary strata which enclose the three peculiar groups of fossil plants are precisely those which are, in the most decided manner, characterised by the distinct races of molluscous animals which existed during their deposition.

FOSSILS OF THE INFERIOR OOLITE, OR, DOGGER.

Dicotyledonous wood Coldmoor, Blue wick.

ZOOPHYTA AND EADIARIA.

Caryophyllia convexa Pl. XI. fig. 1. Blue wick, Cold moor.
Meandrina Blue wick.
Cidaris, a plate Pl. XI. fig. 2. Ditto.

MOLLUSCA.

Gastrochæna tortuosa (Min. Conch.) Pl. XI. fig. 36. Blue wick.
Psammobia levigata Pl. IV. fig. 5. Ditto, and other strata.
Mya — 1. calceiformis Pl. XI. fig. 3. Ditto.
2. dilata fig. 4. Glaizedale (Whitby Mus.)
3. literata (Min. Conch.) Pl. VII. fig. 5. Cold moor, near Stokesley.
4. aequata Pl. XI. fig. 12. Blue wick.

x 2
ORGANIC REMAINS.

Amphidesma securiforme ... Pl. VII. fig. 10. Glaizedale, Blue wick.

Unio abductus ... Pl. XI. fig. 4. Ditto, &c.

Pholadomya.—1. obliquata ... Pl. XIII. fig. 15. Blue wick.
2. fidicula (Min. Conch. tab. ccxxv.) Ditto.

Pullastra oblita ... Pl. XI. fig. 15. Ditto.

Crassina.—1. elegans (Min. Conch.) fig. 41. Ditto.
2. minima ... Pl. IX. fig. 23. Ditto, and Bath oolite.
3. a smooth species ... Pl. XI. fig. 10, 11. Blue wick.

Isocardia.—1. concentrica (Min. Conch.) Pl. XI. fig. 40. Ditto, Glazedale, Cold moor, and Bath oolite.

2. rostrata (Min. Conch. tab. ccxxv.) Blue wick.

Cardita similis (Min. Conch.) ... Pl. XI. fig. 39. Ditto, and other rocks.

Cardium.—1. acutangulum ... fig. 6. Blue wick, Glazedale, and Bath oolite.
2. incertum ... fig. 5. Blue wick.
3. striatulum (Min. Conch.) fig. 7. Ditto, also in Sutherland.
4. gibberulum ... fig. 8. Blue wick.

Lucina Pl. IX. fig. 8. Ditto, and in Bath oolite.

Trigonia—1. striata (Min. Conch.) fig. 38. Blue wick, Glazedale, Cold moor, and near Bath.

2. angulata (Min. Conch. tab. dviii.) Blue wick.
3. costata (Min. Conch. tab. lxxv.) Ditto.

2. variabilis (Min. Conch.) fig. 19. Ditto.
3. axiniformis fig. 13. Blue wick.

Cucullæa.—1. reticulata (Bean, MS.) fig. 18. Ditto.
2. cancellata ... fig. 44. Ditto, and in Bath oolite.

Modiola.—1. plicata (Min. Conch. tab. ccxlvi.) Blue wick, Glazedale, and Cold moor.
(var. with stronger, smooth striae)
3. ungulata (Young and Bird, Pl. VII. fig. 10.) Ditto.

Mytilus cuneatus Pl. XI. fig. 21. Glaizedale (Mr. Ripley.)

compare M. exustus (Lister, tab. 366.)

Gervillia lata fig. 16. Ditto, and Blue wick.

Lima proboscidea? (Min. Conch. tab. 264.) Glaizedale.

Plagiostoma giganteum (Min. Conch. tab. lxxvii.) Ditto (Mr. Ripley.)

Pecten.—1. abjectus Pl. IX. fig. 37. Glaizedale.
INFERIOR OOLITE.

Pecten.—2. *lens* (Min. Conch. tab. ccv.)...

3. *virguliferus*...

Pl. XI. fig. 20.

Avicula.—1. *inequivalvis* (Min. Conch. t. cxxiiii.)

2. *Braamburensis* (Min. Conch.) Pl. VI. fig. 6.

Gryphaea (indeterminable)...

Ostrea solitaria (Min. Conch. tab. cccclxviii.)

Lingula Beanii...

(allied to *l. mytilloides* (Min. Conch.)

Terebratula.—1. *trilineata* (Young and Bird)

(surface striolated)

2. *obsoleta?* (Min. Conch. tab. lxxxiii.)

3. *bidens*...

Pl. XIX. fig. 24.

4. *young of intermedia?* (Min. Conch.)

Orbicula, a large, smooth species...

Turbo.—1. *muricatus* (Min. Conch)...

Pl. IV. fig. 14.

2. *unicarinatus* (Bean, MS.)

3. *laevigatus* (nerita laevig.)

Min. Conch.)...

Pl. XI. fig. 31.

Trochus.—1. *bisertus*...

Pl. XI. fig. 27.

2. *granulatus* (Min. Conch. tab. cxxx.)

3. *pyramidatus* (Bean, MS.)

fig. 22.

Solarium calix (Bean, MS.)...

fig. 30.

Turritella.—1. *cingenda* (Min. Conch.)

fig. 28, 29.

(right lip spirally undulated within

2. *muricata* (Min. Conch.)...

Pl. IV. fig. 8.

3. *quadrivittata*...

Pl. XI. fig. 23.

Melania.—1. *Heddingtonensis?* (Min. Conch. tab. xxxix.)

2. *lineata* (Min. Conch. tab. cxxviiii.)

Natica.—1. *tumidula* (Bean, MS.)...

Pl. XI. fig. 25.

(nerita minuta, Min. Conch. tab. 463.)?

2. *adducta*...

fig. 35.

Blue wick, (a fine, but variable shell.

Blue wick, and other strata.

Blue wick, (rare.)

Blue wick.

Ditto, and Somerset.

Ditto, and Somerset.

Blue wick.

Ditto.

Ditto, (Mr. Williamson.)

Ditto.

Blue wick, Cold moor.

Blue wick.

Ditto, (Mr. Bean.)

Blue wick, Cold moor.

Ditto, (Mr. Ripley.)

Ditto, and coralline oolite.

Blue wick.

Ditto, (imperfect.)

Ditto, and in other strata.

Cold moor.

Blue wick.

Blue wick, and other strata.

Cold moor.

Blue wick.

Cold moor, and Blue wick, and in other strata.

Ditto, and in marlstone.

Ditto, and in other strata.

Glaizedale, and Blue wick, and other strata.

Blue wick.

Ditto, (Mr. Williamson.)

Ditto, (Mr. Bean.)

Blue wick, Cold moor.

Blue wick.

Ditto, and Somerset.

Blue wick.

Ditto, and Somerset.

Blue wick.

Ditto, and Somerset.

Blue wick.
ORGANIC REMAINS.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Page</th>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosellaria composita (Min. Conch.)</td>
<td>Pl. IX. fig. 28.</td>
<td>Blue wick and Bath oolite.</td>
<td></td>
</tr>
<tr>
<td>Nautilus lineatus (Min. Conch. tab. xli.)</td>
<td></td>
<td>Blue wick.</td>
<td></td>
</tr>
<tr>
<td>Belemnites</td>
<td></td>
<td>Ditto.</td>
<td></td>
</tr>
<tr>
<td>Ammonites.—1. striatulus (Min. Conch. tab. cccxxi.)</td>
<td></td>
<td>Blue wick, (rare.)</td>
<td></td>
</tr>
<tr>
<td>2. (carinated and radiated)</td>
<td></td>
<td>Ditto.</td>
<td></td>
</tr>
<tr>
<td>3. (carinated, flat, involute)</td>
<td></td>
<td>Ditto.</td>
<td></td>
</tr>
</tbody>
</table>

ANNULOSA.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Page</th>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serpula deplexa (Bean, MS.)</td>
<td>Pl. XI. fig. 37.</td>
<td>Blue wick.</td>
<td></td>
</tr>
<tr>
<td>Vermicularia compressa (Young & Bird)</td>
<td>Pl. XI. fig. 37.</td>
<td>Ditto.</td>
<td></td>
</tr>
</tbody>
</table>

I cannot distinguish this species from that in the coralline oolite.

The cornbrash limestone, slaty stone of Brandsby, middle oolite or gray limestone, and inferior oolite or dogger, which together represent in Yorkshire the oolitic formation of Bath, contain a numerous suite of organic remains, agreeing very closely with those obtained from the same strata in other parts of England. Many of these fossils have been observed by Mr. Murchison in the analogous strata of Sutherland, and by Mr. De la Beche and other geologists, in the oolites of Normandy and Switzerland. In the vicinity of Bath, where this formation is the most distinctly exposed, the organic contents of the several strata are extremely similar; and, notwithstanding the valuable labours of Smith, Sowerby, Conybeare, Miller, &c. their zoological characters require further elucidation. The fossils of the middle or great oolite, in particular, are very imperfectly known; and the term "forest marble" has been (I think) applied to very dissimilar members of the series. In the midland counties, the fuller's-earth rock of Mr. Smith does by no means furnish a constant or well-marked line of distinction between the middle, great, or Bath oolite, and the inferior oolite; and I am decidedly of opinion, that in the northern part of Northamptonshire, and throughout Rutland and Lincolnshire, there is but one thick oolitic rock beneath the cornbrash,
resting upon brown sandstone which immediately covers the upper lias shale. There is no reason to doubt the identity of the oolites of Lincoln, Cave, Sancton, Westow, and the vicinity of Brandsby and Coxwold; and though we cannot directly trace the connexion across the moorlands, the gray limestone of Sneaton, Hawsker, Cloughton, and White Nab, may be added to the synonyms.

It has been already remarked that the dogger or inferior oolite, is a bed of extremely irregular occurrence and varying character, both on the coast and in the fronts of the Cleveland hills; and it cannot, without difficulty, be traced southward beyond the Derwent. On the hill at Craike, it is a brown sandstone, remarkably similar to that which covers the lias shale near Lincoln, Belvoir Castle, and Uppingham. In some parts of Northamptonshire it includes beds of white oolite, and, therefore, it may be presumed to represent the inferior oolite and the subjacent sand of the neighbourhood of Bath. Hence it follows, that the gray limestone of the Yorkshire coast is equasval with the great or middle oolite of Bath; and the roadstone of Brandsby, and a similar stratum in Lincolnshire, may be referred to the forest marble or Stonesfield slate.

The distribution of the organic remains in the slaty rock of Brandsby, middle oolite, and inferior oolite, has yet been carefully ascertained at only a few points; and the following observations will probably, hereafter, receive several corrections. At present, it appears to me that the roadstone is characterized by the great abundance of gervillia acuta, and crassina minima, and by the presence of pholadomya acuticostata, rosettaria composita, and the genus Actaeon. Where this rock is united with the middle oolite, as at White Nab, these fossils commonly lie near the top; where it is entirely deficient, (as at Ewe Nab,) they are scarcely to be found. The top of the middle oolite (as under Gristhorpe cliffs, at Ewe Nab, Owlston, and Ellerker) is generally marked by abundance of millepora straminea, and plates and spines of echini, and columnar joints of pentacrinus caput Medusae. In the substance of the rock occur belemnites, isocardiae, pholadomyae, cucullae, pernae, pinnae, plagiostoma,
pectines, and terebratula. So large a proportion of its organic contents occur likewise in the inferior oolite beneath, that it is difficult at present to point out what seem to be characteristic. The inferior oolite or dogger, on the contrary, besides including a great number of species, which likewise occur in the superior strata, and a few which are repeated in the lias below, is well discriminated by several remarkable fossils. Gastrochaena tortuosa, trigonia striata, gervillia lata, mytilus cuneatus, cucullæa reticulata, lingula Beanii, nerita costata, natica tumidula, (minuta, Min. Conch.) turbo laevigatus, solarium calix, trochus pyramidatus, and trochus bisertus, have not, I believe, been found in any other stratum in any part of England.

FOSSILS OF THE LIAS FORMATION.

Wood of dicotyledonous trees, with knots and medullary rays, the external layers often converted to jet, occurs in the upper and lower shales, and more rarely in the intermediate marlstone beds.

Remains of zoophyta are universally of most rare occurrence in the lias, and especially in Yorkshire.

RADIARIA.

Cidaris, a smooth spine Pl. XIII. fig. 17. In the marlstone.
Ophiura Milleri Pl. XIII. fig. 20. Staithes, in the marlstone.
Pentacrinus.—1. Medusæ (Miller, Crinoidea) Diffused in the lias, but not abundantly.

2. Briareus (Miller)

MOLLUSCA.

Mya literata (Min. Conch.) Pl. VII. fig. 5. In marlstone, rare.
Sanguinolaria Pl. XIV. fig. 1. Marlstone, Rosebury, lower shale, Robin Hood's Bay.
LIAS FORMATION.

Sanguinolaria elegans Pl. XII. fig. 9. In calcareous nodules (rare.)
Pholadomya obliquata ... Pl. XIII. fig. 15. In marlstone, Bildsdale,
Amphidesma.—1. donaciforme ... Pl. XII. fig. 5. Rosebury, &c.

2. rotundatum ... Pl. XII. fig. 6. Upper shale, hard shale, &c.

Unio.—1. concinnus (Min. Conch. tab. ccxxiii.)
2. crassiusculus (Min. Conch. tab. clxxxv.)
3. Listeri (Min. Conch. tab. cliv.)
4. abductus Pl. XI. fig. 42. Ditto.

Pullastra Pl. XIII. fig. 16. Ditto.
Venus, as in calcareous grit? Pl. IV. fig. 26? Ditto.
Crassina minima Pl. IX. fig. 23. In calcareous nodules.
Corbis? Pl. XII. fig. 3. Upper shale, Whitby.

Trigonia literata (Young and Bird) ... Pl. XIV. fig. 11. Lower shale, Robin Hood’s Bay; also in the upper shale (Mr. Williamson.)

Corbula? cardioideum Pl. XIV. fig. 12. Lower shale, Robin Hood’s Bay.

2. multicostatum (Bean MS.) Pl. XIII. fig. 21. In calcareous nodules, and marlstone.
3. cast of inside Pl. XII. fig. 7. Upper shale.

Hippopodium ponderosum (Min. Conch. tab. ccl.) Lower shale, Robin Hood’s Bay.

Modiola.—1. scalprum (M. C. t. ccxlvii.) Pl. XIV. fig. 2. Marlstone, Robin Hood’s Bay, Eston Nab; also in the I. of Pabba.

2. Hillana (Min. Conch. tab. ccxii.) Robin Hood’s Bay.

Pinna folium (Young and Bird, Pl. X. fig. 6.) Pl. XIV. fig. 17. Lower shale, Robin Hood’s Bay, Boulby Cliffs.

Nucula.—1. ovum (Min. Conch.) ... Pl. XII. fig. 4. Upper shale, Whitby.
2. complanata (east) fig. 8. Ditto.

Cucullaea, a smooth species (Author’s cabinet.) From the calcareous nodules.

Crenatula ventricosa (Min. Conch. tab. ccccxiii.) Hard shale, and Hawsker, (Young and Bird.)

ORGANIC REMAINS.

Plagiostoma.—1. giganteum (Min. Conch. tab. lxxvii.) In marlstone, Staithes, in lower shale, North Cliff, and Pocklington.

2. pectenoïdes (Min. Conch.) Pl. XII. fig. 13. In calcareous nodules.

3. rusticum? (Min. Conch. tab. ccclxxxi.) } Marlstone and calcareous nodules.

var. of ditto? Pl. XIV. fig. 18.

Avicula.—1. inaequivalvis (Min. Conch. tab. cexliii.) In marlstone universally.

2. like echinata In calcareous nodules.

3. cygnipes (Young and Bird) Pl. XIV. fig. 3. Ditto, Bilsdale, Wilton Castle, &c.

Pecten.—1. sublaevis (Young and Bird) Abundant in marlstone.

2. equivalvis (Min. Conch. tab. cxxxvi.) In marlstone and ironstone.

3. lens (Min. Conch. tab. cvv.) In marlstone, Bilsdale.

4. smooth In lower shale, Wilton Castle.

Plicatula spinosa (Min. Conch. tab. ccxv.) Pl. XIV. fig. 16. In lower shale, Huntcliff, Robin Hood's Bay, &c.

Gryphæa.—1. incurva (Min. Conch. tab. exii.) Pocklington, Robin Hood's Bay, &c. in lower shale.

2. Maccullochii (Min. Conch. tab. dxlvii.) In lower shale, Robin Hood's Bay.

3. depressa ... Pl. XIV. fig. 7. In marlstone, generally.

Spirifera Walcottii (Min. Conch. tab. ccclxxvii.) In calcareous nodules (very rare.)

Terebratula.—1. punctata (Min. Conch. tab. xv.) Marlstone.

3. trilineata (Young and Bird) ... Upper shale, (also in the dogger.)

4. acuta (Min. Conch. t. cl.) Pl. XIII. fig. 25. Wilton Castle, Bilsdale.

5. bidens (lineata, Y. & B.) Pl. XIII. fig. 24. Wilton Castle, Staithes, Peak, &c. in ironstone and marlstone.

6. triplicata ... Pl. XIII. fig. 22. Ditto.

7. tetraëdra (Min. Conch. tab. lxxiii.) In marlstone and ironstone, generally, also upper shale.

Orbicula reflexa (Min. Conch. tab. dvi.) From the upper shale at the Peak, and Whitby.
LIAS FORMATION.

Turbo undulatus Pl. XIII. fig. 18. In marlstone.
Trochus anglicus (Min. Conch. tab. cxlii.) Lower shale, Leppington, and Robin Hood's Bay.
Natica, cast of inside Pl. XIV. fig. 10. Lower shale, Robin Hood's Bay.
Actaeon Pl. XII. fig. 11. In calcareous nodules.
Rostellaria? Pl. XII. fig. 12.
Nautilus.—1. astacoides (Y. and B.) } Pl. XII. fig. 16. Upper shale.
lineatus? (Min. Conch.) } fig. 18. Ditto. (Whitby Mus.)

Belemnites—1. tubularis (Young & Bird.) Pl. XII. fig. 20. Ditto, Saltwick, &c.
2. compressus (Young and Bird) fig. 21. Ditto.
3. elongatus (Miller) Ditto.

Ammonites.—1. heterophyllus (Min. Conch.) Pl. XIII. fig. 2. Boulby, Whitby.
2. subcarinatus (Young & Bird) Pl. XIII. fig. 3. Upper shale.
3. Henleyi (Min. Conch. tab. clxxii.) } Whithby, Northamptonsh.
heptangularis (Young and Bird) } and Dorsetshire.
4. heterogeneus (Young & Bird) Pl. XII. fig. 19.
5. crassus (Young and Bird) } Pl. XII. fig. 15. Upper shale.
var. with tubercles
6. communis (Min. Conch. tab. cvii.) Ditto, generally.
7. angulatus (Min. Conch. tab. cvii.) Ditto, rare.
8. annulatus (Min. Conch. tab. cxxii.) In calcareous nodules, near
Kettleness.
9. fibulatus (Min. Conch. tab. cccxii.) Upper shale.
10. subarmatus (Min. Conch. tab. cccxii.) Ditto.
11. maculatus (Young & Bird) Pl. VIII. fig. 11. "Hard bands, Hawsker."
" Ditto.
12. gagateus (Young and Bird) Lower shale, Robin Hood's Bay.
13. planicostatus (Min. Conch. tab. lxxiii.) Ditto.
14. balteatus ... Pl. XII. fig. 17. Upper shale. (Whitby Museum.)
15. arcigerens ... Pl. XIII. fig. 9. Upper shale.
16. brevispina (Min. Conch. tab. clvi.) Lower shale.
17. Jamesoni (Min. Conch. tab. clv.) Ditto, Robin Hood's Bay.
18. erugatus (Bean, MS.) Pl. XIII. fig. 18. Rare.
19. fimbriatus (Min. Conch. tab. clxiv.) Upper shale.
" Hard bands, Hawsker."
20. nitidus (Young and Bird) In marlstone bed.
21. anguliferus ... Pl. XIII. fig. 19.
Ammonites.—22. lenticularis ... Pl. VI. fig. 25. In ironstone.
23. crenularis ... Pl. XII. fig. 22. In upper shale.
24. Clevelandicus (Young and Bird)
26. geometricus (Mr. Ripley's collection.)
27. vittatus (Young & Bird) Pl. XIII. fig. 1. In calcareous nodules.
28. sigmifer ... Pl. XIII. fig. 4. Ditto.
32. obtusus (Min. Conch. tab. clxvii.) Redcarensis? (Young and Bird)
33. Walcottii (Min. Conch. tab. cvi.) Upper shale.
34. striatulus (Min. Conch. tab. cccxxii.) Ditto, and Peak.
35. ovatus (Young & Bird) Pl. XIII. fig. 10. “Hard bands, Hawsker.”
36. * nitescens (Young and Bird) “Lias bands.”
37. * obliquatus (Young and Bird) Ditto.
38. Mulgravius (Young and Bird) Upper shale, Lyth, Saltwick, &c.
39. exaratus (Young & Bird) Pl. XIII. fig. 7. Boulby, &c.
41. * Boulbianis (Young and Bird) Ditto.
42. * impendens (Young and Bird) Ditto.
43. concavus? (Min. Conch. tab. xciv.) Upper shale.
44. elegans? (Min. Conch.) Pl. XIII. fig. 12. Ditto.

CRUSTACEA AND ANNULOSA.

Two species of astacus? have been found by Mr. Williamson, in the upper part of the lias shale; one of them strongly resembles that of the Oxford clay; the other is similar to astacus rostratus, Pl. IV. fig. 20.

Serpula capitata Pl. XIV. fig. 6. Lower shale, Robin Hood's Bay.
Dentaria giganteum fig. 8. Marlstone, common.

* These ammonites unknown to me, are not figured by the authors who have named them.
A large thick fish is rarely found in the lias shale, with solid bony scales. Heads, vertebrae, paddles, and scattered bones of saurian animals have been frequently extracted from the upper shale, and several tolerably complete skeletons have been preserved. There appear to be several species, but farther inquiries must be instituted on this subject. The Museum of the Whitby Philosophical Society contains some of the most valuable of these remains, particularly a small but perfect ichthyosaurus, containing one hundred and thirty-six vertebrae, and a superb crocodile fifteen feet long. Pl. XII. fig. 1, represents the basal surface of a small cranium of a crocodile, to shew the arrangement of the posterior bones, and fig. 2 is a copy of a singular head which seems to differ from any hitherto described fossil animal. Both specimens are in the Museum of the Yorkshire Philosophical Society.

The three divisions of the lias formation which have been described on the coast of Yorkshire, may be traced southward through Lincolnshire, Rutland, Northamptonshire, Oxfordshire, Gloucestershire, and Somersetshire. Sections obtained in any part of this long range, agree in representing the lias clay, as divided into two portions by an intermediate series of sandy and irony layers of stone, full of many organic remains. The upper division varies in thickness, and changes much in aspect and composition. Its thickness in Yorkshire sometimes equals two hundred feet, and in Rutland exceeds one hundred feet; but in the neighbourhood of Bath may be stated at twenty feet. The marlstone series maintains a general conformity of character, and, though nowhere so thick or so much developed as in Yorkshire, constitutes an important feature in the range of the formation, especially in Rutland. The solid beds of gryphitic limestone which lie toward the base of the lias clay, from Somersetshire to Lincolnshire, may, with attention, be traced in the southern part of Yorkshire, but they nowhere appear on the coast. Mr. Murchison's observations in the district of Brora and at various points on the western coasts of Scotland, are decisive as to the occurrence of the lias there; but I am unable to determine what particular divisions of the formation are exposed in the several localities. With great dif-
fidence I beg to suggest that the section of the north-east coast of Skye, (Geological Transactions, New Series, Vol. II, page 360,) would better coincide than it seems to do at present, with the series of the Yorkshire coast, if the following designations should prove correct: No. 1. upper sandstone and shale, (coaly grit of Smith.) 2. Bath oolite and slaty forest marble. 3, 4. Lower sandstone and shale with plants. 5. Inferior oolite. 6. Upper lias, shale, and calcareous nodules, (perhaps attenuated and altered, as happens also in Cleveland.) 7. Marlstone series, resting on the lower shale.

M. Charbant's description of the strata in the vicinity of Lons le Saunier, leaves no doubt of the general conformity of the lias beds, at the base of the Jura limestone, with those of England. (See De la Beche's Geological Memoirs.) Professor Buckland's valuable remarks (Annals of Philosophy, June, 1821) have extended this result to the vallies of the Inn and the Adige: and similar researches prove the continuation of the lias through Wurttemburg and Franconia, and under the denomination of Muschelkalk along the north side of the Erzgebirge. (Conybeare and Phillips, page 169.) Mr. De la Beche (Geological Transactions, New Series, Vol. I, page 81) has traced the lias on the coast and through the interior of Normandy; and Dr. Bone (Edinburgh Phil. Journal, Vol. XII, p. 145) has shewn the similarity between the organic contents of this formation on the continent and in England. It seems doubtful whether the marlstone has been recognised by any of these distinguished observers, and as this rock is known to become thinner and less consolidated toward the south of England, perhaps we may infer that it cannot be traced on the continent.

So large a portion of the numerous fossils belonging to the lias, are peculiar to it, that it seems unnecessary to particularize them. Plagiosostoma giganteum is less characteristic of the formation than has been supposed, for it occurs in the inferior oolite both of Yorkshire and Somersetshire. Gryphae incurva, trochus anglicus, and ammonites Bucklandi, appear to be in Yorkshire confined to the lower shale; cardium truncatum, modiola scalprum, pecten æquivalvis, and p. sublævis,
FOSSILS OF THE YORKSHIRE COAST.

avicula inaequivalvis, gryphaea depressa, and terebratula bidens (lineata Young and Bird) are most abundant in the marlstone and ironstone series, whilst nucula ovum, and amphidesma donaciforme, and the ammonites and belemnites generally, belong to the upper or alum shale, and to calcareous nodules connected with it. The smaller of these concretions often enclose single ammonites, and the larger ones which lie nearer the ironstone series, are filled with a variety of fossils. Remains of saurian animals have been found in all parts of the formation, but are most abundant in the upper shale.

FOSSILS OF THE YORKSHIRE COAST,
ARRANGED ACCORDING TO THEIR NATURAL AFFINITIES,
With Notices of the Strata in which each Species occurs.

REMAINS OF MONOCOTYLEDONOUS PLANTS.

Lycopodineae. Lycopodites uncifolius,* and thuites expansus, upper and lower sandstone and shale.

Equisetaceae. Equisetum, 1, columnare, 2, laterale,* lower sandstone and shale.

Filices. Scolopendrium solitarium,* upper and lower sandstone and shale.

Asplenioperis Nilseni, upper sandstone and shale.

Sphenopteris, 1, latifolia,* 2, longifolia,* and 3, digitata,* upper sandstone and shale; 4, stipata,* upper and lower sandstone and shale; 5, muscoides,* 6, lanceolata,* 7, undulata,* lower sandstone and shale.

Neuropterus, 1, lobifolia,* 2, lavigta,* upper and lower sandstone and shale.

Note.—The names of the strata are written in italics after the names of the species. The mark † is prefixed to species accidentally omitted in the former catalogues; * distinguishes the species named by the author.
168

ORGANIC REMAINS.

Filices. Pecopteris, 1, paucifolia,* 2, recentior,* 3, exilis,* 4, caespitosa, 5, crenifolia,* 6, hastata,* upper sandstone and shale; 7 curtata, and 8, ligata,* in upper and lower sandstone and shale.

Cycadeæ. Cycadites,* leaves contracted at the base; 1, latifolius,* 2, gramineus,* 3, lanceolatus, lower sandstone and shale; * * leaves not contracted at the base; 4, comptus,* 5, tenuicaulis,* 6, sulcicaulis,* 7, pecten,* upper sandstone and shale; 8, pectenoides, lower sandstone and shale.

Unknown leaves, three species, upper sandstone and shale.

Seeds, &c. Strobilus and winged seed, upper sandstone; winged seed, and three seed-vessels, lower sandstone and shale.

Palmae? Flabellaria? viminea,* upper and lower sandstone and shale.

REMAINS OF DICOTYLEDONOUS PLANTS.

Phyllites nervulosus, upper sandstone and shale.

Wood with knots and branches, in every stratum from the lias upward, to the Speeton clay.

REMAINS OF ZOOPHYTA.

Fibrosa. Spongia,* fungiform, 1, plana,* 2, capitata,* 3, osculifera,* 4, Bennettæ, 5, convoluta,* 6, marginata,* 7, 8, chalk; * * fistuliform; 9, radiciformis,* 10, terebrata,* chalk; * * funnet shaped; 11, porosa,* 12, laevis,* 13, aleyonoïdes, 14, cribrosa,* chalk; * * * * ramose, 15, ramosa, chalk; 16, floriceps,* and 17, coralline oolite.

Cellulifera. Cellaria, Smithii,* corbrash.

Cellépora, attached to spatangus, chalk.

Millepora, 1, straminea,* corbrash and Bath oolite; 2, globularis,* chalk.

Lunulites urceolata, chalk.

Retepora? Bath oolite.

Lamellifera. Turbinolia dispar,* and varieties, coralline oolite.

Caryophyllia, 1, conulus,* Speeton clay; 2, centralis, chalk; 3, cylindrica,* coralline oolite; 4, convexa,* inferior oolite; 5, like caespitosa, and 6, like flexuosa, coralline oolite.
THE YORKSHIRE COAST.

Lamellifera. Astrea, 1 favosioides,* 2, inaequalis,* 3, microstron,* 4, arachnoides, 5, tubulifera,* and 6, coralline oolite; 7, inferior oolite. Meandrina, coralline oolite.

Tubulifera. Tubipora, or Eunomia? Bath oolite.

REMAINS OF RADIARIA.

Stellerida. Ophiura Milleri,* marlstone.

Crinoidea. Pentacrinus, 1, caput Meduse, lias, &c.; 2, Briareus, lias.
Unknown genus, two species, coralline oolite and calcareous grit.

Apiocrinus ellipticus, chalk.

Marsupites ornatus, chalk.

Echinida. Cidaris, 1, papillata, chalk; 2, florigemma,* 3, intermedia, 4, monilipora,* coralline oolite; 5, vagans,* calcareous grit, cornbrash, &c.; and other species in Speeton clay, Bath oolite, inferior oolite, and marlstone.

Echinus, 1, germinans,* calcareous grit and Bath oolite; 2, Koenigi,+ (Park. Org. Rem. III. Pl. I. fig. 10,) chalk.

Clypeus, 1, sinuatus, 2, emarginatus,* 3, semisulcatus,* 4, dimidiatus,* coralline oolite; 5, clunicularis, coralline oolite, cornbrash, &c.; 6, orbitularis,* cornbrash.

Galerites, 1, albogalerus, 2, subrotundus, chalk; 3, depressus, coralline oolite, calcareous grit, and cornbrash.

Clypeaster pentagonalis,* calcareous grit.

Spatangus, 1, cor anguinnun, 2, planus, 3, hemisphericus,* chalk; 4, ovalis, coralline oolite, calcareous grit, and Kelloways rock; 5, argillaceus,* Speeton clay.

Ananchytes, 1, ovatus, 2, hemisphericus, 3, intumescens,* chalk.

REMAINS OF ACEPHALOUS OR BIVALVE MOLLUSCA.

Division 1, with lateral muscles for closing the valves.

Sub-division 1, mantle partially closed behind.

Pholadaræ. Pholas, 1, recondita,* coralline oolite; 2, constricta,* Speeton clay.

Gastrochæna tortuosa, inferior oolite.

Myariae. Mya, 1, depressa, 2, phaseolina,* Speeton clay; 3, literata, coralline oolite, calcareous grit, &c.; 4, calceiformis,* Kelloways rock, inferior oolite, &c.; 5, 6, Kelloways rock and Oxford clay; 7, dilata, 8, aquata, inferior oolite.
Myariae. Lutraria, 1, Speeton clay; 2, gibbosa, Bath oolite.
Amphidesma, 1, recurvum, coralline oolite, Kelloways rock, and lias; 2, decurtatum, 3, securoforme, cornbrash and Bath oolite; 4, donaciforme, upper lias.

Corbuleae. Corbula, 1, punctum, Speeton clay; 2, curtansata, coralline oolite and Kelloways rock; 3, depressa, Bath oolite; 4, cardioides, lower lias.

Tellinaceæ. Sanguinolaria, 1, undulata, calcareous grit, Oxford clay, and cornbrash; 2, marnslone; 3, elegans, upper lias.
Psammobia laevigata, coralline and Bath oolite.

Tellina, 1, Speeton clay; 2, ampliata, coralline oolite.

Veneridæ. Lucina, 1, sculpta, Speeton clay; 2, crassa, calcareous grit; 3, lirata, Kelloways rock; 4, despecta, Bath and inferior oolite.
Crassina, 1, aliena, 2, ovata, 3, extensa, coralline oolite; 4, levvis, Speeton clay; 5, elegans, coralline and inferior oolite; 6, minima, Bath and inferior oolite and upper lias; 7, carinata, calcareous grit, Oxford clay, and Kelloways rock; 8, Kelloways rock; 9? inferior oolite.

Venus, 1, coralline oolite.

Cytherea dolabra, coralline and Bath oolite.
Pullastra, 1, recondita, Bath oolite; 2, obliqua, inferior oolite; 3, lias.

Corbis, 1, levvis, coralline oolite and Kelloways rock; 2, uniformis, upper lias; 3, equalis, Kelloways rock.

Cardiaceæ. Cardium, 1, lobatum, coralline oolite; 2, dissimile, Kelloways rock; 3, citrinoidium, cornbrash; 4, cognatum, 5, semiglaibrum, Bath oolite; 6, acutangulum, Bath and inferior oolite; 7, truncatum, 8, multicostatum, marlstone; 9, striatum, 10, gibberulum, 11, incertum, inferior oolite.

Isocardia, 1, angulata, Speeton clay and Bath oolite; 2, rhomboidalas, 3, coralline oolite; 4, tumida, calcareous grit; 5, minima, cornbrash; 6, nitida, Bath oolite; 7, concentrica, Bath and inferior oolite.

Cardita similis, coralline and Bath oolite.

Pholadomya, 1, decussata, Speeton clay; 2, Murchisoni, 3, ovalis, cornbrash; 4, producta, 5, nana, Bath oolite; 6, deltoidea, 7, simplex, calcareous grit; 8, obsoleta, Kelloways rock and Oxford clay; 9, acuticostata, Brandsby slate; 10, obliquata, Bath oolite and marlstone.
THE YORKSHIRE COAST.

Naiadæ. Unio? 1, Listeri, 2, concinnus, 3, crassiusculus, lias; 4, peregrinus, *cornbrash; 5, abductus, inferior oolite and marlstone.

Mytilaceae. Modiola, 1, scalprum, marlstone; 2, plicata, inferior oolite; 3, bipartita, calcareous grit; 4, cuneata? Oxford clay, Kelloaways rock, and cornbrash; 5, imbricata, Bath oolite; 6, Hillana, lias; 7, ungulata?, coralline, Bath, and inferior oolite; 8, pulchra?, Kelloaways rock; 9, aspera?, inferior oolite; 10, inclusa?, coralline oolite.

Mytilus, 1, cuneatus?, inferior oolite.

Hippopodium ponderosum, coralline oolite and lias.

Division 1. Sub-division 2, mantle entirely open.

Arcæ. Cucullæa, 1, oblonga, 2, contracta?, 3, triangularis?, 4, pectinata?, coralline oolite; 5, elongata, coralline, Bath, and inferior oolite; 6, concinna, *Oxford clay and Kelloaways rock; 7, imperialis?, 8, cylindrica, Bath oolite; 9, cancellata, Bath and inferior oolite; 10, reticulata, inferior oolite; 11, Speeton clay; 12, lias.

Arca, 1, quadrirucleata, 2, semula, coralline oolite.

Nucula, 1, ovata, 2, subrecurva?, Speeton clay; 3, subrecurva?, inferior oolite; 4, coralline oolite; 5, elliptica, 6, nuda, 7, Oxford clay; 8, variabilis, 9, lachryma, Bath and inferior oolite; 10, axiniformis, inferior oolite; 11, ovum, 12, complanata, upper lias.

Trigoniaceæ. Trigonia, 1, costata, 2, clavellata, coralline oolite, &c.; 3, conjunctens, *Brandsby slate; 4, striata, inferior oolite; 5, literata, lias; 6, angulata, inferior oolite.

Division 2, with a large nearly central muscle, for closing the valves.

Oxygonæ. Perna quadrata, coralline and Bath oolite.

Crenatula ventricosa, lias. Inoceramus, 1, Cuvieri, 2, Brongniarti, 3, mytiloides, chalk; 4, dubius, lias.

Z 2
172 ORGANIC REMAINS.

Oxygonæ. Gervillia, 1, aviculoides, coralline oolite and calcareous grit; 2, acuta, Brandsby slate; 3, lata,* inferior oolite.

Avicula, 1, elegantissima,* 2, tonsipluma,* coralline oolite; 3, ovalis,* coralline oolite and calcareous grit; 4, expansa,* coralline oolite, Oxford clay, and Kelloways rock; 5, Braamburiensis, Kelloways rock and Bath oolite; 6, inaequivalvis, inferior oolite and marlstone; 7, like echinata, lias.

Pectenidae. Plagiostoma, 1, giganteum, inferior oolite and lias; 2, rusticum, lias and coralline oolite; 3, pectinoideum, upper lias; 4, laevisculum, 5, rigidum, coralline oolite; 6, rigidulum,* cornbrash; 7, Oxford clay, 8, cardiiforme? 9, Bath oolite; 10, duplicatum, coralline oolite, Oxford clay, and Kelloways rock; 11, interstinctum,* cornbrash and Bath oolite.

Dianchora striata, chalk.

Lima, 1, rudis, coralline and Bath oolite and calcareous grit; 2, proboseidea? inferior oolite.

Plicatula spinosa, lias.

Pecten, 1, inaequalvis, 2, sublaevis, marlstone series; 3, inaequicos-tatus,* 4, vimineus, 5, cornbrash and coralline oolite; 6, vagans, coralline oolite and calcareous grit; 7, fibrosus, Kelloways rock; 8, virguliferus,* inferior oolite; 9, abjectus,* Bath and coralline oolite; 10, lens, coralline oolite, Kelloways rock, &c.; 11, demisus,* coralline oolite, Kelloways rock, cornbrash, &c.; 12, cancellatus,* coralline oolite; 13, 14, Oxford clay; 15, Speeton clay.

Ostracidae. Ostrea, 1, Marshii, Kelloways rock, cornbrash, and Bath oolite; 2, gregarea, coralline oolite, calcareous grit, and Bath oolite; 3, solitaria, 4, duriscula,* coralline oolite; 5, inaequalis,* Oxford clay; 6, undosa,* 7, archetypa,* Kelloways rock; 8, sulcifera,* Bath oolite; 9, cornbrash; 10, Oxford clay; 11, Bath oolite.

Gryphaea, 1, incurva, 2, Macullochii? lias; 3, dilatata, Kelloways rock; 4, bullata, 5, inhaerens,* coralline oolite and calcareous grit; 6, gigantea? Bath oolite; 7, depressa,* marlstone; 8, sinuata, Speeton clay; 9, nana, coralline oolite, calcareous grit, &c.

Division 3. Animal with ciliated tentacula at the mouth: shells equilateral.

Inaequivalvæ. Terebratula, 1, intermedia, coralline and Bath oolite, &c.; 2, trilineata, inferior oolite and marlstone; 3, subundata, 4, semiglo-
THE YORKSHIRE COAST.

bosa, chalk and Speeton clay; 5, lincolata,* Speeton clay; 6, ornithocephala, Kelloways rock; 7, ovoides, 8, digona, cornbrash; 9, punctata, marlstone; 10, ovata? coralline oolite; 11, globata, coralline and Bath oolite; 12, resupinata, 13, acuta, 14, bidens,* 15, tridentata,* 16, tetraëdra, ironstone series in lias; 17, subpli-cata, chalk; 18, socialis,* calcareous grit and Kelloways rock; 19, obsoleta, coralline oolite; 20, spinosa, Bath oolite; 21, inconstans, 22, striatula, Speeton clay; 23, pentagonalis,* chalk.

Spirifera Walcottii, lias.
Orbicula, 1, reflexa, lias; 2, radiata,* coralline oolite; 3, latissima, Oxford clay; 4? Speeton clay; 5, inferior oolite.

Æquivalvæ. Lingula, Beanii,* inferior oolite.

REMAINS OF GASTEROPODOUS MOLLUSCA.

(SIMPLE UNIVALVE SHELLS.)

Auriculariae. Auricula, 1, obsoleta,* Speeton clay; 2, Sedgevici,* inferior oolite.
Bullaceæ. Bulla elongata,* coralline oolite.
Tornatellæ. Actaeon, 1, glaber,* inferior and Bath oolite; 2, humeralis,* inferior oolite; 3, re tusus,* calcareous grit; 4? cornbrash; 5, lias.
Subulate. Terebra, 1, melanoioides,* coralline oolite; 2, granulata,* coralline oolite and cornbrash; 3, vetusta,* Bath and inferior oolite.

Varicosæ. Murex Haccanensis,* coralline oolite.
Alæ. Rostellaria, 1, Parkinsoni, Speeton clay, (called by mistake, composita, page 122,) 2, composita, Bath and inferior oolite; 3, bispinosa,* calcareous grit and Kelloways rock; 4, trifida,* Oxford clay.

Melanianæ. Melania, 1, striata, coralline and Bath oolite; 2, Heddingtonensis, coralline oolite, cornbrash, and inferior oolite; 3, lineata, inferior oolite; 4, vittata,* coralline oolite and cornbrash.
Phasianella cincta,* Bath oolite.

Turbinaceæ. Turritella, 1, muricata, coralline oolite, calcareous grit, Kelloways rock, and inferior oolite; 2, cingenda, coralline, Bath, and inferior oolite; 3, quadrivittata,* inferior oolite; 4,? in Speeton clay; 5, lias.

Turbo, 1, muricatus, coralline, Bath, and inferior oolite; 2, unicarinatus,* inferior oolite; 3, funiculatus,* coralline oolite; 4, pulcherrimus, Speeton clay; 5, sulcostomus,* Kelloways rock; 6, laevigatus, inferior oolite; 7, undulatus,* marlstone.
Delphinula, 1, Speeton clay; 2, coralline oolite; 3, Bath oolite.
ORGANIC REMAINS.

Turbinacæ. Cirrus, 1, depressus,* Kelloways rock; 2, cingulatus,* calcareous grit.

Trochusidae. Solarium, 1, tabulatum,* Speeton clay; 2 calix,* inferior oolite.

Trochus, 1, granulatus, coralline oolite, cornbrash, and inferior oolite; 2, reticulatus? Speeton clay; 3, pyramidatus,* 4, bisertus,* inferior oolite; 5, monilite, Bath oolite; 6, bicarinatus, 7, tornatus,* coralline oolite; 8, guttatus,* Kelloways rock; 9, anglicus, lias.

Neritaceae. Nerita costata, inferior oolite.

REMAINS OF CEPHALOPODOUS MOLLUSCA.

Orthoceridæ. Belemnites, 1, gracilis,* Oxford clay; 2, fusiformis, Speeton clay and coralline oolite; 3, Listeri, red chalk; 4, mucronatus, white chalk; 5, sulcatus, coralline oolite, calcareous grit, Oxford clay, Kelloways rock, (Speeton clay? and Kimmeridge clay?) 6, abbreviatus, Bath oolite; 7, conicus, 8, tubularis, 9, compressus, lias.

Nautilidae. Nautilus, 1 lineatus, inferior oolite; 2, astacoides, lias; 3, hexagonus, Kelloways rock; 4, annularis, lias, and others in Speeton clay and Brandsby slate.

Ammonites. Section 1. Without a dorsal keel or furrow; 1, sublaevis, coralline oolite and Kelloways rock; 2, marginatus,* 3, nucleus,* Speeton clay; 4, terebratus,* 5, Herveyi, cornbrash; 6, Gowerianus, Kelloways rock; 7, crassus, 8, Henleyi, 9, heterogeneus, 10, heterophyllus, lias; 11, Sutherlandiae, coralline oolite and calcareous grit; 12, rotula, 13, trisulcosus,* 14, venustus,* 15, concinnum,* Speeton clay; 16, Lamberti? Speeton clay and coralline oolite; 7, plicomphalus? Kimmeridge clay; 18, Blagdeni, Bath oolite; 19, subarmatus, 20, fibulatus, 21, armatus, 22, communis, 23, angulus, 24, annulatus, lias; 25, plicatilis, 26, triplicatus, coralline oolite; 27, Vernonii, Oxford clay; 28, Koenigi, 29, bifrons,* Kelloways rock; 30, fissicostatus,* Speeton clay; 31, Williamsoni,* coralline oolite; 32, maculatus, 33, planicostatus, 34, gagateus, 35, brevispina, 36, Jamesoni, 37, balteatus,* 38, crugatus,* 39, arcigerens,* lias; 40, hystrix,* Speeton clay; 41, athleta,* Oxford clay and Kelloways rock; 42, perarmatus, calcareous grit and Kelloways rock; 43, curvinodus,*
THE YORKSHIRE COAST.

Speeton clay; 44, fimbriatus, 45, nitescens, lias; 46, Callovienesis, 47, Duncani, 48, gemmatus.* Kelloways rock; 49, flexicotatus.* Kelloways rock; 50, Lamberti, Speeton clay and coralline oolite; 51, crenularis,* lias; 52, planus, Speeton clay; 53, anguliferus,* marlstone.

Section 2, with a crenated dorsal keel; 1, lenticularis,* coralline oolite, Kelloways rock, and lias? 2, funiferus,* Kelloways rock; 3, Cleve-landicus, lias: 4, vertebralis, coralline oolite and calcareous grit; 5, Hawskerensis, lias; 6, geometricus?* lias; 7, oculatus,* Oxford clay.

Section 3, with a simple dorsal keel; 1, subcarinatus, 2, Lythensis, 3, Boulbiensis, 4, impedens, 5, Mulgraviensis, 6, exaratus, 7, elegans, 8, ovatus, lias: 9, striatulus, lias and inferior oolite; 10, signifer,* lias; 11, vittatus, lias; 12, solaris,* coralline oolite; 13, Turneri, lias; 14, in Kelloways rock; 15, obliquatus, lias; 16, 17, in inferior oolite.

Section 4, with a dorsal keel between two furrows; (the furrows not always present when young;) 1, Walcottii, 2, Bucklandi, 3, obtusus, 4, Redcarensis, lias.

Hamites. 1, maximus, 2, intermedius, 3, raricostatus, 4, rotundus, 5, attenuatus, 6, alternatus, 7, Beanii, 8, plicatilis, 9, Phillipsii, Speeton clay.

REMAINS OF ANNULOSA.

(TUBULAR UNIVALVE SHELLS.)

Serpula, 1, deplexa,* inferior oolite; 2, capitata,* lias; 3, red chalk: 4, Speeton clay; 5, squamosa,* coralline oolite; 6, lacerata,* calcareous grit and Bath oolite; 7, intestinalis,* Oxford clay and corn-brash; 8, Oxford clay; 9, quadrata,* Bath oolite.

Vermicularia, 1, Sowerbii, Speeton clay; 2, nodus,* cornbrash and Bath oolite; 3, compressa, coralline and inferior oolite.

Dentalium, 1, Speeton clay; 2, giganteum,* lias.

REMAINS OF CRUSTACEA.

Astacus, 1, rostratus,* coralline oolite, Kelloways rock, and lias; 2, ornatus,* Speeton clay; 3, Oxford clay and lias? and others: in Speeton clay and coralline oolite.
ORGANIC REMAINS.

REMAINS OF FISHES.

Teeth of squali, &c. in *Speeton clay, coralline oolite, &c.*
Head and scales of unknown fishes, *lias.*
Radius of a balistes? *lias.*

REMAINS OF REPTILES.

Crocodile, in *coralline oolite and lias.*
Ichthyosaurus, in *Speeton clay, coralline oolite, and lias.*
Plesiosaurus, in *Bath oolite.*
Undescribed genus, in *lias.*

FOSSILS OF THE DILUVIUM,

IN THE EASTERN PART OF YORKSHIRE.

The organic remains found in diluvium must be divided into two groups; viz. those which, having been at some former period enclosed in solid strata, were transported from their original sites by the violence of the deluge, and those which belonged to animals living immediately before that catastrophe. Of the former kinds, we find on the Yorkshire coast and in the vales of York and Cleveland, a great variety, transported in different distances and in different directions. A considerable number of them are described in Mr. Kendall's "Catalogue of Scarborough Minerals and Fossils." Amongst those derived from the mountain limestone of Yorkshire, we may notice a beautiful retepora and a millepora, both nondescript; *tubipora strues, Linn.*; *catenipora catenulata,* (chain coral,) a beautiful favosites, and several species of *astræa, caryophyllia,* and *turbanolia,* besides *spiriferæ, productæ,* *terebratulæ,* and crinoïdal columns. From the coal districts of western Yorkshire, we have *lepidodendra* and *variolaria.* But the most abundant diluvial fossils on the coast, are those derived from the lias cliffs in the north; for it is hardly too much to assert that three-fourths of
the fossil shells of that stratum may be found in its bouldered fragments between Scarborough and Hornsea. Few of the numerous fossils of the oolitic formations occur in the diluvium, and no belemnites nor inocerami of the chalk have been carried by the deluge to the northward, though they are often found in the cliffs of Holderness.

The organic remains of the second group,—viz. of animals which lived on the earth immediately before the flood, are neither so numerous nor so various as the preceding. Those found in the gravel and clay of Yorkshire, consist of the tusks and molar teeth of elephant, and teeth and bones of horse, ox, and deer. But the osseous remains of many other animals were found in the celebrated cave of Kirkdale, near Kirkby-moorside, so well preserved as to allow of their species being perfectly determined. The interesting phenomena of this cavern have been so ably unfolded by Dr. Buckland in his ‘Reliquiae Diluvianae,’ that I determined from the first to refer to that admirable work for descriptions and figures, which could not be introduced into mine without greatly enhancing the price. I was, therefore, unable to avail myself of the generous offer of Mr. Salmond to supply me with original information from his own valuable and instructive description of the cave which he explored with so much zeal and success.

The teeth and bones discovered in this cave belong to the following species of animals;

7. Carnivora; hyæna, tiger, bear, wolf, fox, weasel, and, according to Mr. Salmond, lion.
4. Pachydermata; elephant, rhinoceros, hippopotamus, and horse.
4. Ruminantia; ox, and three species of deer.
4. Rodentia; hare, rabbit, water-rat, and mouse.
5. Birds; raven, pigeon, lark, duck, and partridge.

The floor of the cave was covered with sandy mud; on this lay an irregular deposit of stalagmite, produced by droppings from the roof which was studded with pendent stalactite, and by currents down the sides of the cavity, which were also partially lined with the same cal-
careous incrustation. The bones lay dispersed in the mud and in the stalagmitic crust, broken into angular fragments and chips, but not "bearing the least appearance of having been rolled in water; nor was a single pebble found in the cave." The fractures appeared all to have been occasioned by violence, and many of the fragments were marked with impressions, such as a living hyæna has been found to imprint on similar bones submitted to his powerful jaws. These circumstances, combined with the evidence derived from the album græcum, and the extraordinary number of teeth of hyænas, in every condition from that of the milk-tooth to the aged grinder worn to the gums by mastication, seem to fully justify Dr. Buckland's opinion that this was a den of hyænas who dragged into it piecemeal the other animals, for food.

The quantity of the reliquiae seems to shew that the cave was tenanted for a long succession of years; and a comparison of these remains with others found in diluvial gravel, determines that they belong to the same extinct species. As there is no evidence that such animals have existed in this country (or, indeed, in any part of the world) since the flood, the only conclusion at present tenable, is, that the cave was an antediluvian den, of the same nature as Kent's hole, and the bear caves of Franconia. We must, therefore, admit that before the deluge, this country was inhabited by a variety of animals which now dwell only in tropical regions, and the question of its ancient condition is answered in one of its terms. We may further infer, that, since its inhabitants were analogous to those that now exist, its surface had the same general characters; forests for the stag and the elephant, lakes for the rhinoceros and the hippopotamus, and rocky coverts for the prowling hyæna. These animals might be fitted by constitution to support the rigours of a northern climate; but the general harmony of geological phenomena seems to be better preserved by admitting that the northern regions of the earth were warmer before the flood, than at present.
CHAPTER V.

One of the most remarkable features on a geological map of England is the line of the great trap dyke from beyond Cockfield fell in Durham, to the Sneaton moors in Yorkshire, a distance of sixty miles. That this subterranean wall of basalt is really connected through the whole of this length, few will be inclined to dispute, who have studied the character of the rock, and observed its bearings at Cockfield fell, Bolam, Langbargh, and Lilhoue cross, but it is not traceable between all these points on the surface of the ground. It is a common opinion, that this dyke is united, toward the west, with the “great whin sill,” or basaltic formation of Upper Teesdale, and certainly in appearance and composition they much resemble each other. On the east it does not reach the sea side, but terminates obscurely, after crossing near its source the easternmost branch of Littlebeck. Its general direction is E. S. E. and W. N. W.; but in several places considerable deviations in this respect are observable. The breadth is commonly about sixty feet, as at Cockfield fell, Langbargh quarry, and Egton; but it diminishes to less than thirty feet at the eastern extremity. At Bolam in Durham, it expands into a large pyriform mass, having the appearance of an interposed vein, resting on black shale. The sides of the dyke are seldom perpendicular, but generally slope downwards toward the north. At Langbargh quarry this slope is about 1 in 8. The strata through which the dyke passes are generally dislocated, so that a given layer is found considerably higher on the south side than on the north.

As might be expected, this hard rock has been less wasted by the deluge and the changes of the atmosphere, than the softer strata which
bound it, and, therefore, in some places it appears above them in a long crust or ridge. On Clifton rigg its blocks, lying bare on the surface, have been compared to prostrate pilasters half buried in ruins; near Egton bridge it stands up in a lofty wall, over the waters of the Esk; and beyond Lilhoue cross, it ranges along the moors like an ancient military road; but in a large portion of its range, especially in the wide vale of Tees, it is concealed by diluvial accumulations.

The composition of the basalt presents few peculiarities. Olivine, calcareous spar and quartz are the principal extraneous minerals. Hollow geodes occur in it, of which the walls are amethystine quartz, presenting crystalline facets to the cavity which contains a crystal of carbonate of lime. The joints, which are often lined by a sooty substance, are in most quarries irregular, and lie in all directions; but sometimes a tendency may be noticed to the horizontal prismatic structure, which prevails in narrower dykes of the same substance in the island of Arran. At Bolam, in Durham, where the mass extends itself more horizontally, the pseudoprisms approach to a vertical position. Thin, flexuous, irregular, nearly horizontal layers of basalt appear in Langbargh quarry, and decomposing balls, with ochry outsides, are common.

The following strata are divided by this remarkable dyke; viz. mountain limestone; sandstone, shale, and coal; new red sandstone and red marl; lias shale, &c. and the lower sandstones of the oolitic series. These strata, where they come in contact with the basalt, are more or less altered in appearance and composition, and the change seems generally due to the action of heat. At Cockfield fell, the coal near the dyke is converted to a black substance like concreted soot, and at a small distance changed to a cinder without bitumen or sulphur, and beyond, gradually regains its usual properties. "In the stratum above the cinder a great deal of sulphur is sometimes found, in angular forms, of a bright yellow colour, and very beautiful."* "At Berwick on the Tees, the

* Mr. D. Tuke, in a communication to the Yorkshire Philosophical Society.
white sandstone is usually a good workable freestone, but where the dyke passes through it, is so much indurated as to be unfit for masonry, and is only employed for embankments and similar purposes. In Kildale, the action of heat upon the contiguous shale seems to be plainly discernible; part of it has been quite bleached, perhaps converted into sulphate of alumine; in other parts it has the aspect of scoria, and the iron appears as a loose yellow ochre. A white indurated earth in some places separates the dyke from the neighbouring strata; and occasionally the external portions of basalt are changed to a friable mass, the iron oxidated, and the felspar decomposed to porcelain clay.

To specify the most valuable mineral productions, to determine their relative importance and aptitude for economical uses, and to fix the principles which should guide adventurers in quest of them, is the pleasing duty of a practical geologist. No part of England enjoys greater advantages from the variety and value of its subterranean treasures than Yorkshire. Its rich mines of iron, lead, and zinc, its vast collieries, and immeasurable quarries of building stone, flagstone, slate, and limestone, are productive of increasing wealth and convenience at home, and of inestimable benefit to the empire at large. The eastern part of the county, though less distinguished in this respect than the western, contains many useful minerals, and besides supporting a considerable inland commerce, is capable of furnishing large supplies for exportation.

Coal occurs extensively in the north-eastern part of Yorkshire, in the sandstone series between the gray limestone and the dogger, but always in thin seams, and generally of inferior quality. The immense advantages which would arise from the working of thick seams of good coal, sufficiently account for the many unsuccessful attempts to discover...
MINERAL PRODUCTS.

them. The opinions of *working colliers* on this point have too often been preferred to the legitimate deductions of science, and even yet persons will perhaps be found willing to credit the delusive tale of finding good coal by *going deeper*. But the warning must be given, though it be disregarded; and from all the natural exhibitions on the coast, as well as from the result of every experiment inland, I am compelled to state, that any hope of discovering seams of coal more than eighteen inches or two feet in thickness, in any part of the strata *above* the upper lias or alum shale, is entirely unsupported by reason and experience. That the coal measures of Durham and western Yorkshire exist (covered by magnesian limestone and red sandstone) *beneath* the lias, is probable, but the practicability of reaching them by pits, even in Cleveland, or near York, is very questionable, and the expense of the experiment may be ruinous.

Of several thin and variable seams of coal which appear among the sandstone rocks above the lias, only the lower one immediately above the dogger, and the upper one not far beneath the gray limestone, have been found worth the expense of working. The upper seam is the most regular, and has been worked at Cloughton Wyke, Maybecks, Goadland, Glaizedale, Danby, Blakehoe, Rudland, Coxwold, Newborough Park, Colton, &c.: that this and the lower seam may be opened in new places, is highly probable, and such attempts may be productive of much local advantage, but they should be guided by geological induction, and not abandoned to *ignorance and empiricism*.

The manufacture of *alum* from the upper lias shale, has furnished extensive employment and considerable emolument, but there appears little encouragement to establish works in new situations. The principal material in the process does not retain its essential characters much further south than the present establishments; and the difficulty of transporting materials to a distance will probably confine the trade to the vicinity of the Peak, Lyth, Kettleness, Boulby, Rockcliff, and Guisborough.
MINERAL PRODUCTS.

Ironstone abounds on this coast, and has been formerly shipped in large quantities to Newcastle. Inland, ironworks, established by the monks, were formerly carried on near Rievaulx abbey, and further up in Bilsdale, and in the valley of Hackness. The principal repositories of this mineral are above the gray limestone, and below the upper lias or alum shale. It is at present of no value except as ballast. No other metallic ores are in sufficient plenty to deserve mention.—The calcareous nodules which abound in the lias, have been used with success in fabricating "Roman cement."

Building stone has been obtained from every calcareous and arenaceous rock in this district. The use of the chalk and marlstone is very limited, but the other strata have been extensively employed in old churches and mansions, and even transported to considerable distances. The most valuable appear to be the calcareous grit employed in the edifices of Castle Howard and Duncombe Park; the Kelloways sandstone, of which the hall and old church at Hackness are constructed, and the freestone of the lower sandstone series, which has been shipped in great quantity from Whitby, being much esteemed for piers, and bridges, and other works requiring large blocks of stone. Guisborough priory and other ancient buildings in the northern part of the district, prove the durability of this stone: and Whitby abbey, though desolate and neglected, and exposed on a bare sea cliff, has not lost its beautiful tracery. The calcareous grit and the Kelloways rock at Hackness, seem equally durable, and are, in general, of a finer grain and more uniform colour.

Flagstone, of excellent quality, is dug on the estate of Hackness, and being conveniently situated near the sea, may probably be sent on favourable terms to the London market.

Lime is obtained from the chalk, coralline oolite, and gray limestone, or Bath oolite; and some unsuccessful trials have been made upon the calcareous dogger. The hard chalk of Flamborough is transported for this purpose to Whitby and other places on the coast, and a considerable
trade is carried on at Hessle. The coralline oolite is burnt about Seamer, Ayton, Pickering, and Malton; and the Bath oolite at Hawsker, Maybecks, Commondale, Seugdale, Coxwold, Newborough Park, Brandsby, Westow, Sancton, Ellerker, &c. The lime from the oolites is less pure than that from the chalk, but all kinds are used in agriculture as well as for building.

Bricks are very generally used in Holderness and the vale of York, where the diluvial clay is an abundant and suitable material, and in Cleveland, where the lias clays furnish an additional supply. In the moorland valleys the shales might be employed for the same purposes, if the prevalence of sandstone did not render it unnecessary.

The nodules and layers of flint which occur in the chalk of the Wolds might be of value in the neighbourhood of potteries, but at present compose excellent materials for the roads. The basaltic dyke, the Bath oolite, slaty stone of Brandsby, and coral bed of the Pickering oolite, furnish very good stone for this use, and, in their absence, Holderness and the vale of York yield plenty of waterworn gravel.

Excepting limestone, the agriculturist employs none of the mineral productions of the eastern part of Yorkshire as manure. Possibly some varieties of the red and white marls near the mouth of the Tees, might be available in this respect, as they are in the midland counties. In Holderness, the shell marl so generally found beneath the lacustrine deposits of peat, might, perhaps, be found useful if spread on the pastures; but it could hardly fail to produce excellent effects if spread upon the peat itself, in the mode adopted in the northern part of Lancashire. If this suggestion should be found correct, considerable benefit would result from the practice, for many such peaty hollows exist in the interior of Holderness, which can neither be obliterated by a covering of warp, nor corrected by ordinary industry.
EXPLANATION OF THE PLATES.

The geological map of the eastern part of Yorkshire is intended to convey a correct general idea of the relative situation and extent of the principal mineral masses; and though the scale to which it is drawn does not allow of minute accuracy, the outlines will be found sufficiently exact. I claim no merit for introducing the unconformable direction of the strata beneath the Wolds, the correct line of the Kimmeridge clay, nor that of the Bath oolite formation, because these points have been long since determined by Mr. Smith, who will, it is hoped, soon publish the results of his long and successful researches, on a splendid geological map of the county. The colours used on the map sometimes include a number of strata, which in the section have different tints assigned them. The diluvial gravel, clay, &c. of Holderness are represented by a bright purple, but it has not been deemed necessary to mark these accumulations in the vales of York, Pickering, and Cleveland. The white chalk is left uncoloured, but the red layers at its base are indicated by an appropriate narrow red line. The greenish blue, adopted from Mr. Smith, represents the great clay formation of the vale of Pickering, &c. of which the upper part corresponds to the gault, and the lower to the Kimmeridge clay. The coralline oolite formation occupies the space of the light orange, and the Oxford clay and Kelloways rock beneath, range along the line of the dun purple. To have coloured across the moorlands the sub-divisions of the Bath oolite formation, which are visible on the coast, would have been hardly practicable; and the method of grouping them, as Mr. Greenough has done, has the great advantage of exhibiting at once the general analogy of these rocks and those in the south of England; whilst their differences may be easily gathered from the detailed sections. The bright yellow includes the cornbrash, upper sandstone and shale, Bath oolite, and lower sandstone and shale, whilst the inferior oolite, or dogger, is marked by the narrow stripe of full orange. The lias formation is coloured blue, and the new red sandstone, pink; the same bright purple is employed for the diluvium both in the map and in the sections; and the other colours in the latter are fully explained by references engraved on the plates, which also contain the necessary scales of altitude.

REFERENCE TO THE PLATES OF ORGANIC REMAINS.

Fig.
1. Spongia plana. *
2. capitata. *
3. osculifera. *

Fig.
4. Spongia Benettiae.
5. marginata. *
6. convoluta. *
Fig.
7. Spongia cribrosa. *
8. porosa. *
8. a. laevis, with magnified parts of surface. *
9. Spongia radiciformis.*
10. terebrata, with magnified view of interior. *
11. Lunulites urceolata.
12. Millepora globularis.*

22. Hamites intermedius.
23. raricostatus. *
25. attenuatus.

Plate II.—Speeton Clay, p. 121.

1. Caryophyllia conulus.*
2. Cidaris.
3. Muricated spine of cidaris.
4. Spatangus argillaceus.*
5. Granulated spine of cidaris.
6. Corbula punctum.*
7. Tellina.
8. Mya depressa.
11. Nucula subrecurva.*
12. Nucula.
13. Mya phaseolina.*
14. Lutraria.
15. Lucina sculpta.*
17. Pholas constricta.*
18, 19. Crassina laevis.*
20, 21. Isocardia angulata.*
22. Pinna gracilis.*

Fig.
13. Caryophyllia centralis.
14. a. Plate of cidaris papillata.
15. Spatangus planus.
16. hemisphericus.*
17. Terebratula pentagonalis (perhaps a variety of t. striatula, Pl. II. fig. 28.)
18. Belemnites Listeri.

26, 27. Hamites alternatus.
29. plicatilis.
30. Phillipsii.

23. Gryphae sinuata.
24. Terebratula inconstans.
27. Terebratula lineolata.*
29. Vermicularia Sowerbii.
30. Serpula.
31. Dentalium.
32. Delphinula.*
33, 34. Rostellaria Parkinsoni (by mistake called composita, page 122.)
35. Turbo pulcherrimus.*
36. Solarium tabulatum.? *
37. Trochus reticulatus.?
38. Turritella.?
39. Melania.?
40. Auricula obsoleta.*
41. Ammonites marginatus.*
42. planus.
43. nucleus.*
Fig.
44. Ammonites hystrix. *
45. rotula.
46. like a. parvus.
47. concinnus. *
48. venustus. *
49. fissicostatus. *

1. Belemnites fusiformis.
2. Astacus ornatus. *
4. Turbinolia dispar. *
5. Caryophyllia cylindrica. *
6. Astraea tubulifera. *
7. favosioiides.
8. Spongia floriceps. *
9. Radical part of a crinoïdal column.
10. Crinoïdal column, with bifid side-arms.
11. with the cicatrices of side-arms.
12. Cidaris florigemma. *
15. Echinus germinans. *
16. Clypeus dimidiatus. *
17. semisulcatus. *
18. emarginatus. *
19. Pholas recondita. *
20. Modiola inclusa. *
21. Crassina extensa. *
22. aiena. *
23. Cardita similis.
24. Tellina ampliata. *
25. Crassina ovata. *
26. Trigonellites antiquatus. *
27. Corbula curtansata. *
28. Isocardia rhomboidalis. *
29. Arca semula. *
30. Cucullaea contracta. *
31. triangularis. *
32. pectinata. *
33. elongata? I am in much doubt as to this shell.
34. Cucullaea oblonga.
35. Avicula expansa. * It is inverted, and not so well drawn as I could have wished.

1. Ostrea duriuscula. *
2. Avicula elegantiissima. *
3. Cardium lobatum. *
5. Psammobia laevigata. *
6. Chama, or gryphaea? mima. *
7. Bulla elongata. *
8. Turritella muricata.
9. Natica cincta. *
10. Pecten inaequicoostatus. *
11. Turbo funiculatus. *
12. Orbicula radiata. *
13. Terebra melanioides. *

b b 2
Fig.
15. Serpula squamosa.*
16. Trochus tornatilis.*
17. Vermicularia compressa.
18. Murex Haccanensis.*
23. Spatangus ovalis.
24. Clypeaster pentagonalis.*
25. Isocardia tumida.*
27. Acteon retusus.*
28. Cirrus cingulatus.*
29. Ammonites solaris.*
30. Modiola bipartita.

1. Sanguinolaria undulata.
2. Crassina lurida.
3. carinata.*
4. Nucula (cast.)
5. nuda.
6. elliptica.*
7. Pinna mitis.*
8. Trigonellites politus.*
9. Cucullaea concinna.*
11. Pecten.

22. Palatal teeth of a fish.
23. Scheltemia simplicior.
24. Clypeaster pentagonalis.*
25. Isocardia tumida.*
27. Acteon retusus.*
28. Cirrus cingulatus.*
29. Ammonites solaris.*
30. Modiola bipartita.

Plate VI.—Kelloways Rock, page 140, &c.

1. Gryphæa dilatata, var.
2. Plagiostoma duplicatum (cast.)
3. Pecten fibrosus.
Fig.
7. Terebratula ornithocephala.*
8. socialis.*
9. Ostrea archetypum.*
10. Turbo sulcostomus.*
11. Lucina lirata.*
12. Cirrus depressus.*
13. Rostellaria bispinosa.*
14. Trochus guttatus.*
15. Ammonites Calloviensis.
16. Duncani.?

Plate VII.—Cornbrash, page 143.
1. Cidaris vagans.*
2. Clypeus clunicularis.
3. orbicularis.*
4. Galcrites depressus.
5. Mya literata.
6. Isocardia minima.?
7. Cardium citrinoidem.*
8. Cellaria Smithii.*

17. Sphenopteris? longifolia.*
18. latifolia.*
19. Cycadites tenuicaulis.*
20. comptus.*

Plate VIII.—Upper Sandstone, Shale, and Coal, page 148.
1. Strobilus.?
2. Winged seed.
3. Lycopodites uncifolius.*
4. Aspleniopteris Nilsoni?
5. Scolopendrium solitarium.*
6. Sphenopteris digitata.*
7. Variety of ditto.
8. Pecopteris longifolia.*

Fig.
17. Ammonites gemmatus.*
18. bifrons.*
19. athleta.*
20. flexicostatus.*
21. Gowerianus (a variety.)
22. sublævis.
23. funiferus.*
24. Koenigi.
25. lenticularis.*

9. Pholadomya Murchisoni (var. with unusually acute ribs.)
10. Amphidesma securiforme.*
11. decurtatum.*
12. Unio peregrinus.*
13. Plagiostoma rigidulum.*
14. interstinctum.*
15. Melania vittata.*
16. Terebra granulata.*
17. Pecopteris curtata,* with a granulated surface.
18. Pecopteris curta,* with a granulated surface.
20. Pecopteris ligata.*
Plate IX.—Bath Oolite, or Great Oolite, page 149, &c.

1. Millepora straminea. *
2. Retepora.?
3. Smooth spine of cidaris.
4. Muricated spine of cidaris.
5. Knotted spine of cidaris.
6. Lutraria gibbosa.?
7. Pholadomya nana.*
8. Lucina despecta.*
9. Isocardia argulata.? *
10. nitida.*
11. Nucula variabilis.
12. Cytherea dolabra * (small specimen.)
13. Pullastra recondita.*
14. Cardium cognatum.*
15. semiglabrum.*
16. Corbula depressa.*
17. Pinna cuneata.*
18. Terebratula spinosa.
19. Cucullsea imperialis.*
20. Cucullsea cylindrica.*
21, 22. Perna quadrata.
23. Crassina minima.*
24. Cuculliae cancellata.*
25. Nucula lachryma (obtuse variety.)
27. Terebra vetusta.*
29. Phasianella cincta.*
30. Natica adducta.*
31. Actaeon glaber.*
32. Delphinula.?
33. Trochos monilitecutus.*
34. Vermicularia nodus.*
35. Astraea sulcifera.*
36. Gervillia acuta.
37. Pecten abjectus.*
38. Belemnites abbreviatus.

Plate X.—Lower Sandstone, Shale, and Coal, page 153, &c.

1. Cycadites latifolius.*
2. gramineus.*
3. lanceolatus.
4. pectinoides.*
5. Winged seed.
6. Sphenopteris lanceolata.*
7. Pecopteris curtata.*
8. Sphenopteris stipata.*
9. Neuropteris laevigata.*
10. Sphenopteris muscoides.*
11. Thuites expansus.?
12. Flabellaria? viminal. *
13. Equisetum laterale.*

Plate XI.—Inferior Oolite, page 155, &c.

1. Caryophyllia convexa.*
2. Cidaris.
3. Mya calceiformis.*
4. dilata.*
Fig.
5. Cardium incertum. *
6. acutangulum. *
7. striatulum.
8. gibberulum. *
9. Variety of modiola aspera. ?
10. 11. Crassina.
12. Mya aequata. *
13. Nucula axiniformis. *
15. Pullastra oblita. *
16. Gervillia lata. *
17. Hinge of ditto.
18. Cucullaea reticulata. *
20. Pecten virguliferus. *
21. Mytilus cuneatus. *
22. Trochus pyramidatus. *
23. Turritella quadriovittata. *
24. Lingula Beanii. *

Fig.
26. Serpula deplexa. *
27. Trochus bisertus. *
28. Turritella cingenda.
29. Mouth of ditto.
30. Solarium calix. *
31. Turbo laxeigatus.
32. Nerita costata.
33. Auricula Sedgvcici. *
34. Actaeon humeralis. *
35. Natica adducta. *
36. Gastrochena tortuosa.
37. Vermicularia compressa.
38. Trigonia striata.
40. Isocardia concentrica.
41. Crassina elegans.
42. Unio abductus. *
43. Cucullaea elongata (omitted page 156.)
44. cancellata. *

Plate XII.—Upper Lias Shale, page 160, &c.

1. Basal and posterior view of the cranium of a small crocodile.
2. Lateral view of the head of a saurian animal: nostrils in a vertical aperture: ?
 a. intermaxillary bone.
 b. maxillary bone.
 c. nasal bone ?
 h. posterior frontal bone.
 i. jugal bone ?
 k. temporal bone.
 m. parietal bone.
 u. dental bone.
 v. angular bone.
 &. opercular bone.
3. Corbis.
5. Amphidesma donaciforme. *
6. rotundatum. *
7. Cardium (cast.)
8. Nucula complanata * (cast.)
9. Sanguinolaria elegans. *
10. Unknown lamellated body.
11. Actaeon.
12. Rostellaria ?
13. Plagiostoma pectinoideum (a small specimen.)
15. Ammonites crassus (variety, with tubercles.)
Plate XIII.—Upper Lias Shale, Marlstone and Ironstone Series, p. 160.

1. Ammonites vittatus.
2. Ammonites heterophyllus.
3. Ammonites subcarinatus.
4. Ammonites sigmifer. *
7. exaratus.
8. Ammonites Hawskerensis.
9. *arcigerens. *
10. ovatus.
11. maculatus.
12. elegans. ?
13. erugatus. *
15. Pholadomya obliquata. *
16. Pullastra. *
17. Spine of cidarids.
18. Turbo undulatus. *
19. Ammonites anguliferus. *
20. Ophiura Milleri. *
21. Cardium multicostatum. *
22. Terebratula triplicata. *
23. resupinata.
24. bidens. *
25. acuta.

Plate XIV.—Marlstone Series, Lower Lias Shale, p. 160.

1. Sanguinolaria.
2. Modiola scalprum.
3. Avicula cygnipes.
4. inequivalvis.
5. Pecten sublævis.
6. Ammonites Clevelandicus.
7. Gryphaea depressa. *
8. Dentalium giganteum. *
9. Ammonites geometricus. *
11. Trigonia literata.
12. Corbula cardioïdes. *
14. Ammonites Turneri ?
15. Plicatula spinosa.
16. Serpula capitata. *
17. Pinna folium.
18. Variety of plagioleoma rusticum. ?

FINIS.
GEOLOGICAL MAP of the E PART of YORKSHIRE.
No. 4 From Hill to Haliburton Wharf.

No. 7 Corinna Oolite & Chert, Below Clay, Yellowwash, Bar, Dirt & Clay, Lower Shale and Siltstone.

No. 6 Corinna Oolite, Chertous Clay, Oxford Clay, Kellowash, Red Clay, Diorite, Dirt & Clay.

No. 5 Red Clay, Siltstone, Lower Shale, and Siltstone.

No. 4石灰 Clay, Red Clay, Siltstone, Lower Shale, and Siltstone.

No. 3 Diorite, Clay, Siltstone, Lower Shale, and Siltstone.

No. 2 Diorite, Clay, Siltstone, Lower Shale, and Siltstone.

No. 1 Diorite, Clay, Siltstone, Lower Shale, and Siltstone.
General Arrangement of Strata in Yorkshire

Unconformity Stratification beneath the Sands

Coal Measure

Pitchstone

Shales

Carb. Sandstone

Coal Measures

Rocks & Bog

Upper Coal Shale

Lower Coal Shale

General Section of Dudley Cliff

N.9 ENLARGED SECTIONS

SALT'S

Coalfield

City

Sign

Colburn
Speeton Clay.

Coralline Oolite.
Oxford Clay.

Kelloways Rock.
Upper Sandstone, Shale, & Coal.
Storage